
A Log-Free and Consistent Chained Hashing for Non-volatile Memory

Renzhi Xiao, Dan Feng, Yuchong Hu
Wuhan National Laboratory for Optoelectronics, School of Computer Science and Technology, 

Huazhong University of Science and Technology, Wuhan, China

 NVM-based Hashing
• Hashing data structures are wildly used in in-memory key-value 

stores, such as RAMCloud, Memcached, Redis due to their 
constant search performance (O(1))

• Solutions for Hash Conflicts

• NVMs have the performance of DRAM and the persistency of 
hard disk (HDD) or solid state disk (SSD) with limited write 
endurance and higher write latency than reading

• Current NVM-based hashing studies include PFHT [1], Path [5], 
Group [4], Level [6], etc

 Challenges of NVM-based Hashing
• Data inconsistencies due to NVM write reorder or partial 

write in the face of system failure
• Rapid wear due to the local fixed count in NVM

1. Expensive data consistency (redo/undo logging requires double 
NVM writes)

2. Low lifetime of NVM (limited to local rapid wear, short for LRW)

Log-Free Failure-Atomic Writes
 Redo/undo logging

• Useful for write unit larger than 8 bytes for data consistency
• Double NVM writes damage NVM life and increase write latency

 Copy-On-Write (COW)
• Unnecessary reads for unmodified data area (Read amplification)
• Unnecessary writes for unmodified data area (Write 

amplification)

 Our approach (Log-Free Failure-Atomic Writes, Atomic)
• Ordered 8-byte atomic writes with memory fence and cache line 

flush instructions instead of logging
• No extra NVM writes for insertion and deletion operations
• Lazy deletion with invalid token
• Increase lifetime of NVM and improve the performance of writes

Background and Challenges Bucket Pre-Allocation

 Original Chain-based hashing
• Temporary allocation of a bucket from heap to the chain 

during a hash conflict
• Bucket allocation operation in the critical path increase the 

insertion latency
 Our method (Bucket Pre-Allocation)

• Pre-allocate a certain number of buckets for hash conflicts
• bucket allocation operations are separated from critical paths 

for write operations, thus reducing the insertion latency

 Original NVM-based hashing
• Use the fixed count to calculate the number of items in NVM
• Shorten the lifetime of NVM with unbalance writes

 Our method (No LRW)
• Eliminate fixed count writes in NVM with size function
• Avoid local fast wear with more reading
• Increase the lifetime of NVM for ConHash

• ConHash shows lower insertion latency than Level (up to 43.2%) 
and PFHT-Log (up to 88.2%) with low data consistency guarantee

• ConHash shows the lowest insertion latency both in 
RandomNum and SequenceNum when NVM read/write latency 
is 200/600 nanosecond

• ConHash shows lower deletion latency than Level (up to 50.8%) 
and PFHT-Log (up to 82.6%)

• ConHash shows the lowest deletion latency.

No LRW

Preliminary Evaluations

Proposed: Atomic, Pre-allocation and No LRW

 We propose a novel log-free and consistent chained hashing 
for non-volatile memory, called ConHash :
• Log-Free Failure-Atomic Writes, short for Atomic
• Bucket Pre-Allocation
• No Local Rapid Wear (LRW)

(a) The layout of ConHash (b) The write flow of ConHash

• As NVM write latency increases, various hashing insertion and 
deletion latencies increase accordingly.

• ConHash shows the lowest insertion and deletion latencies with 
different NVM read/write latencies.

References: https://xiaorz.github.io/refersOfConHash.html

https://xiaorz.github.io/refersOfConHash.html

