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Motivation

Today’s jobs on supercomputers typically retain the same set
of resources throughout their lifetime, called rigid

Rigidity limits the flexibility of job schedulers

Adaptive resource management enables on-demand resource
changes at runtime

Benefits include highly improved global throughput and
decreased energy consumption
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Introduction

Adaptivity must be backed by at least three major layers:

Job scheduler

Programming system

Algorithm / Application

Resource change requests may come from the application itself
or from the job scheduler

We address the second case, called malleability

Malleable programs require additional programmer
effort and are rarely used in practice so far
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Contributions

A novel malleability scheme for a work-stealing task
environment that enables a transparent adaptation to the
addition or release of multiple nodes

Programmers do not need to modify their programs

Experimental overhead evaluation of resizing operations

Formulas to estimate overhead-free running times

Simulating execution of job sets on supercomputers to
quantify the impact of malleable jobs

A heuristic to determine malleability job parameters
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Asynchronous Many-Task (AMT)

AMT programs are naturally structured into many small
execution units, called tasks

A runtime systems maps these tasks to computing resources
(e.g., processes, threads), called workers

Since AMT resource management is transparent and performed
at runtime, AMT is well suited for providing malleability
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Multi-Worker Global Load Balancing Library1

Combines work sharing for intra-process load balancing with
work stealing for inter -process load balancing

On each node runs one process with multiple workers

Each worker maintains a private local task queue

Each process maintains additional shared task queues

Work sharing: Workers with surplus tasks provide them to
others by inserting them into a shared queue

[1] P. Finnerty et al., Self-Adjusting Task Granularity for Global Load Balancer Library on Clusters of Many-Core Processors, PMAM, 2020.
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Multi-Worker Global Load Balancing

Work stealing: When a whole process runs empty, it tries to
steal tasks from other processes

Processes are arranged in a lifeline-graph for victim
selection and termination detection

Dynamic independent tasks:
Tasks are free of side effects
Tasks generate results and possibly new tasks
Task results are locally accumulated
The final result is reduced over all worker results
Well suited for tree-based algorithms solving search,
optimization, and approximation problems
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Malleability Scheme

We implemented the scheme by extending MultiGLB

The scheme is performed concurrently to task processing

Process 0 takes some responsibilities and can not be released

Shrinking:
All steals related to the processes to be released are stopped
(including recalculation of lifeline-graph)

All processes to be released stop task processing, and send their tasks
and results to co-processes

Expanding:
Recalculation of the lifeline graph whereby new processes
automatically will receive tasks via work stealing
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Overhead Analysis

We experimentally quantified the costs for adding and
releasing processes on-the-fly

We used up to 128 nodes, each with 40 cores

Two synthetic benchmarks (called StatSyn and DynSyn)

Perform placeholder computations

Are configurable for smooth weak scaling

Allow an accurate analysis with derived formulas
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Overhead Analysis

We executed the benchmarks in three ways:

Rigid: no resize operation is triggered

Shrinking: after half of the running time one shrink
operation is triggered to release half of the processes

Expanding: after half of the running time one expand
operation is triggered to double the processes
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Estimation of Overhead-Free Running Times

Shrinking: the program is initialized with Pi processes and
Ps processes are released at Top:

TEst(Pi − Ps) = Top +

(
T̂ (Pi )−

Top
1+L(Pi )

)
·Pi ·(1+L(Pi−Ps))

Pi−Ps
(1)

Growing: the program is initialized with Pi processes and
Pe processes are added at Top:

TEst(Pi + Pe) = Top +

(
T̂ (Pi )−

Top
1+L(Pi )

)
·Pi ·(1+L(Pi+Pe))

Pi+Pe
(2)
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Costs of Load Balancing (Rigid Runs)
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Costs of Shrinking
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Costs of Expanding
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Simulation

We quantified the impact of malleable workloads compared to
rigid ones on supercomputers

We simulated the execution of sets of independent parallel jobs

The job sets are generated with benchmarks performance data

Simulated supercomputer consists of 2048 nodes

Simulator starts jobs sorted by submission time, coupled with
back-filling adapted from Slurm
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A Heuristic for Malleable Job Parameters

Usually, only a certain range of nodes makes sense for
applications from a performance point of view

Our heuristic builds on the well-known concept of program
efficiency = T (1)/(p · T (p))

The minimum number of nodes is always 1

The preferred number of nodes is defined as the largest p, for
which the efficiency is ≥ 0.8

The maximum number of nodes is defined as the largest p, for
which the efficiency is ≥ 0.5
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Program Efficiencies
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Elastic Job Scheduling Strategy

Job scheduler strategy to decide when and with how many
resources to shrink or grow jobs

We adapted an existing strategy2 designed to improve the
global throughput:

Jobs that run with less than the preferred number of nodes are
expanded to their preferred number
If there are pending jobs waiting to be started, running jobs are
shrunk to do so, if possible. However, running jobs are never shrunk
to less than their preferred number of nodes. Pending jobs are started
with any number of nodes
Jobs that run with less than the maximum number of processes are
expanded

[2] S. Iserte, R. Mayo, et al., DMRlib: Easy-coding and Efficient Resource Management for Job Malleability, IEEE Trans., 2020. 18 / 22
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Simulation: Makespan
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Simulation: Job Waiting Time
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Conclusions

We have proposed a novel malleability scheme at the
intermediate level of an AMT runtime system

Multiple nodes can be added or released on-the-fly

No explicit synchronization points, additional programming
effort, or human input is required

Adding and releasing nodes has little overhead and scales well

Simulation results show that adaptive resource management of
supercomputers pays off

In future work, our malleability scheme should be evaluated
with other task models and work stealing schemes
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Thank you for your attention!

Please feel free to ask questions
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