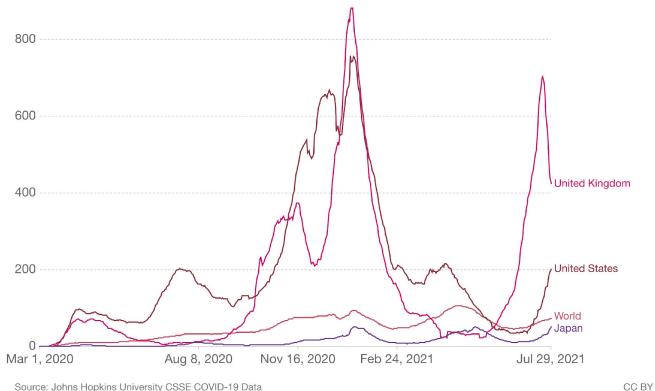


COMPUTECOVID19+

Accelerating COVID-19 Diagnosis and Monitoring via High-Performance Deep Learning on CT Images


Garvit Goel*, Atharva Gondhalekar*, Jinyuan Qi*, Zhicheng Zhang[†], Guohua Cao*, Wu Feng*

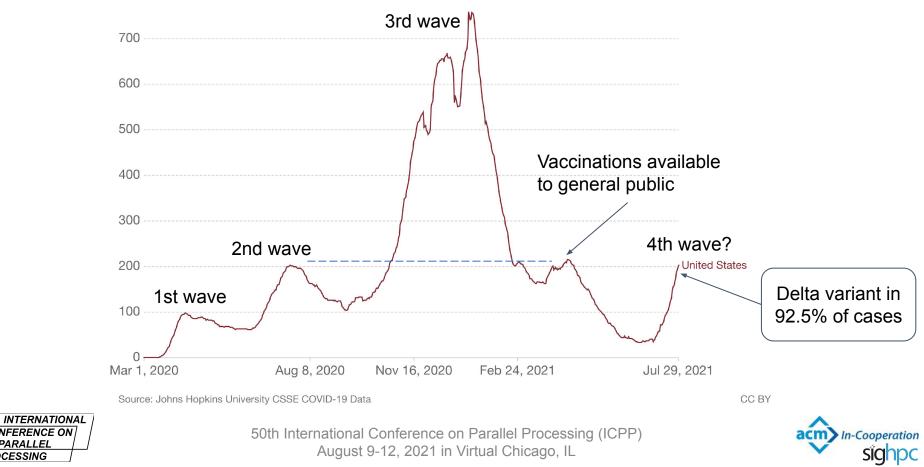
*Virginia Tech and [†]Stanford University

Daily new confirmed COVID-19 cases per million people

Shown is the rolling 7-day average. The number of confirmed cases is lower than the number of actual cases; the main reason for that is limited testing.

Source: Johns Hopkins University CSSE COVID-19 Data

Daily new confirmed COVID-19 cases per million people


CONFERENCE ON

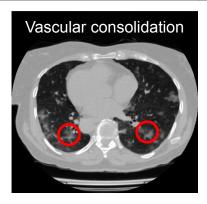
PARALLEL

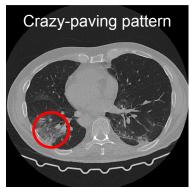
PROCESSING

Shown is the rolling 7-day average. The number of confirmed cases is lower than the number of actual cases; the main reason for that is limited testing.

RT-PCR

	RT-PCR ("The Gold Standard")			
Principle	Analysis of RNA/DNA			
Accuracy	67% accuracy (end-to-end)* Source: Johns Hopkins University, June 2020			
Turnaround Time	~240 minutes (4 hours) per test with multi-day turnaround time			



