
Poster template by ResearchPosters.co.za

The LSM--tree has been main data structure of KV
stores, which comprises one memory component
and multiple disk components.

⚫ Compaction may lead to serious write
amplification which is a performance bottleneck.
That is when random writes become intensive,
the compaction time is too long, during which
user-level write/read operations are blocked.

⚫ In addition, the compaction process also leads to
many resource costs, such as data movement
and CPU cycles.

Problem MStore Overview

Figure 1 shows the overview system of
MStore prototype, including four modules.

⚫ NDP-cluster management module

⚫ NDP-cluster storage balancing module

⚫ NDP-cluster computing load balancing
module.

⚫ Data transmission protocol and the
semantic interface between the master
and slave systems.

Figure 1 Overview of MStore

Fundamental Technologies

Figure 2: Data Layout In MStore

Multi-column LSM--tree divides the dataset into multiple key ranges, and
each device manages the data of one or more key ranges. Longitudinal
slicing of the LSM-Tree has the following benefits:

⚫ Each device performs compaction on its own managed data.

⚫ The key ranges of each device can be dynamically adjusted to avoid a
data skew in the system.

⚫ In addition, the data in the same column is highly independent; thus, data
movement is avoided during compaction tasks on NDP devices.

Figure 3: Data Layout In MStore

MStore controls the load of each device by adjusting the key range to which
each device belongs. This procedure includes two steps:

⚫ Key-range adjustment. This procedure needs to achieve two goals since we do not
perform data migration, we need to achieve two goals after adjustment. First is avoiding
data storage skew and second is that the impact on read operations is minimized, that
is, the overlap area in the system LSM--tree is minimized. So we propose a key range
priority-based adjustment algorithm.

⚫ Index persistence of overlapping area. After key-range adjustment, the host distributes
corresponding data to each NDP according to the new key ranges. An NDP needs to
insert <key:NDP_ID> in the previously owned key range (the key range represented by
the dotted box in Figure 2) These key ranges contain expired data; and then, the
<key:NDP_ID> will overwrite these expired data in the compaction.

In the synchronous mode, the workload of each NDP compaction may vary significantly;
thus, extra task balancing is needed to make the workload of each NDP roughly the same,
avoiding the idling of the NDP device for a long period of time and the waste of the
computations and IO resources in the NDP cluster.

We propose a near-data computing cluster named
MStore to improve the write performance of KV
stores. According to the data organization, we
design a key-range dynamic adjustment-based
storage balancing and compaction tasks-aware
computing balancing methods to alleviate the
'cannikin law' caused by uneven compaction on
each device owing to data skew issue in the NDP
cluster. We also test the performance of MStore
comparing TStore and MStore-basic on a real-
world platform.

ConclusionResults
Figure 3 and 4 show the performance of
MStore comparing TStore and MStore-basic.

⚫ MStore has 3.88 times and 3.5 times
faster than TStore under DB_bench and
YCSB-C workloads, respectively

⚫ Compared with MStore-basic, MStore's
load optimization strategy contributes
14\% optimization on average.

⚫ Device-side WA of MStore reduces by
31.5% on average compared with TStore
and Host-side write amplification of
MStore maintained at 2.

Figure 4 Throughput under DB_bench and YCSB-C

Figure 4 Write Amplification in host-side and device-side under DB_bench

Song Fu
University of North Texas

Song.Fu@unt.edu

Yinliang Yue, Yuhong Zhao
Chinese Academy of Sciences

yueyinliang@iie.ac.cn, zhaoyuhong@iie.ac.cn

Hui Sun, Qiang Wang
Anhui University

sunhui@ahu.edu.cn, e19201078@stu.ahu.edu.cn

