[INTERNATIONAL ac/rr\l)
CONFERENCE ON
/ | PARALLEL / S'thc

PROCESSING [ICPP/2021/CHICAGO/USA RAUGUST9-12,2021

Recursion Brings Speedup to Out-
of-Core TensorCore-based
Linear Algebra Algorithms

A Case Study of Classic
Gram-Schmidt QR Factorization

Shaoshuai Zhang, Panruo Wu
University of Houston

Ha |f P reCISIO n FP32 (IEEE single precision): Range: 10~38 — 1038, unit round off error 1.2 x 10~
Arlth m etl C a n d Exponent: 8 bits Mantissa (significand): 23 bits
TeﬂSOFCOre BetcccEEEEEMMMMMMMMMMMMMMMMMMMM M M M

* Two standard: FP16 and bfloat16 FP16 (IEEE half precision): Range: 6 X 108 — 65504, unit round off error 9.8x 10~

* Bfloatl6 has a wider range(the , , o ,
same as FP32) but Iarger unit Exponent: 5 bits Mantissa (significand): 10 bits
round off error |

- BcteceeeEvMMMMMMMMMMT
* Nvidia's GPUs only support FP16,

except its latest Ampere
Architecture (introduced in May,

2020) bfloat16 (brain):Range: 10738 — 1032, unit round off error 0.0078

Exponent: 8 bits Mantissa (significand): 7 bits

EEEEEEEEMMMMMIVIM

Halt Precision Arithmetic and Tensor Core

* Tensor Core only supports fused general matrix
multiplications (GEMMs)

FP16 or FP32 FP16 FP16 FP16 or FP32

e The TC-GEMM iIs much faster than SGEMM and DGEMM

5.8 TFLOPS 11.9 TFLOPS 23.1 TFLOPS 97.3 TFLOPS

* We can use Tensor Core by cublas library or WMMA
INntrinsic functions

QR factorization

* Decompose a matrix A into a product of an orthogonal matrix
and an upper triangular matrix R

* Classic Gram-Schmidt QR Factorization

Uy, = dy. g1 = uy/||u]]

U2 = dz — PI’D‘]'HI[IIE).. qz = “-EH |u2 ||

us = az — Proj,, (as) —Proj, (as), g3 = us/|[|usl]|
n-1

Up = ap — Z Prﬂjuj{'{ln'}, qn = Un/|lunl|

J=1

QR factorization

Blocking strategy

Compute R12

Update A2

Factorize
next panel

Compute next R12

Update next A2

Recursive strategy

Update 2nd
half

Then Factorize
2nd half of 1st
half

Factorize Update 2nd
1sthalf of half of 1st
st half half

Compute
R12

Qut-of-Core Processing

* Typically used when the memory Is limited

* Disk-CPU Qut-of-Core
* SOLAR
* ScaLAPACK

e CPU-GPU QOut-of-Core
* cUBLASXt
e BLASX

Performance Analysis

* Why Recursion?
* Data movement
* Overlap ratio

Data Movement

* Blocking

* Host to Device

* Device to Host

* Recursive
* Host to Device

* Device to Host

n¢ nb

k+2 —_— - —
(+)mn+2 5

E[(k + 1)mn + n® + nb]

b
2(log, k + 1)mn + ? - n?

1 k HE
—log; +1 + —
(2 0g, ymn 5

Data movement time | Recursive | Blocking
Host to device 37.9s 47.2s
Device to Host 19.3s 22.3s

Overlap Ratio iIn GEMMs

* Inner product

A n n
R =] -
N — D
1k C
-

Figure 3: Qut-of-core inner product tiling strategy in recur- Figure 4: Out-of-core inner product tiling strategy in block-
sive QR factorization ing QR factorization

Overlap Ratio Analysis: Inner product

* The time cost of in-core GEMM tiles needs to be larger than the
time cost of data movement from device to host and host to
device

Recursive Blocking
Device to Host % %
GEMM % ErE;cb
The smallest m 30,000 15,000
* Assume the Rg 1s 90TFLOPs and Rm i1s 12GB/s

Overlap Ratio iIn GEMMs

* Quter product

A o C
=
B .
__ fo 3l
T' |

= m
I'__l
n

C A .

B % EEEN =
—
b2

B m

}hl

[I—

c b2

Figure 6: Out-of-core outer product tiling strategy in block-

Figure 5: Out-of-core outer product tiling strategy in recur- ing QR factorization
sive QR factorization

Overlap Ratio Analysis: Outer product

Recursive Blocking
Device to Host % @
GEMM 2bkn 2b, kb,
Rﬂ ' Rg
The smallest m 30,000 15,000

Results of OOC GEMMSs: Inner Product

Single Block Time Cost | Recursive Blocking
Host to device 693ms 728ms
GEMM 1408ms 1337ms
Device to Host 1306ms 81ms
In-core flops 99.9TFLOPs | 52.6TFLOPs
Overall Time cost Recursive Blocking
Synchronous 18183ms 14920ms
Synchronous flops 62.0TFLOPs | 33.0TFLOPs
Asynchronous 12932ms 11286ms
Asynchronous flops 87.1TFLOPs | 43.6TFLOPs