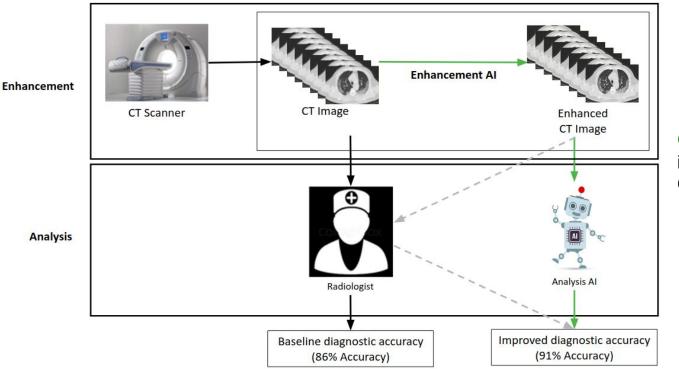


RT-PCR vs. ComputeCOVID19+

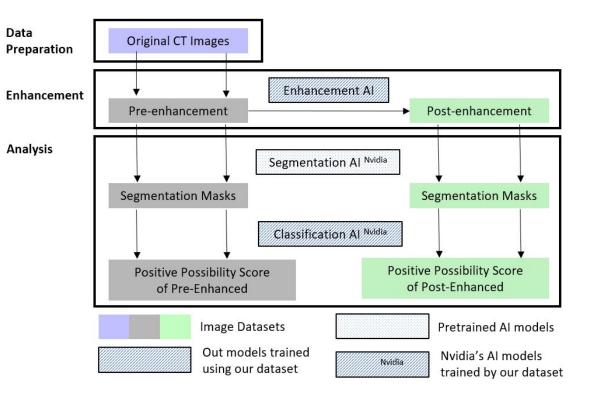
	RT-PCR ("The Gold Standard")	ComputeCOVID19+
Principle	Analysis of RNA/DNA	Chest CT scan
Accuracy	67% accuracy (end-to-end)* Source: Johns Hopkins University, June 2020	91% accuracy
Turnaround Time	~240 minutes (4 hours) per test with multi-day turnaround time	< 1 minute per test with 5-minute turnaround time

Ground-glass opacity

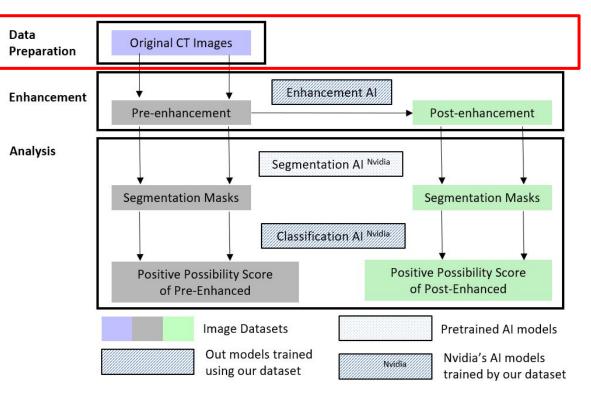
Contributions of our ComputeCOVID19+ Framework


- Novel algorithms and software for high-precision CT image construction and interpretation of COVID-19
- Performance evaluation with respect to speed and accuracy
- Validation of ComputeCOVID19+ with clinical COVID-19 data
- Broader applicability of ComputeCOVID19+ to biomedical imaging

