
DYFLOW: A flexible framework for orchestrating
scientific workflows on supercomputers

Swati Singhal (University of Maryland)
Alan Sussman (University of Maryland)

Matthew Wolf (Oak Ridge National Lab)
Kshitij Mehta (Oak Ridge National Lab)
Jong Choi (Oak Ridge National Lab)

Outline

• Motivation
• DYFLOW Approach
• DYFLOW capabilities : demonstration with example
• Future Work

Modern scientific workflows are complex :
Support for adaptive workflows is important now more than ever

Analysis1

Disk Disk

Visualization /
Analysis3

Analysis2

Simulation Analysis1 Visualization /
Analysis3

Analysis2

Traditional workflows – loosely coupled

In situ workflows – tightly coupled

• Involves complex tasks(e.g., graph and machine
learning based approaches)

• Large-scale coupling involving petabytes of data
✘I/O becomes the performance bottleneck

Simulation

Paradigm shift towards in situ workflows
✔ Memory to memory transfers replace disk writes
► On-node memory buffers, e.g. ADIOS
► Off-node dedicated servers, e.g. Dataspaces

Dynamic challenges

• Dealing with interference since tasks share
compute nodes

• Dealing with changes in data-flow rate
• Automating handling of data-driven events
• Handling failures

…

Static
scheduling

✕ No dynamic resource assignment
✕ No or limited support for handling data-driven events or

failures
✕ No flexibility

Resource overprovisioning => Underutilized resources

Cluster
Batch

Scheduler

Compute nodes

No orchestration to adapt resources
based on changing requirements of
workflow tasks at runtime

Modern scientific workflows are complex :
Static nature of resource assignment on supercomputers

Specification of
workflow tasks
with one-time resource
requirement

OR

Workflow
Management

Service

Static
scheduling

Cluster
Batch

Scheduler

Compute nodes

Specification of
workflow tasks
with one-time resource
requirement

Workflow
Management

Service

DYFLOW
Specification of
workflow orchestration
needs

DYFLOW
A workflow orchestration service that
reuses existing support from widely used
workflow management services

Outline

• Motivation

• DYFLOW Approach
• DYFLOW capabilities : demonstration with example
• Future Work

DYFLOW: Dynamic model

Flexibility:
Provides comprehensive
constructs at different stages that
enable end-users to configure and
automate workflow orchestration as
a user desires

Ease of expression and reusability
across workflows tasks and parallel
architectures

Features:

Real-time data

Control signals

Reduced metrics

Suggested
high-level
actions

Action plan
(feasible set of low-level actions)

User-defined
workflow

orchestration settings

ArbitrationActuation

Monitor
Decision

Running
workflow

Workflow
Management

Service

DYFLOW: Dynamic model (Monitor)

What data to gather?

Method to use for data gathering?

How to group and reduce data to form a
metric?

User defined sensors

Real-time data

Control signals

Reduced metrics

Suggested
high-level
actions

Action plan
(feasible set of low-level actions)

User-defined
workflow

orchestration settings

ArbitrationActuation

Monitor

Decision
Running
workflow

Workflow
Management

Service

Framework:

Manages sensors -> set and reset sensors
as task run and stop

Manage collection and reduction of
distributed data at scale

Support different types of data gathering,
grouping and reduction methods

DYFLOW: Dynamic model (Decision)

What evaluation condition determines an
event of interest?

Suggested high-level actions?

Frequency of evaluation?

User defined policies

Real-time data

Control signals

Reduced metrics

Suggested
high-level
actions

Action plan
(feasible set of low-level actions)

User-defined
workflow

orchestration settings

ArbitrationActuation

Monitor
DecisionRunning

workflow

Workflow
Management

Service

Framework:

Manages policies

Trigger evaluation conditions at the desired
frequency

Support different types of evaluation
conditions and high-level actions

DYFLOW: Dynamic model (Arbitration)

• Resolves conflicting high-level actions
• Identifies dependent actions
• Maps high-level to low-level actions
• Determine resource assignments
• Suspend processing incoming

suggestions to avoid repeatedly applying
the same actions

………..

End-users can assist in
• Conflict resolution by setting task

priorities
• Identification of dependent actions by

declaring task dependencies

Real-time data

Control signals

Reduced metrics

Suggested
high-level
actions

Action plan
(feasible set of low-level actions)

User-defined
workflow

orchestration settings

ArbitrationActuation

Monitor
Decision

Running
workflow

Workflow
Management

Service

Framework:

User defined rules

DYFLOW: Dynamic model(Actuation)

• Extend DYFLOW via plugin interface
to enable Actuation to invoke the
workflow management services

Real-time data

Control signals

Reduced metrics

Suggested
high-level
actions

Action plan
(feasible set of low-level actions)

User-defined
workflow

orchestration settings

ArbitrationActuation

Monitor
Decision

Running
workflow

Workflow
Management

Service

Framework:

• Provide wrappers for plugin
interfaces with the services (low-
level actions) requested by the
Actuation. E.g. stopping the tasks

Workflow developers:

- Stop/Start	or	relaunch	tasks	with	a	new	resource	
assignment

- Inquire		about	current	resources	assignment
- Inquire	about	resource	status
- ….

