A Log-Free and Consistent Chained Hashing for Non-volatile Memory

Renzhi Xiao, Dan Feng, Yuchong Hu
Wuhan National Laboratory for Optoelectronics, School of Computer Science and Technology,
Huazhong University of Science and Technology, Wuhan, China

Background and Challenges Bucket Pre-Allocation

m NVM-based Hashing
 Hashing data structures are wildly used in in-memory key-value
stores, such as RAMCloud, Memcached, Redis due to their
constant search performance (O(1))

m Original Chain-based hashing
 Temporary allocation of a bucket from heap to the chain
during a hash conflict
 Bucket allocation operation in the critical path increase the

* Solutions for Hash Conflicts insertion latency

ﬂ ; | ! | 137 4 13 6 > u ; T > ﬁ > m Our method (Bucket Pre-Allocation)
: * Pre-allocate a certain number of buckets for hash conflicts
I * bucket allocation operations are separated from critical paths
17 for write operations, thus reducing the insertion latency

(a) Linear Search (b) Chamed List N O LRW

X m Original NVM-based hashing
H1(X) H)(X) : : :
/ \ * Use the fixed count to calculate the number of items in NVM

- ; —— 1; : - o 4 153 ﬁ 1; * Shorten the lifetime of NVM with unbalance writes
@ Our method (No LRW)
1|17 * Eliminate fixed count writes in NVM with size function
Unaddressable Stash Area * Avoid local fast wear with more reading
(c) Common Overflow Area (@ Rehash using Tavo or more Hashing Functions * Increase the lifetime of NVM for ConHash
* NVMs have the performance of DRAM and the persistency of —_— :
hard disk (HDD) or solid state disk (SSD) with limited write Prellmlnary Evaluations
endurance and higher write latency than reading PFHT-Log 23.03 PFHT Log
e Current NVM-based hashing studies include PFHT [1], Path [5], N B e |] | _
Group [4], Level [6], etc p _ =(I_;\:]e|_llaSh 18.39
m Challenges of NVM-based Hashing 3 1 : 18- }
 Datainconsistencies due to NVM write reorder or partial é . % o]
write in the face of system failure g 12 | < ace08
 Rapid wear due to the local fixed count in NVM = s- £ .
1. Expensive data consistency (redo/undo logging requires double
NVM writes) : S v
2. Low lifetime of NVM (limited to local rapid wear, short for LRW) @) Randomhum) St

 ConHash shows lower insertion latency than Level (up to 43.2%)
and PFHT-Log (up to 88.2%) with low data consistency guarantee

Proposed: Atomic, Pre-allocation and No LRW

m We propose a novel log-free and consistent chained hashing ConHash shows the lowest insertion latency both in
for non-volatile memory, called ConHash : RandomNum and SequenceNum when NVM read/write latency
* Log-Free Failure-Atomic Writes, short for Atomic . i5200/600 nanosecond .
* Bucket Pre-Allocation I i |] |[SgPrHT Lo
* No Local Rapid Wear (LRW) 8- I i
Volatile CPU Caches Volatile CPU Caches | I ConHash I ConHash
_______ volatile Persistence Boundary— — — — — — — = — — — — — - é S 78425 06 5.065.09 547529 2325 17 15)

Deletion Latency (us)
Deletion Latency (us)

0 1 2 3 ... 2IN-3 2N2 2N
have a free slot

. Y
= |

Log-Free Failure |
Atomic Writes

| -

Bucket Pre-allocation 0

991 61

0.99 096

. 0.5 i . DTS
T Load Factor Load Factor

| 461 469

m Copy-On-Write (COW)

(1) @ mc;}“ ﬁq,,f No LRW e (a) RandomNum (b) SequenceNum
— [e re-Alocation Buckets for * ConHash shows lower deletion latency than Level (up to 50.8%)
Pre-Allocation B”“‘E“fﬂrﬂ‘ﬂ:_vulat“e Memory Non-Volatile Memory and PFHT‘LOg (Up to 82-6%)
(a) The layout of ConHash (b) The write flow of ConHash 14‘ ConHash shows the lowest dele:c4ion latency.
Log-Free Failure-Atomic Writes o] EPaniog I . -E;EESQ
= Redo/undo logging o] Rl e o] B,
 Useful for write unit larger than 8 bytes for data consistency “;;: . e _"‘;;: . 75
* Double NVM writes damage NVM life and increase write latency ~ § s . 18 »
-% 52 §
£ 0

6
e Unnecessary reads for unmodified data area (Read amplification) ol O 4 3822_6 i
* Unnecessary writes for unmodified data area (Write ” 1 - M? 99 2 1
amplification) D 00na00ns | 200ns/600nS | 200n9/900ms | 200n/1200n " 200ns/300ns | 200ns/600ns | 200n5/800ns 200ns/1200ns
m Our approach (Log-Free Failure-Atomic Writes, Atomic) (2) Randomiium for Inaertion (Load et i 0.5 (b) RandomNum for Deletion (Load factor is 0.5)
* Ordered 8-byte atomic writes with memory fence and cache line » As NVM write latency increases, various hashing insertion and
flush instructions instead of logging deletion latencies increase accordingly.
* No extra NVM writes for insertion and deletion operations ConHash shows the lowest insertion and deletion latencies with
* Lazy deletion with invalid token different NVM read/write latencies.

* Increase lifetime of NVM and improve the performance of writes References: https://xiaorz.github.io/refersOfConHash.html

https://xiaorz.github.io/refersOfConHash.html