ComputeCOVID19+ Framework

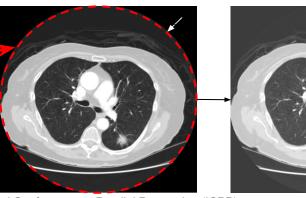


Green arrows show the improved workflow with ComputeCOVID19+


Workflow for *ComputeCOVID19*+



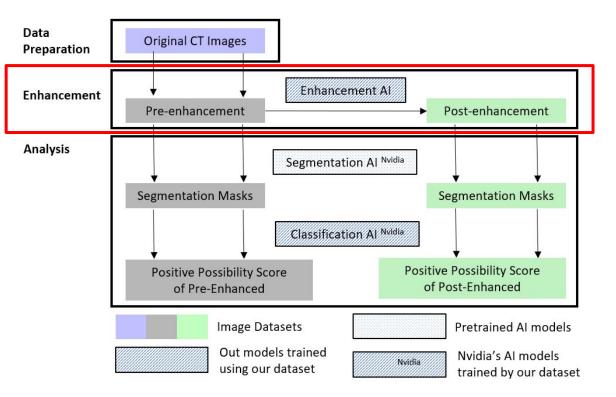
Workflow for *ComputeCOVID19*+

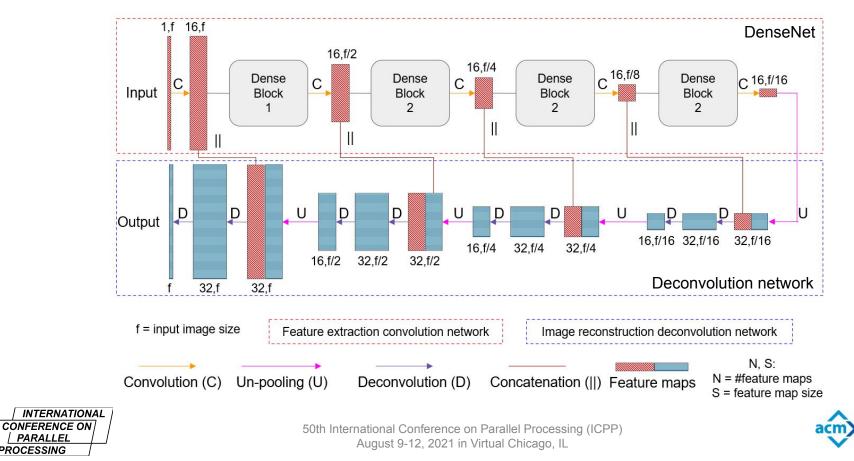


Data Preparation

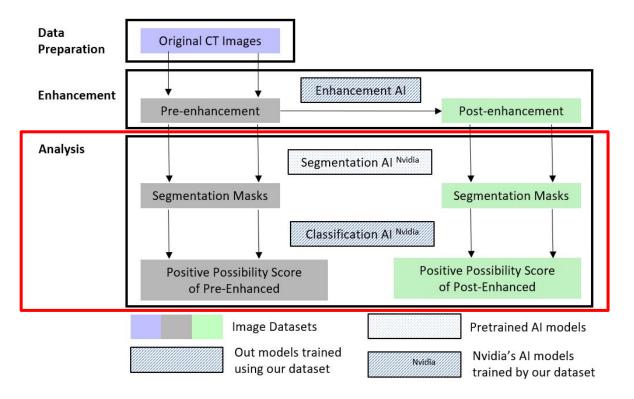
Data Source	Description
Mayo Clinic	Eight healthy chest CT scans & associated projection data at full & quarter dosage
Medical Imaging Databank of Valencia Region (BIMCV)	X-ray & CT scans of 34 COVID-19 patients
Medical Imaging and Data Resource Center (MIDRC)	229 CT scans of COVID-19 patients
Lung Image Database Consortium (LIDC)	1301 healthy chest CT scans

Processing for data consistency (e.g., removing circular segmentation)




Workflow for *ComputeCOVID19*+

Enhancement (DenseNet and Deconvolution Network, a.k.a DDnet)