Outline

• Motivation
• DYFLOW Approach

• DYFLOW capabilities : demonstration with example
• Future Work

DYFLOW:	IMPLEMENTATION

Decision thread

Monitor
Clients

Actuation thread

<xml>
<policy>

<monitor>
</monitor>
<decision>
</decision>
<arbitration>
</arbitration>

</policy>
</xml>

Streams data
through

ADIOS2 or
scan/read files

from disk

Arbitration thread
High-level

actions

User dynamic requirements
Initialization

Low-level operations

Monitor Server thread

sensor
outputs

Cluster job
schedulerRequest resources,

launch tasks,
resource health

Savanna/Cheetah
workflow management

tools

Bootstrap

User	dynamic	requirements

DYFLOW	(Python	 Library)

• Improve	Throughput
• Improve	Performance
• Handle	Node	Failure	
• Handle	data-driven	Events
…

Capabilities

DYFLOW: Handling	Node	Failure	

LAMMPS

Tightly coupled Workflow

<sensor id="STATUS"	type="ERRORSTATUS">
<group-by>

<group granularity="task"	reduction-
operation="FIRST"/>

</group-by>
</sensor>

<policy id="RESTART_ON_FAILURE"	>
<eval operation=”GT"	threshold=”128"	/>
<sensors-to-use>

<use-sensor id="STAUS"	granularity="task">	
</use-sensor>

</sensors-to-use>
<action>	RESTART	</action>
<frequency	seconds=”30”/>

</policy>

Summit
A	high-end	supercomputer	at
Oak	Ridge	National	Lab

Simulation_1500_procs, 10:09
CS_Calc_200_procs, 10:09
CNA_Calc_200_procs, 10:09
RDF_Calc_200_procs, 10:09

Simulation_1500_procs, 32:40
CS_Calc_200_procs, 32:40

CNA_Calc_200_procs, 32:40
RDF_Calc_200_procs, 32:40

04
:1
9

05
:0
2

05
:4
6

06
:2
9

07
:1
2

07
:5
5

08
:3
8

09
:2
2

10
:0
5

10
:4
8

11
:3
1

12
:1
4

12
:5
8

13
:4
1

14
:2
4

15
:0
7

15
:5
0

16
:3
4

17
:1
7

18
:0
0

18
:4
3

19
:2
6

20
:1
0

20
:5
3

21
:3
6

RESTART SIMULATION

RESTART CS_CALC

RESTART CNA_CALC

Failure recovery (Summit): Event timestamps (min:sec) and duration

RESTART RDF_CALC

Approx. 30 sec

DYFLOW: Handling	Node	Failure	

• Workflow restart after node failure using additional node in the allocation from the
job scheduler

• Simulation restarts from the last checkpoint

• Time to restart reflects the decision frequency of 30 sec

Outline

• Motivation
• DYFLOW Approach
• DYFLOW capabilities : demonstration with example

• Future Work

Future	work

• Improving Arbitration stage
• To manage the heterogeneous resources assignments at runtime
• Use machine learning to make better arbitration decisions, based on history, to

improve conflict resolution, policy priorities, etc.

• Improving Actuation stage
• Exploring controllable actions that allows users to dynamically alter running

workflow, for instance, controlling what and how data flows between tasks.

DYFLOW: A flexible framework for orchestrating scientific workflows on
supercomputers

Swati Singhal
(University of Maryland)
swati@cs.umd.edu

Questions?
• DYFLOW is a generic framework that automates the orchestration of

scientific workflows on supercomputers based on user-defined criteria

• Provides end-users with comprehensive and easy-to-use constructs to
express and customize the orchestration of their workflow at different
stages of runtime management

• Supports adaptive workflows with various capabilities to improve
throughput and performance, handle failures and data-driven events

• Integrates with existing workflow management services and utilizes
their workflow management support

To	summarize	…

Real-time data

Control signals

Reduced metrics

Suggested
high-level
actions

Action plan
(feasible set of low-level actions)

User-defined
workflow

orchestration settings

ArbitrationActuation

Monitor
Decision

Running
workflow

Workflow
Management

Service

