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Modern scientific workflows are complex : 
Support for adaptive workflows is important now more than ever
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Traditional workflows – loosely coupled

In situ workflows – tightly coupled

• Involves complex tasks( e.g., graph and machine 
learning based approaches) 

• Large-scale coupling involving petabytes of  data
✘I/O becomes the performance bottleneck 

Simulation

Paradigm shift towards in situ workflows
✔ Memory to memory transfers replace disk writes
► On-node memory buffers, e.g. ADIOS
► Off-node dedicated servers, e.g. Dataspaces

Dynamic challenges

• Dealing with interference since tasks share 
compute nodes

• Dealing with changes in data-flow rate
• Automating handling of  data-driven events
• Handling failures

…



Static 
scheduling

✕ No dynamic resource assignment
✕ No or limited support for handling data-driven events or 

failures 
✕ No flexibility

Resource overprovisioning => Underutilized resources

Cluster 
Batch 

Scheduler
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No orchestration to adapt resources 
based on changing requirements of  
workflow tasks at runtime  

Modern scientific workflows are complex :
Static nature of  resource assignment on supercomputers
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DYFLOW 
Specification of  
workflow orchestration 
needs

DYFLOW
A workflow orchestration service that 
reuses existing support from widely used 
workflow management services
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DYFLOW: Dynamic model

Flexibility:
Provides comprehensive 
constructs at different stages that 
enable end-users to configure and 
automate workflow orchestration as 
a user desires

Ease of  expression and reusability 
across workflows tasks and parallel 
architectures

Features:
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DYFLOW: Dynamic model (Monitor)

What data to gather?

Method to use for data gathering?

How to group and reduce data to form a 
metric?

User defined sensors

Real-time data

Control signals

Reduced metrics

Suggested 
high-level 
actions

Action plan 
(feasible set of low-level actions)

User-defined 
workflow 

orchestration settings

ArbitrationActuation

Monitor

Decision
Running 
workflow 

Workflow 
Management 
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Framework:

Manages sensors -> set and reset sensors 
as task run and stop

Manage collection and reduction of  
distributed data at scale

Support different types of  data gathering, 
grouping and reduction methods



DYFLOW: Dynamic model (Decision)

What evaluation condition determines an 
event of  interest?

Suggested high-level actions?

Frequency of  evaluation?

User defined policies

Real-time data

Control signals

Reduced metrics

Suggested 
high-level 
actions

Action plan 
(feasible set of low-level actions)

User-defined 
workflow 

orchestration settings

ArbitrationActuation

Monitor
DecisionRunning 

workflow 

Workflow 
Management 

Service

Framework:

Manages policies

Trigger evaluation conditions at the desired 
frequency

Support different types of  evaluation 
conditions and high-level actions



DYFLOW: Dynamic model (Arbitration)

• Resolves conflicting high-level actions
• Identifies dependent actions
• Maps high-level to low-level actions
• Determine resource assignments
• Suspend processing incoming 

suggestions to avoid repeatedly applying 
the same actions

………..

End-users can assist in 
• Conflict resolution by setting task 

priorities
• Identification of  dependent actions by 

declaring task dependencies
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Service

Framework:

User defined rules



DYFLOW: Dynamic model(Actuation)

• Extend DYFLOW via plugin interface 
to enable Actuation to invoke the 
workflow management services

Real-time data
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Reduced metrics
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Running 
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Workflow 
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Framework:

• Provide wrappers for plugin 
interfaces with the services (low-
level actions) requested by the 
Actuation. E.g. stopping the tasks

Workflow developers:

- Stop/Start	or	relaunch	tasks	with	a	new	resource	
assignment

- Inquire		about	current	resources	assignment
- Inquire	about	resource	status
- ….
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DYFLOW:	IMPLEMENTATION

Decision thread

Monitor
Clients

Actuation thread

<xml>
<policy>

<monitor>
</monitor>
<decision>
</decision>
<arbitration>
</arbitration>

</policy>
</xml>

Streams data 
through 

ADIOS2 or 
scan/read files 

from disk

Arbitration thread
High-level 

actions 

User dynamic requirements
Initialization

Low-level operations

Monitor Server thread

sensor 
outputs

Cluster job 
schedulerRequest resources, 

launch tasks,
resource health

Savanna/Cheetah 
workflow management 

tools

Bootstrap

User	dynamic	requirements

DYFLOW	(Python	 Library)

• Improve	Throughput
• Improve	Performance
• Handle	Node	Failure	
• Handle	data-driven	Events
…

Capabilities



DYFLOW: Handling	Node	Failure	

LAMMPS  

Tightly coupled Workflow

<sensor id="STATUS"	type="ERRORSTATUS">
<group-by>

<group granularity="task"	reduction-
operation="FIRST"/>

</group-by>
</sensor>

<policy id="RESTART_ON_FAILURE"	>
<eval operation=”GT"	threshold=”128"	/>
<sensors-to-use>

<use-sensor id="STAUS"	granularity="task">	
</use-sensor>

</sensors-to-use>
<action>	RESTART	</action>
<frequency	seconds=”30”/>

</policy>

Summit
A	high-end	supercomputer	at
Oak	Ridge	National	Lab
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RESTART SIMULATION

RESTART CS_CALC

RESTART CNA_CALC

Failure recovery (Summit): Event timestamps (min:sec) and duration 

RESTART RDF_CALC 

Approx. 30 sec

DYFLOW: Handling	Node	Failure	

• Workflow restart after node failure using additional node in the allocation from the 
job scheduler

• Simulation restarts from the last checkpoint

• Time to restart reflects the decision frequency of  30 sec
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Future	work

• Improving Arbitration stage 
• To manage the heterogeneous resources assignments at runtime
• Use machine learning to make better arbitration decisions, based on history, to 

improve conflict resolution, policy priorities, etc.

• Improving Actuation stage
• Exploring controllable actions that allows users to dynamically alter running 

workflow, for instance, controlling what and how data flows between tasks. 
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Questions?
• DYFLOW is a generic framework that automates the orchestration of

scientific workflows on supercomputers based on user-defined criteria

• Provides end-users with comprehensive and easy-to-use constructs to
express and customize the orchestration of their workflow at different
stages of runtime management

• Supports adaptive workflows with various capabilities to improve
throughput and performance, handle failures and data-driven events

• Integrates with existing workflow management services and utilizes
their workflow management support

To	summarize	…
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