
ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Implementing Arbitrary/Common 
Concurrent Writes of CRCW PRAM

Fady Ghanim, Wael Elwasif, David Bernholdt

Oak Ridge National Laboratories



22

Introduction

• Parallel Random Access Machines (PRAM) provides a 
convenient and powerful parallel computational model to 
study the algorithmic complexity of parallel algorithms

• Many believe that CRCW PRAM algorithms are impossible to 
support on general-purpose parallel machines. 

• Recent research has refuted these claims 
– A new specialized architecture designed around principles of PRAM
– High level compiler to enable implementing PRAM algorithms as is.



33

Parallel Random Access Machines (PRAM)

• A shared memory abstraction machine - The Parallel analog to the 
random access machines

• PRAM makes certain assumptions to abstract the underlying 
architecture :
– Unlimited shared memory 
– Unlimited processors
– Uniform memory access to any memory location from all processors
– Perfect synchrony between all processors – execution is lockstep

• In PRAM an algorithm is described as a series of rounds/time-steps 
within which multiple operations are executed concurrently.



44

PRAM Memory Access Modes

• PRAM memory access modes are:
– Exclusive Read Exclusive Write (EREW)
– Concurrent Read Exclusive Write (CREW)
– Concurrent Read Concurrent Write (CRCW)

• CRCW PRAM conflict resolution strategies
– Priority Concurrent Write 
– Arbitrary Concurrent Write 
– Common Concurrent Write 



55

Motivating Example

P: nil
L: 1

P: R
L: 2

P: ??
L: 3

P: R
L: 2

P: R
L: 2

Level=1

Level=2

Level=3

A B C

D

R

P: is a parent nodes
L: is the round when a node was visited



66

Other examples

• Topological sort
• Connected components
• Constant time Maximum / minimum
• All Nearest Smaller Value (ANSV)
• String matching
• Maximal matching
• And many more!



88

Concurrent Write Primitive

10 While (!done) {

11 #pragma omp parallel for

12 For (unsigned i = 0; i < N; i++) {

13 If (canConWrite (&lastRoundUpdated[i], round) )

14 ConWriteTarget[i] = ……

15 }

16 round++;

17 }

1 lastRoundUpdated : Last round the associated cell was updated

2 round: Current write round

3 atomic_cas(memory, old, new): Compare-exchange; return true if successful

4 bool canConWrite (&lastRoundUpdated, round) {

5 x = false;

6 If ((current = lastRoundUpdated) < round)

7 x = atomic_cas (lastRoundUpdated, current, round)

8 return x;

9 }

• Arbitrary concurrent writes
– Winner thread doesn’t matter
– Pick first Thread

• Requires 3 components
– An auxiliary memory to indicate if a 

writer was picked
– Track if a new round of CW was 

initiated
– Atomic to force ordering – used 

sparingly



99

Concurrent Write Primitive

10 While (!done) {

11 #pragma omp parallel for

12 For (unsigned i = 0; i < N; i++) {

13 If (canConWrite (&lastRoundUpdated[i], round) )

14 ConWriteTarget[i] = ……

15 }

16 round++;

17 }

1 lastRoundUpdated : Last round the associated cell was updated

2 round: Current write round

3 atomic_cas(memory, old, new): Compare-exchange; return true if successful

4 bool canConWrite (&lastRoundUpdated, round) {

5 x = false;

6 If ((current = lastRoundUpdated) < round)

7 x = atomic_cas (lastRoundUpdated, current, round)

8 return x;

9 }

• A thread checks if it can 
concurrently write
– Force atomic execution – only one 

winner Write
– The rest will lose Skip write
– Threads attempting after a winner was 

picked will fail skip atomic and write
– Increment round to initiate a new round 

of writes.



1010

Concurrent Write Primitive

1 lastRoundUpdated : Last round the associated cell was updated

2 round: Current write round

3 atomic_cas(memory, old, new): Compare-exchange; return true if successful

4 inline bool canConWrite (unsigned &lastRoundUpdated, unsigned round) {

5 bool x = false;

6 If ((unsigned current = lastRoundUpdated) < round)

7 x = atomic_cas (lastRoundUpdated, current, round)

8 return x;

9 }

10 While (!done) {

11 #pragma omp parallel for

12 For (unsigned i = 0; i < N; i++) {

13 If (canConWrite (&lastRoundUpdated[i], round) )

14 ConWriteTarget[i] = ……

15 }

16 Round++;

17 }

• Generic and flexible
– Independent of the algorithm 

being used

• Guarantees Correctness
– avoids race conditions 

• Efficient
– Limit atomic execution



1111

Experimental environment

• Implemented OpenMP benchmarks for PRAM based algorithms.
– Naïve implementation: relying on underlying HW. (Naïve)
– Atomic implementation: All N writers perform Atomic operation to pick a winner 

(Prefixsum)
– Using our method. (CAS-LT)

• Used Andes system at Oak Ridge Leadership Computing Facility (OLCF) to 
measure runtime performance



1212

Experimental Results

• Linear-time Maximum : Extreme case 
of write concurrency – O(N) 
concurrent writes per memory 
location

• Speed up: Geometric mean 1.98x 
over the naive approach

• Atomic is 1.7x slower than naïve -
~3.5x slower than our method

• Scales well with number of threads –
Max speed up 1.8x at 32 threads



1313

Experimental Results 

• Breadth First Search: We use the 
Rodinia benchmark’s OpenMP 
implementation.

• Better performance across all 
problem sizes. Geometric mean of 2x 
when compared to Rodinia.

• Better scalability with number of 
threads reaching a speedup of 2.24x



1414

Experimental Results 

• Connected Components (Awerbuch-Shiloach 
algorithm)

• Naïve implementation failed and 
produced wrong results.

• Better performance across all problem 
sizes. Geometric mean speedup of 4x 
compared to prefixsum

• Better scalability with number of threads 
reaching a max speedup of 4x



1515

Thank you!!


	Implementing Arbitrary/Common Concurrent Writes of CRCW PRAM
	Introduction
	Parallel Random Access Machines (PRAM)
	PRAM Memory Access Modes
	Motivating Example
	Other examples
	Concurrent Write Primitive
	Concurrent Write Primitive
	Concurrent Write Primitive
	Experimental environment
	Experimental Results
	Experimental Results 
	Experimental Results 
	Thank you!!

