
A Log-Free and Consistent Chained Hashing for Non-volatile
Memory

Renzhi Xiao, Dan Feng*, Yuchong Hu
Wuhan National Laboratory for Optoelectronics, School of Computer Science and Technology,

Huazhong University of Science and Technology, {rzxiao, dfeng, yuchonghu}@hust.edu.cn,

Corresponding author: Dan Feng (dfeng@hust.edu.cn).

ABSTRACT

Hashing is an in-memory index that provides fast search perfor-

mance because it is a flat structure that can quickly locate a key-

value item position through a hash function. Non-volatile memory

(NVM) technologies have promoted the researches of NVM-based

hashing structures since NVM has the durability of hard disk and

the performance of DRAM. However, current NVM-based hashing

schemes must tackle data inconsistencies and avoid rapid wear

due to NVM write reorder and limited endurance. In this paper,

we propose a log-free and consistent chained hashing for NVM,

called ConHash. The ConHash leverages log-free failure-atomic

writes to degrade the overhead of data consistency and exploits

the pre-allocation of the bucket in the chain to solve hash con-

flicts efficiently. ConHash uses the size function to get the number

of keys in the hashing instead of the fixed count variable, which

may cause the fast wear problem for NVM. Compared with the

state-of-the-art schemes, experimental results demonstrate that our

ConHash decreases the insertion latency up to 88.2% and degrades

the deletion latency up to 82.6%.

1 INTRODUCTION

Hashing data structures are wildly used in in-memory key-value

stores, such as RAMCloud, Memcached, Redis due to their constant

search performance (O(1)). However, Hashing structure may en-

counter hash collision which consumes a lot of system sources like

CPU and memory. Four main solutions for hash conflicts shown in

Figure 1.

Figure 1: Four main solutions for hash conflicts.

Non-volatile Memory technologies (NVMs) have the perfor-

mance of DRAM and the persistency of hard disk (HDD) or solid-

state disk (SSD) with limited write endurance and higher write

latency than reading. In recent years, academic communities have

proposed hashing-based structures for NVM, such as PFHT [1],

Path hashing [5], Group Hashing [4], and Level Hashing [6]. PFHT

and Path hashing mainly solve the write problems but neglect the

data inconsistency problem. Therefore, we re-implement PFHT and

Path hashing with the logging method to guarantee data consis-

tency. Moreover, these NVM-based hashing schemes suffer from

rapid wear due to the local fixed count in NVM.

Therefore, we need to tackle the consistency problem and write

problems. In this paper, we propose a novel log-free and consistent

chained hashing for NVM called ConHash. The ConHash leverages

log-free failure-atomic writes instead of the redo/undo logging

method to degrade the overhead of data consistency and exploits

the pre-allocation of a bucket in the chain to solve hash conflicts

efficiently. ConHash uses the size function to get the number of keys

in the hashing instead of the fixed count variable, which may cause

the fast wear problem for NVM. We have implemented ConHash

and evaluated it using two micro-benchmarks. Experimental results

show our proposed ConHash outperforms state-of-the-art schemes

up to 88.2% in the insertion latency, 82.6% in the deletion latency,

respectively.

The rest of this paper is organized as follows: Section 2 presents

the design of ConHash. Section 3 demonstrates performance evalu-

ation.

2 THE DESIGN OF CONHASH

In this section, we describe the design of the ConHash, which is

a log-free and consistent NVM-based persistent chained hashing

scheme.

2.1 Design Goals

Our design goals of ConHash are as follows:

• Low data consistency overhead. ConHash leverages log-

free failure-atomic writes instead of the logging method

to guarantee data consistency of NVM-based hashing.

• Good bucket allocation in a chain for hash conflicts.

ConHash uses bucket pre-allocation technique to separate

the bucket allocation operation from the write critical path.

• No local rapid wear. ConHash exploits the size function

to eliminate fixed count writes in NVM.
2.2 The Overview of ConHash

Figure 2.(a) shows the layout of ConHash, and Figure 2.(b) describes

the write flow of ConHash.

2.2.1 Log-Free Failure-Atomic Writes. Redo/undo logging use for

write units are larger than 8 bytes to guarantee data consistency.

