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1 INTRODUCTION

The LSM-tree [1] has been the primary data structure of key-
value stores (KV stores), which comprises one memory component
and multiple components on disk. But its compaction may lead
to serious write amplification, which is a performance bottleneck.
Under random-write-intensive workloads, there can be long-time
compaction that blocks user-level write/read operations. The com-
paction process may also lead to much data movement and high
CPU costs. Random-write I/Os are prevalent in real-world work-
loads; thus, the bottleneck slows down user-level performance.

With the advancement of embedded devices’ computing power,
a near-data processing (NDP) model has attracted attention in
academia and industry. This model offloads computing tasks to
storage devices to reduce data movement between the storage de-
vice to the host-side CPU and save system resources (I/O resources
and CPU resources). NDP systems have been developed to improve
the performance of KV stores [2]. However, there is no studies
have focused on near-data computing clusters. In this paper, we
investigate the use of near-data computing clusters to enhance the
compaction performance of KV stores, named MStore that consists
of multiple NDP devices.
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Figure 1: Overview system of MStore

2 OVERVIEW SYSTEM

As shown in Fig. 1, MStore includes an NDP-cluster management
module, an NDP-cluster storage balancing module, an NDP-cluster
computing load balancing module, a data transmission protocol,
and a semantic interface between the host- and device-side sub-
systems. We mainly optimized the write performance.

2.1 Data organization and distribution

We propose a multi-column LSM-tree structure to divide the
dataset into multiple key ranges. Each NDP device that manages
one or more key ranges performs compaction on its own managed
data. Key ranges on each device can be dynamically adjusted to
lessen data skew. In addition, data in the same column of a multi-
column LSM-tree are independent; thus, data migration is avoided
among NDP devices in the process of compaction. Some key ranges
belong to an NDP device at a time, which is expressed by a variable
named owner. When the owner is -1, it means that the key range,
which previously belonged to device NDP_i, is not currently be-
longed to device NDP_i. The key-range possess other information,
e.g., hot/cold feature and key-range sizes.

2.2 Data load balancing

Key-range Adjustment. MStore distributes workload on each
NDP device by adjusting its assigned key ranges. The key-range
adjustment can achieve two goals, (1) avoiding data storage skew
and (2) minimizing the impact on the read performance. Thus, the
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Figure 2: An example of Key-range adjustment

overlapping areas in the LSM-tree should be minimized. For exam-
ple, at time t1, the distribution of each key range is presented on
the left hand of Fig. 2. Three cases require key-range adjustment.

Case 1. MStore detects that device NDP_4 needs to move part of
key ranges to device NDP_ 2. Device NDP_4 has two key ranges. If
1-20 is moved to NDP_2, it will not extend the overlapping area and
increase the overhead of read operations. Thus, moving 1-20 has
the highest priority. Since moving key ranges to NDP_2 extends
the overlapping area, moving key ranges 301-400 has the lowest
priority. Case 2. Device NDP_3 moves a portion of key ranges to
device NDP_4. When 21-40 is moved to device NDP_4, the overlap-
ping area will not extend. However, querying the data of key range
21-40 requires an additional NDP device (NDP_4). Thus, moving 21-
40 has the second-highest priority. Similarly, moving 201-300 has
the lowest priority. Case 3. Device NDP_1 should move part of the
key ranges to device NDP_3. Since key range 1-40 does not belong
to NDP_1, key range 41-60 conducts migration even though key
range 41-100 has the lowest priority.

Index persistence of the overlapping area. After key-range
adjustment, the host distributes the corresponding data to each
NDP device according to the new key-range distribution. An NDP
device needs to insert <key:NDP_ID> in the previously owned
key range. As shown in Fig. 2, the key range is represented by
a dotted box. These key ranges contain expired data, and then
<key:NDP_ID> overwrites the expired data in compaction. In addi-
tion, <key:NDP_ID> also plays a vital role in the read performance,
i.e., it helps the host distinguish the real values or index.

2.3 Computation balancing

According to the multi-key range-based data layout (see Section
2.1), each NDP device can select a compaction task from its own
managed dataset, avoiding compacted data movement between
NDP devices. However, in asynchronous mode, the workload of
each NDP compaction may vary significantly; thus, extra task bal-
ancing is designed to balance workloads on NDP devices, which
also enhances resources utilization on NDP devices.

3 EVALUATION

An NDP SSD is not available in the test. We use a PC with an E6700
core as a host and four embedded development boards as NDP de-
vices forming a cluster. Each board has two Cortex A72 cores and
four Cortex A53 cores. Data transmission between the host and
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Figure 3: Performance under write-intensive workloads
with different data sizes.

the NDP device cluster is implemented through an Ethernet switch.
We compared the performance of MStore with MStore-basic, and
TStore [2] (a dynamic task offloading NDP-enabled KV store). In
MStore-basic, the storage balancing and the compaction computa-
tion balancing are disabled when studying the write performance.

We use DB_Bench and YCSB-C as benchmark programs.
DB_Bench is placed in LevelDB while YCSB-C simulates random-
write workloads. In Fig. 3, MStore achieves performance improve-
ment by 3.88x and 3.5x than TStore under DB_bench and YCSB-C,
respectively. Compared with MStore-basic, MStore’s load balanc-
ing method contributes 14.0% performance improvement on aver-
age.

4 CONCLUSION

We propose a near-data processing cluster named MStore to im-
prove the write performance of KV stores. According to the data
organization structure, we design a dynamic key-range adjustment
method to balance data storage load and a compaction-aware com-
putation balancing method to alleviate the ’cannikin law’ caused
by uneven compaction on NDP devices due to data skew in the
NDP cluster. We evaluate the performance of MStore and compare
it with TStore and MStore-basic on a tested platform.
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