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Introduction

• Parallel Random Access Machines (PRAM) provides a 
convenient and powerful parallel computational model to 
study the algorithmic complexity of parallel algorithms

• Many believe that CRCW PRAM algorithms are impossible to 
support on general-purpose parallel machines. 

• Recent research has refuted these claims 
– A new specialized architecture designed around principles of PRAM
– High level compiler to enable implementing PRAM algorithms as is.
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Parallel Random Access Machines (PRAM)

• A shared memory abstraction machine - The Parallel analog to the 
random access machines

• PRAM makes certain assumptions to abstract the underlying 
architecture :
– Unlimited shared memory 
– Unlimited processors
– Uniform memory access to any memory location from all processors
– Perfect synchrony between all processors – execution is lockstep

• In PRAM an algorithm is described as a series of rounds/time-steps 
within which multiple operations are executed concurrently.



44

PRAM Memory Access Modes

• PRAM memory access modes are:
– Exclusive Read Exclusive Write (EREW)
– Concurrent Read Exclusive Write (CREW)
– Concurrent Read Concurrent Write (CRCW)

• CRCW PRAM conflict resolution strategies
– Priority Concurrent Write 
– Arbitrary Concurrent Write 
– Common Concurrent Write 
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Motivating Example

P: nil
L: 1

P: R
L: 2

P: ??
L: 3

P: R
L: 2

P: R
L: 2

Level=1

Level=2

Level=3

A B C

D

R

P: is a parent nodes
L: is the round when a node was visited
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Other examples

• Topological sort
• Connected components
• Constant time Maximum / minimum
• All Nearest Smaller Value (ANSV)
• String matching
• Maximal matching
• And many more!
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Concurrent Write Primitive

10 While (!done) {

11 #pragma omp parallel for

12 For (unsigned i = 0; i < N; i++) {

13 If (canConWrite (&lastRoundUpdated[i], round) )

14 ConWriteTarget[i] = ……

15 }

16 round++;

17 }

1 lastRoundUpdated : Last round the associated cell was updated

2 round: Current write round

3 atomic_cas(memory, old, new): Compare-exchange; return true if successful

4 bool canConWrite (&lastRoundUpdated, round) {

5 x = false;

6 If ((current = lastRoundUpdated) < round)

7 x = atomic_cas (lastRoundUpdated, current, round)

8 return x;

9 }

• Arbitrary concurrent writes
– Winner thread doesn’t matter
– Pick first Thread

• Requires 3 components
– An auxiliary memory to indicate if a 

writer was picked
– Track if a new round of CW was 

initiated
– Atomic to force ordering – used 

sparingly
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Concurrent Write Primitive

10 While (!done) {

11 #pragma omp parallel for

12 For (unsigned i = 0; i < N; i++) {

13 If (canConWrite (&lastRoundUpdated[i], round) )

14 ConWriteTarget[i] = ……

15 }

16 round++;

17 }

1 lastRoundUpdated : Last round the associated cell was updated

2 round: Current write round

3 atomic_cas(memory, old, new): Compare-exchange; return true if successful

4 bool canConWrite (&lastRoundUpdated, round) {

5 x = false;

6 If ((current = lastRoundUpdated) < round)

7 x = atomic_cas (lastRoundUpdated, current, round)

8 return x;

9 }

• A thread checks if it can 
concurrently write
– Force atomic execution – only one 

winner Write
– The rest will lose Skip write
– Threads attempting after a winner was 

picked will fail skip atomic and write
– Increment round to initiate a new round 

of writes.
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Concurrent Write Primitive

1 lastRoundUpdated : Last round the associated cell was updated

2 round: Current write round

3 atomic_cas(memory, old, new): Compare-exchange; return true if successful

4 inline bool canConWrite (unsigned &lastRoundUpdated, unsigned round) {

5 bool x = false;

6 If ((unsigned current = lastRoundUpdated) < round)

7 x = atomic_cas (lastRoundUpdated, current, round)

8 return x;

9 }

10 While (!done) {

11 #pragma omp parallel for

12 For (unsigned i = 0; i < N; i++) {

13 If (canConWrite (&lastRoundUpdated[i], round) )

14 ConWriteTarget[i] = ……

15 }

16 Round++;

17 }

• Generic and flexible
– Independent of the algorithm 

being used

• Guarantees Correctness
– avoids race conditions 

• Efficient
– Limit atomic execution
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Experimental environment

• Implemented OpenMP benchmarks for PRAM based algorithms.
– Naïve implementation: relying on underlying HW. (Naïve)
– Atomic implementation: All N writers perform Atomic operation to pick a winner 

(Prefixsum)
– Using our method. (CAS-LT)

• Used Andes system at Oak Ridge Leadership Computing Facility (OLCF) to 
measure runtime performance
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Experimental Results

• Linear-time Maximum : Extreme case 
of write concurrency – O(N) 
concurrent writes per memory 
location

• Speed up: Geometric mean 1.98x 
over the naive approach

• Atomic is 1.7x slower than naïve -
~3.5x slower than our method

• Scales well with number of threads –
Max speed up 1.8x at 32 threads
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Experimental Results 

• Breadth First Search: We use the 
Rodinia benchmark’s OpenMP 
implementation.

• Better performance across all 
problem sizes. Geometric mean of 2x 
when compared to Rodinia.

• Better scalability with number of 
threads reaching a speedup of 2.24x
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Experimental Results 

• Connected Components (Awerbuch-Shiloach 
algorithm)

• Naïve implementation failed and 
produced wrong results.

• Better performance across all problem 
sizes. Geometric mean speedup of 4x 
compared to prefixsum

• Better scalability with number of threads 
reaching a max speedup of 4x



1515

Thank you!!
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