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Background and Challenges Bucket Pre-Allocation

m NVM-based Hashing
 Hashing data structures are wildly used in in-memory key-value
stores, such as RAMCloud, Memcached, Redis due to their
constant search performance (O(1))

m Original Chain-based hashing
 Temporary allocation of a bucket from heap to the chain
during a hash conflict
 Bucket allocation operation in the critical path increase the

* Solutions for Hash Conflicts insertion latency

ﬂ ; | ! | 137 4 13 6 > u ; T > ﬁ > m Our method (Bucket Pre-Allocation)
: * Pre-allocate a certain number of buckets for hash conflicts
I * bucket allocation operations are separated from critical paths
17 for write operations, thus reducing the insertion latency

(a) Linear Search (b) Chamed List N O LRW

X m  Original NVM-based hashing
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/ \ * Use the fixed count to calculate the number of items in NVM

- ; —— 1; : - o 4 153 ﬁ 1; * Shorten the lifetime of NVM with unbalance writes
@ Our method (No LRW)
1|17 * Eliminate fixed count writes in NVM with size function
Unaddressable Stash Area * Avoid local fast wear with more reading
(c) Common Overflow Area (@ Rehash using Tavo or more Hashing Functions * Increase the lifetime of NVM for ConHash
* NVMs have the performance of DRAM and the persistency of —_— :
hard disk (HDD) or solid state disk (SSD) with limited write Prellmlnary Evaluations
endurance and higher write latency than reading PFHT-Log 23.03 PFHT Log
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m Challenges of NVM-based Hashing 3 1 : 18- }
 Datainconsistencies due to NVM write reorder or partial é . % o ]
write in the face of system failure g 12 | < ace08
 Rapid wear due to the local fixed count in NVM = s- £ .
1. Expensive data consistency (redo/undo logging requires double
NVM writes) : S v
2. Low lifetime of NVM (limited to local rapid wear, short for LRW) @) Randomhum ) St

 ConHash shows lower insertion latency than Level (up to 43.2%)
and PFHT-Log (up to 88.2%) with low data consistency guarantee

Proposed: Atomic, Pre-allocation and No LRW

m We propose a novel log-free and consistent chained hashing  ConHash shows the lowest insertion latency both in
for non-volatile memory, called ConHash : RandomNum and SequenceNum when NVM read/write latency
* Log-Free Failure-Atomic Writes, short for Atomic . i5200/600 nanosecond .
* Bucket Pre-Allocation I i | ] |[SgPrHT Lo
* No Local Rapid Wear (LRW) 8- I i
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m Copy-On-Write (COW)

(1) @ mc;}“ ﬁq,,f No LRW e (a) RandomNum (b) SequenceNum
— [ e re-Alocation Buckets for * ConHash shows lower deletion latency than Level (up to 50.8%)
Pre-Allocation B”“‘E“fﬂrﬂ‘ﬂ:_vulat“e Memory Non-Volatile Memory and PFHT‘LOg (Up to 82-6%)
(a) The layout of ConHash (b) The write flow of ConHash 14‘ ConHash shows the lowest dele:c4ion latency.
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= Redo/undo logging o] Rl e o] B,
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e Unnecessary reads for unmodified data area (Read amplification) ol O 4 3822_6 i
* Unnecessary writes for unmodified data area (Write ” 1 - M? 99 2 1
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m Our approach (Log-Free Failure-Atomic Writes, Atomic) (2) Randomiium for Inaertion (Load et i 0.5 (b) RandomNum for Deletion (Load factor is 0.5)
* Ordered 8-byte atomic writes with memory fence and cache line » As NVM write latency increases, various hashing insertion and
flush instructions instead of logging deletion latencies increase accordingly.
* No extra NVM writes for insertion and deletion operations  ConHash shows the lowest insertion and deletion latencies with
* Lazy deletion with invalid token different NVM read/write latencies.

* Increase lifetime of NVM and improve the performance of writes References: https://xiaorz.github.io/refersOfConHash.html
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