PARALLEL

PROCESSING

In-Cooperation

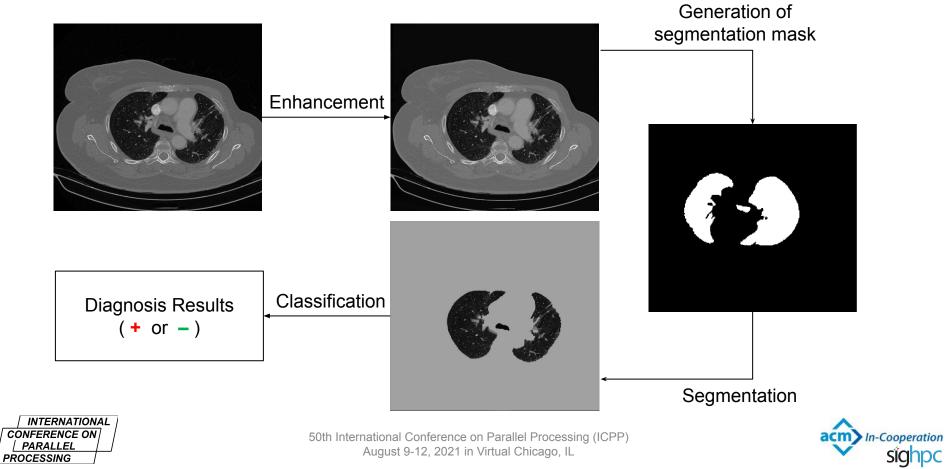
Workflow for *ComputeCOVID19*+

Analysis

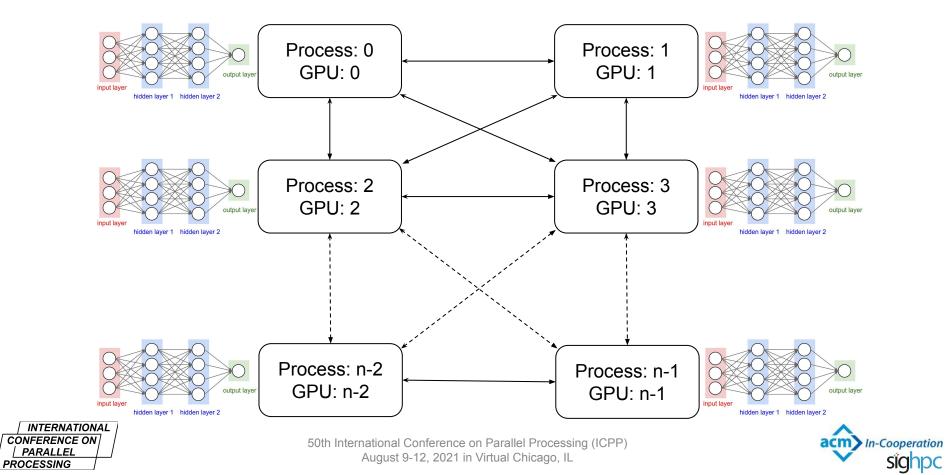
Segmentation AI

- Generates segmented images for improved interpretation of chest CT scans.
- Uses a 3D anisotropic hybrid network (i.e., 3D AH-Net).

Classification Al


- Classifies the CT scan as + or (based on features present).
- Uses a 3D DenseNet-121 network.

S. Harmon et al. 2020. Artificial Intelligence for the Detection of COVID-19 Pneumonia on Chest CT using Multinational Datasets. Nature Communications 11, 1 (Dec. 2020), 1–7.



ComputeCOVID19+ Workflow

sighpc

Optimizing Parallel Training

Inference on Heterogeneous Platforms

Platform	CPU	GPU	FPGA
Strengths	 Multitasking with programming ease 	 Massively parallel processing capability Energy efficiency 	 Configurable hardware for specific applications Low power consumption Energy efficiency
Weaknesses	 Supports limited parallelism 	 High power consumption Poor performance with irregular applications 	 Relatively difficult to program Operates at low frequency

Inference on Heterogeneous Platforms

Platform	CPU	GPU	FPGA
Strengths	 Multitasking with programming ease 	 Massively parallel processing capability Energy efficiency 	 Configurable hardware for specific applications Low power consumption Energy efficiency
Weaknesses	 Supports limited parallelism 	 High power consumption Poor performance with irregular applications 	 Relatively difficult to program Operates at low frequency

Inference on Heterogeneous Platforms

Platform	CPU	GPU	FPGA
Strengths	 Multitasking with programming ease 	 Massively parallel processing capability Energy efficiency 	 Configurable hardware for specific applications Low power consumption Energy efficiency
Weaknesses	 Supports limited parallelism 	 High power consumption Poor performance with irregular applications 	 Relatively difficult to program Operates at low frequency

