
Postmortem Graph Analysis on the Temporal Graph
Md Maruf Hossain

University of North Carolina at Charlotte
Charlotte, NC, USA
mhossa10@uncc.edu

Erik Saule
University of North Carolina at Charlotte

Charlotte, NC, USA
esaule@uncc.edu

ABSTRACT
Graphs like social networks and web graphs are evolving over time
intervals. Traditional graph analysis that expects a fixed data set is
not sufficient for these kinds of temporal graphs. Streaming graph
algorithms are more popular to handle this kind of problem. In this
poster, we are going to show the performance analysis of Pagerank
on the temporal graph. Lots of algorithms have been proposed
to compute Pagerank in the evolving graph. Most of the previous
research study shows that incremental way more popular for the
temporal graph.

But the question is if the data shows the offline nature that
means if the whole data available at the beginning of the process,
and need to perform a series of graph analysis for a list of time
interval, should we still choose streaming graph algorithm for the
temporal graph analysis? To find the answer, we need to look at
another graph analysis, which is called Postmortem graph analy-
sis. In the Postmortem analysis, one performs graph analysis on
multiple subgraphs based on the well-defined time interval. On the
other hand, streaming mainly focus on gradually update the graph
analysis results based on the current events of the edge addition or
deletion, etc. In this study, we are going to show the Postmortem
graph analysis can provide better Pagerank performance on the
temporal graph than streaming graph analysis.
ACM Reference Format:
Md Maruf Hossain and Erik Saule. 2021. Postmortem Graph Analysis on the
Temporal Graph. In ICPP ’21: The 50th International Conference on Parallel
Processing, August 9th, 2021, Chicago, Illinois, USA. ACM, New York, NY,
USA, 2 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
In the modern world, almost all of the social graphs evolve over
time and it is important to record the timeline of these changes.
These dynamic networks are called temporal graphs. We assume
all the temporal graphs split into multiple time-window and each
window is called the interval. The temporal graph changes through
different events, such as edge addition, deletion, vertex addition, etc.
The interest in evolving graphs is growing over time, for instance,
diameter change [3], the rank of web pages change [5] on the web.

The popularity of Pagerank on the temporal graph is also grow-
ing. Most of the algorithms on evolving graphs follow the streaming

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Chicago ’21, August 9th, 2021, Chicago, Illinois, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

or incremental model. On the incremental model, graph build is
a gradual process that means one interval depends on the other.
But there is another interesting variation of the evolving data is
the postmortem graph. In the postmortem, all the information of the
data is known prior to the analysis. So, in the postmortem analysis,
one already knows the future of the graph. In this poster we are
going to show postmortem Pagerank on temporal graphs is more
efficient than the streaming model.

2 BACKGROUND
2.1 Temporal Graph
Usually, a temporal graph consists of time stamp that represents
the creation or deletion time for a particular edge or vertex. So,
based on this time one can generate a graph for a particular time
interval and perform different graph analysis on that graph. We
can call it as a window of the original graph. Now, this window can
slide from past to future or vice-versa. Based on the shifting the
window or the size of the window we can get different sub-graphs.
The main aim of the paper to perform different graph analysis on
these window graph.

2.2 Pagerank for the Streaming Graph
A directed graphG(V , E) with vertex and edge set V and E can be
represented by a sparse matrix A where an edge(i → j) is repre-
sented by ai j = 1. Now, if we represent the out degree of the graph
by a diagonal matrix D then according to the [1, 2], Pagerank can
be defined by the linear system,

(I − αATD−1)x = (1 − α)v (1)

Where α is the “teleportation" constant, v is the initial Pagerank
vector usually filled by 1/|v | and x is the Pagerank vector. Jason pre-
sented [4] an approximation version of Pagerank for the streaming
graph,

∆xk+1 = αAT∆D
−1
∆ ∆Xk + α(AT∆D

−1
∆ −ATD−1)x + r (2)

where modifications of the streaming graph by edge addition or
deletion are represented by ∆ and k is represent the previous itera-
tion. Here r is the residual error, r = (1 − α)v − (I − αATD−1)x .

3 TEMPORAL GRAPH ANALYSIS
Temporal graph represents the dynamic graph over the time stamp.
So, the common practice to perform the graph analysis on the
sub-graph for a specific interval. The time stamp on every edge
represents the arrival time on the graph. So if the time stamp of any
set of edges greater or equal to the lower limit of the interval and
less or equal to the upper limit of the interval then these edges will
participate in the graph analysis. Now if the temporal dataset shows

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Chicago ’21, August 9th, 2021, Chicago, Illinois, USA Md Maruf Hossain and Erik Saule

the offline characteristic then we have two options to choose for the
graph analysis, one is streaming and another one is postmortem.