However, they suffer double NVM writes, which damage NVM



Renzhi Xiao, Dan Feng*, Yuchong Hu

(a) The layout of ConHash (b) The write flow of ConHash.
Figure 2: Overview of ConHash.

life and increase write latency. Copy-On-Write (COW) cause un-

necessary reads for unmodified data area (Read amplification) and

unnecessary writes for unpolluted data area (Write amplification).

Log-Free Failure-Atomic Writes, short for Atomic, are ordered 8-

byte atomic writes with memory fence and cache line flush instruc-

tions instead of logging. Atomic brings no extra NVM writes for

insertion and deletion operations, lazy deletion with an invalid

token. Therefore, Atomic can increase the lifetime of NVM and

improve the performance of writes.

2.2.2 Bucket Pre-Allocation. The Bucket Pre-Allocation (BPA) tech-

nique first pre-allocates a certain number of buckets for hash con-

flicts and separates bucket allocation operations from critical paths

for write operations. Therefore, BPA decreases the write latency.

However, original chained hashing temporarily allocates a bucket

from the heap, which increases insertion latency due to bucket

allocation operation in the write critical path.

2.2.3 No Local Rapid Wear (LRW). Previous NVM-based hashing

schemes use the fixed count to calculate the number of items in

NVM which Shorten the lifetime of NVM with unbalance writes.

No LRW leverages size function to eliminate fixed count writes in

NVM, which can avoid local fast wear through more reading and

increase the lifetime of NVM.

3 PERFORMANCE EVALUATION

In this section, we evaluate request latencies for different NVM-

based hashing schemes.

3.1 Experimental Setup

We emulate NVM using Hewlett Packard’s Quartz [2], which has

been widely used [3, 6]. Our server configurations are the same as

this work [3]. We use two micro-benchmarks in our experiments

are RandomNum [3–5] and SequenceNum [3]. The NVM read and

write latency is set by default to 200 and 600 nanoseconds.

3.2 Insertion Latency

As shown in Figure 3, ConHash shows lower insertion latency than

Level (up to 43.2%) and PFHT-Log (up to 88.2%) with a low data

consistency guarantee. ConHash demonstrates the lowest insertion

latency both in RandomNum and SequenceNum.

3.3 Deletion Latency

As shown in Figure 4, ConHash shows lower deletion latency than

Level (up to 50.8%) and PFHT-Log (up to 82.6%). ConHash demon-

strates the lowest deletion latency.

Figure 3: Average latency when inserting a key-value item.

Figure 4: Average latency when deleting a key-value item.

Figure 5: The average insertion and deletion latency of a key-

value pair request with different NVM write latencies.

3.4 Effect of NVMWrite Latency

As NVM write latency increases, various hashing insertion and

deletion latencies increase accordingly shown in Figure 5. ConHash

shows the lowest insertion and deletion latencies with different

NVM write latencies (e.g., 300/600/900/1200 nanosecond).

REFERENCES
[1] Biplob Debnath, Alireza Haghdoost, Asim Kadav, Mohammed G Khatib, and

Cristian Ungureanu. 2016. Revisiting hash table design for phase change memory.
ACM SIGOPS Operating Systems Review 49, 2 (2016), 18–26.

[2] Haris Volos, Guilherme Magalhaes, Ludmila Cherkasova, and Jun Li. 2015. Quartz:
A lightweight performance emulator for persistent memory software. In Middle-
ware. ACM, New York, NY, USA, 37–49.

[3] Renzhi Xiao, Dan Feng, Yuchong Hu, Fang Wang, Xueliang Wei, Xiaomin Zou,
and Mengya Lei. 2021. Write-Optimized and Consistent Skiplists for Non-Volatile
Memory. IEEE Access 9 (2021), 69850–69859.

[4] Xiaoyi Zhang, Dan Feng, Yu Hua, Jianxi Chen, and Mandi Fu. 2018. A Write-
efficient and Consistent Hashing Scheme for Non-Volatile Memory. In ICPP. ACM,
New York, NY, USA, 87.

[5] Pengfei Zuo and Yu Hua. 2017. A write-friendly hashing scheme for non-volatile
memory systems. In MSST. IEEE, Piscataway, NJ, USA, 1–10.

[6] Pengfei Zuo, Yu Hua, and Jie Wu. 2018. Write-optimized and high-performance
hashing index scheme for persistent memory. In OSDI. USENIX, Berkeley, CA,
USA, 461–476.