Optimizing Parallel Inference

Application-specific optimizations	Architecture-specific optimizations	FPGA-specific optimizations
 Kernel refactorization (Optimizing deconvolution by reducing memory bandwidth requirement) 	 Memory prefetching Loop unrolling Vectorization (inter-thread) 	 Compute-unit replication Vectorization (intra-thread) Dedicated kernels Runtime reconfiguration

Training Performance

# Nodes (i.e. # GPUs)	Batch Size		# Epochs	Training Runtime (hh:mm:ss)	MS-SSIM (Avg %)
1		1	50	15:14:46	98.71
4		8	50	2:27:49	96.35
4		8	100	4:58:52	96.30
4		16	50	2:07:58	95.18
8		8	50	2:21:49	95.46
8		8	100	4:43:26	95.78
8		32	50	1:17:25	92.04
8	,	64	50	1:12:24	88.02

Decreasing accuracy with batch size

50th International Conference on Parallel Processing (ICPP)

Training Performance

# Nodes (i.e. # GPUs)	Batch Size	# Epochs		Training Runtime (hh:mm:ss)	MS-SSIM (Avg %)	
1	1	50		15:14:46	98.71	
4	8	50		2:27:49	96.35	
4	8	100		4:58:52	96.30	
4	16	50		2:07:58	95.18	~7x speedup
8	8	50		2:21:49	95.46	
8	8	100		4:43:26	95.78	
8	32	50		1:17:25	92.04	
8	64	50		1:12:24	88.02	

50th International Conference on Parallel Processing (ICPP)

Inference Performance

Platform	Core Count	Maximum Bandwidth (GB/s)	Maximum Frequency (MHz)	PyTorch Runtime (seconds)	OpenCL Runtime (seconds)
Nvidia V100 GPU	5120 (CUDA cores)	900	1380	0.22	0.10
Nvidia P100 GPU	3584 (CUDA cores)	732	1328	0.73	0.25
AMD Radeon Vega Frontier GPU	4096 (Streaming proc.)	480	1600	-	0.25
Nvidia T4 GPU	5120 (CUDA cores)	320	1590	1.29	0.29
Intel Xeon Gold 6128 CPU	24 (CPU cores)	119	3400	5.52	1.64
Intel Arria 10 GX1150 FPGA	2 (Compute units)	< 3	184	_	16.74

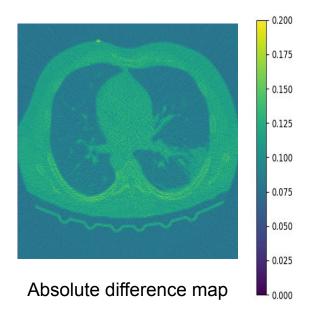
(-) : The PyTorch implementation is not portable to this platform.

acm In-Cooperation

Sig

npc

50th International Conference on Parallel Processing (ICPP)


Evaluating Accuracy (Enhancement)

