
Recursion Brings Speedup to Out-
of-Core TensorCore-based
Linear Algebra Algorithms

A Case Study of Classic

Gram-Schmidt QR Factorization

Shaoshuai Zhang, Panruo Wu
University of Houston



Half Precision 
Arithmetic and 
Tensor Core

• Two standard: FP16 and bfloat16

• Bfloat16 has a wider range(the 
same as FP32) but larger unit 
round off error

• Nvidia’s GPUs only support FP16, 
except its latest Ampere 
Architecture (introduced in May, 
2020)



Half Precision Arithmetic and Tensor Core

• Tensor Core only supports fused general matrix 
multiplications (GEMMs)

• The TC-GEMM is much faster than SGEMM and DGEMM

• We can use Tensor Core by cublas library or WMMA 
intrinsic functions

DGEMM SGEMM HGEMM TC-GEMM

5.8 TFLOPS 11.9 TFLOPS 23.1 TFLOPS 97.3 TFLOPS



QR factorization

• Decompose a matrix 𝐴 into a product of an orthogonal matrix 𝑄
and an upper triangular matrix 𝑅

• Classic Gram-Schmidt QR Factorization



QR factorization

Blocking strategy Recursive strategy



Out-of-Core Processing

• Typically used when the memory is limited

• Disk-CPU Out-of-Core
• SOLAR
• ScaLAPACK

• CPU-GPU Out-of-Core
• cuBLASXt
• BLASX



Performance Analysis

• Why Recursion?

• Data movement

• Overlap ratio



Data Movement

• Blocking
• Host to Device

• Device to Host

• Recursive
• Host to Device

• Device to Host



Overlap Ratio in GEMMs

• Inner product



Overlap Ratio Analysis: Inner product

• The time cost of in-core GEMM tiles needs to be larger than the 
time cost of data movement from device to host and host to 
device

• Assume the Rg is 90TFLOPs and Rm is 12GB/s

Recursive Blocking

Device to Host

GEMM

The smallest m 30,000 15,000



Overlap Ratio in GEMMs

• Outer product



Overlap Ratio Analysis: Outer product

Recursive Blocking

Device to Host

GEMM

The smallest m 30,000 15,000



Results of OOC GEMMs: Inner Product 



Results of OOC GEMMs: Inner Product 



Results of OOC GEMMs: Outer Product 



Results of OOC GEMMs: Outer Product 



Implementation and Optimization

• GEMM-Level Implementation and Optimization
• Using cuda streams
• Change blocksize gradually

• QR-Level Implementation and Optimization
• Cut off unnecessary data movement

• Cutting off some move-in operations of the panel

• Enable cross BLAS operation overlapping
• Hide the move-out operations between panel factorization and GEMMs



Final Results: block size 16384



Final Results: block size 8192



Final Results: Different sizes and shapes



Summary

• In terms of out-of-core processing, the recursive strategy has 
better performance
• Less data movement
• Higher in-core GEMMs rate
• Higher overlap ratio

• The higher (computation speed)/(memory capacity) ratio is, the 
more speedup brings by recursion
• RTX 20,30 series have similar TensorCore computation speed, but much 

smaller memory



Future work

• Deploy such algorithms on A100

• Try to use the same strategy for LU and Cholesky factorization
• The factorization steps are very similar: panel factorization and trialing 

matrix update using GEMMs



Thanks!