STINGER [3] is a multi-process framework and most common
for streaming graph analysis. We are going to compare against
STINGER version to our postmortem Pagerank. For Pagerank analy-
sis, we gather the changes of the graph as a batch of edges. We fixed
the batch-size for all the experiments. Now, based on the fixed
batch_size the number of batches(num_batches) differ by the size
of the edges(e), num_batches = |e |

batch_size . Now, how many times
and when we want to perform the graph algorithm is decide by the
num_epochs. For a particular batch_id the algorithm enables by
the following condition,

batches_per_epoch =
num_batches
num_epochs

batches_be f ore =
⌊

batch_id
batches_per_epoch

⌋
batches_af ter =

⌊
batch_id + 1

batches_per_epoch

⌋
enable = (batches_af ter − batches_be f ore) > 0

The next thing is the size of the sub-graph, to control the sub-
graph we need another attribute window_size. The window_size
represents the percentage of the total graph, that is why the max
value of the window_size 1.0. Let say, at time t the system en-
ables the algorithm then all the edges with a timestamp greater
than t − (window_size ∗ дraph_span) and lower than t will be in-
cluded in the sub-graph. Here дraph_span = max_time_stamp −

min_time_stamp. Although Postmortem does not need batch in-
formation because all the data available to the system, only need
starting interval and end interval of a window. For a fair comparison,
we perform a pre-process to extract all the exact time intervals as
similar to the streaming system and then perform graph analysis.

4 PAGERANK ON TEMPORAL GRAPHS
Parallel Naive Pagerank(PNPR). As we said, Postmortem data has

full availability during graph analysis, so one can perform a naive
Pagerank as well. By the naive we mean, build a sub-graph for a
particular epoch every time from scratch and perform Pagerank on
that sub-graph. Otherwise can go for either traditional streaming or
postmortem graph analysis. We represent parallel naive Pagerank
by the PNPR.

Parallel Streaming Pagerank Model(PStPR). In the streaming sys-
tem, a batch of edges arrive in the system and based on the epoch,
and window_size an edge can insert or delete from the system. And
based on the batch_id the algorithm will enable to perform Pager-
ank. We choose STINGER [4] to perform the streaming version of
Pagerank. STINGER also supports shared-memory parallelization
for the dynamic Pagerank.

Parallel Postmortem PagerankModel(PPoPR). Unlike the naive(PNPR)
version, we perform Pagerank on the full graph. So, we do not need
to extract any sub-graph for any interval. But we need an additional
array data structure to support the correct analysis. In the temporal
graph, the same edges can occur with a different time-stamp. In our
analysis, we always treat edges between two same vertices once.

10
0 80

Epoch

105

106

Tim
e

in
 m

s

Naive
Streaming
Postmortem

Figure 1: Pagerank performance of the streaming, naive and
postmortem graph analysis on the wiki-talk network for
window-size = 0.8.

Although Postmortem analysis shows more memory foot-print com-
pare to the naive and streaming but it reduces significant amount
of computational time.

5 EXPERIMENTAL RESULTS
All the experiments are performed on the Intel Skylake processor
with 2 sockets and each of them contains 12 cores in total 24 cores
and each core has 2 hyper-thread mechanisms. Figure 1 shows the
performance of the parallel naive Pagerank(PNPR) against stream-
ing(PStPR) and postmortem(PPoPR). Parallel postmortem over per-
form naive and streaming model. The graph-building process in
the naive version requires extra time compared to the others. The
streaming version only inserts and deletes the necessary edges and
Postmortem build once for full graph analysis.

6 CONCLUSION
This study brings some insight into postmortem graph analysis on
temporal graphs. Most of the state-of-art algorithms focus on the
incremental version of the streaming model for event-based graphs.
For online graph networks, it is obvious to use streaming data. But
our study shows that postmortem Pagerank can overperform the
streaming model on the temporal graph. In this work, we only
focus on Pagerank. But in the future, we will explore other graph
algorithms such as Closeness and Betweenness Centrality.

REFERENCES
[1] Gianna M Del Corso, Antonio Gulli, and Francesco Romani. 2005. Fast PageRank

computation via a sparse linear system. Internet Mathematics 2, 3 (2005), 251–273.
[2] David Gleich, Leonid Zhukov, and Pavel Berkhin. 2004. Fast parallel PageRank: A

linear system approach. Yahoo! Research Technical Report YRL-2004-038, available
via http://research. yahoo. com/publication/YRL-2004-038. pdf 13 (2004), 22.

[3] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. 2005. Graphs over time:
densification laws, shrinking diameters and possible explanations. In Proc. of
SIGKDD. 177–187.

[4] Jason Riedy. 2016. Updating pagerank for streaming graphs. In 2016 IEEE Interna-
tional Parallel and Distributed Processing Symposium Workshops (IPDPSW). IEEE,
877–884.

[5] Lei Yang, Lei Qi, Yan-Ping Zhao, Bin Gao, and Tie-Yan Liu. 2007. Link analysis
using time series of web graphs. In Proc. of CIKM. 1011–1014.

	Abstract
	1 Introduction
	2 Background
	2.1 Temporal Graph
	2.2 Pagerank for the Streaming Graph

	3 Temporal Graph Analysis
	4 Pagerank on Temporal Graphs
	5 Experimental Results
	6 Conclusion
	References