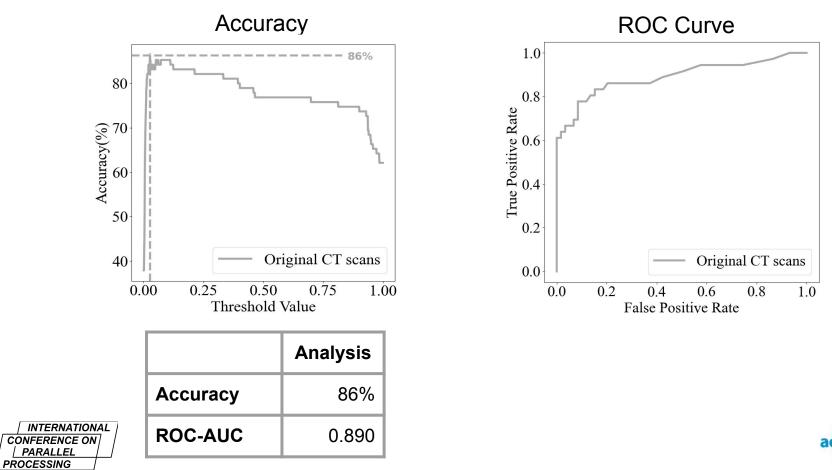
Quarter X-ray dose image

Enhanced image

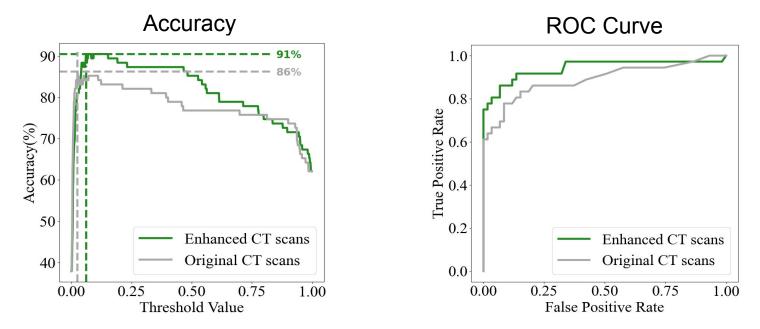
Evaluating Accuracy (Enhancement)

High-Quality Target Image vs.	Mean Square Error (lower is better)	Multi-scale Structural Similarity Index (%) (higher is better)
Low-Quality Input Image	0.00715	96.2
Enhanced Image	0.00091	98.7

MSE(x, y) = $(\Sigma(x-y)^2)^{1/2}$


MS-SSIM(x, y) = f (luminance(x,y) * contrast(x, y) * structure(x,y))

Evaluating Accuracy (Analysis)



In-Cooperation

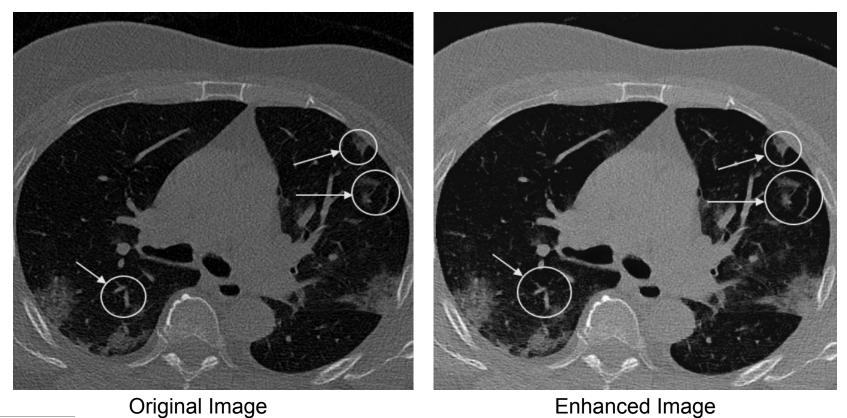
npc

Sig

Evaluating Accuracy (Enhancement + Analysis)

	Analysis	Enhancement + Analysis	Improvement
Accuracy	86%	91%	5%
ROC-AUC	0.890	0.942	7%

In-Cooperation


NDC

/ INTERNATIONAL CONFERENCE ON


PARALLEL

PROCESSING

Impact of Enhancement AI

Enhanced Image

Conclusion

- ComputeCOVID19+ (<u>https://github.com/vtsynergy/DL-FACT</u>)
 - Improvement in diagnosis accuracy via enhanced CT imaging
 - **Faster turnaround time** due to better accessibility and due to less dependency on materials and labor.

Acknowledgements

- 1. NSF IIS-2027607
- 2. Cynthia McCollough, Mayo Clinic, and AAPM
- 3. VT Advanced Research Computing

Framework	CT Scans Pre-processing		2D/3D	Data	Hardware for Inference		
	Image Enhancement	Image Segmentation	Classifier	Labelling	CPU	GPU	FPGA
Compute- COVID19+	 ✓ 	 ✓ 	3D	Optional	~	~	~
M-Inception	×	 ✓ 	2D	Manual	-	-	×
DRE-Net	×	 ✓ 	2D	Manual	-	-	×
DeCoVNet	×	~	3D	Optional	-	~	×

50th International Conference on Parallel Processing (ICPP)