Table 1: Inner product behaviors, recursive matrix size is
65536"131072"65536 with blocksize 16384, blocking matrix
size is 16384°131072"114688 with blocksize 16384

Results of OOC GEMMSs: Inner Product

—Huost to Device
—TCGEMM
Asynchronous GEMM =—Device to Host
Synchronous GEMM
0 2000 4000 6000 8000 10000 12000 14000 16000

Computation time(ms)

Figure 7: The timeline of computing max inner product
GEMM in 0.13M"0.13M in blocking QR factorization, the ma-
trix size is 1638471310727 114688, the blocksize is 16384.

=—Huost to Device
—TCGEMM

Asynchronous GEMM .
= =—[Device to Host

Synchronous GEMM

1] 2000 4000 8000 BOOOD 10000 12000 14000 18000 18000 20000

Computation time{ms)

Figure 8: The timeline of computing max inner product
GEMM in 0.13M"0.13M in recursive QR factorization, the
matrix size is 65536°131072765536, the blocksize is 16384.

Results of OOC GEMMs: Outer Product

Single Block Time Cost | Recursive Blocking
Host to device 347ms g6ms
GEMM 654ms 89ms
Device to Host 163ms 81ms
In-core flops 107.6TFLOPs | 98.8TFLOPs
Overall Time cost Recursive Blocking
Synchronous 14129ms 5119ms
Synchronous flops 60.3TFLOPs | 34.7TFLOPs
Asynchronous 11517ms 11286ms
Asynchronous flops 97.7TFLOPs | 96.2TFLOPs

Table 2: Outer product behaviours, recursive matrix size is
131072%65536"65536 with blocksize 8192, blocking matrix
size is 1310727163847 114688 with blocksize 16384 and 16384

Results of OOC GEMMs: Outer Product

—Host to Device
~—TCGEMM
Asynchranaus GEMM —Device to Host

Synchronous GEMM

0 5000 10000 15000
Computation time(ms)

Figure 9: The timeline of computing max outer product
GEMM in 0.13M*0.13M in blocking QR factorization, the ma-
trix size is 131072*16384"114688, the blocksize by, b; is 16384

and 16384.

—Host to Device
—TCGEMM
Asynchronous GEMM =—Device to Host
- —r
Synchronous GEMM
1] 2000 4000 6000 8000 10000 12000 14000

Computation time(ms)

Figure 11: The timeline of computing outer product
GEMM with QR blocksize 8192, the matrix size is
131072716384*131072, the inside GEMM blocksize b1, b
is 32768 and 32768.

—Host to Device
—TCGEMM
Asynchronous GEMM —Device to Host
L L
" ®m " "W om o®m om oE W N E N E SN = ®
Synchranous GEMM
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

Computation time({ms)

Figure 10: The timeline of computing max outer product
GEMM in 0.13M*0.13M in recursive QR factorization, the
matrix size is 131072%65536765536, the blocksize is 8192

Implementation and Optimization

* GEMM-Level Implementation and Optimization
* Using cuda streams
* Change blocksize gradually

* QR-Level Implementation and Optimization
* Cut off unnecessary data movement
* Cutting off some move-in operations of the panel

* Enable cross BLAS operation overlapping
* Hide the move-out operations between panel factorization and GEMMs

Final Results: block size 16384

—Panel Host to Device
— Panel Computation
==Panel Davice to Host

—|nner Product
—Quter Product
Blacking QR with eptimization
B1704ms
(. o (. o o (e (. .
Haive blocking QR
92097ms
I I 0 U SN0 0 SSS— I L_____ s
0 10000 20000 30000 40000 S0000 60000 70000 80000 90000

Computation time(ms)

Figure 12: The timeline of computing blocking out-of-core

OR, the blocksize is 16384.

100000

—Panel Host to Device
~—Panel Computation
—Panel Device to Host
=—I|nner Product

—Quter Product
Recursive QR with optimization BlEIBms
Malve Recursive QR T3720ms
4] 10000 20000 30000 40000 50000 60000 F0000 80000

Computation time(ms)

Figure 13: The timeline of computing recursive out-of-core
OR, the blocksize is 16384.

Final Results: block size 81927

—Panel Host to Device == Panal Host to Device
—Panel Computation == Panel Computation
—Panel Device to Host ==[anel Device to Host
—|nner Product == [nner Product
—Quter Product == uter Product

Blocki & with eotimizati Recursive QR with optimization
with optimization
naQ pt 156553ms 72546ms

Maive blocking QR MNalve Recursive QR
1687E9ms B05159ms

0 20000 40000 60000 80000 100000 120000 140000 160000 180000 0 10000 20000 30000 40000 50000 60000 70000 80000 90000
Computation time(ms) Computation time(ms)

Figure 14: The timeline of computing blocking out-of-core Fjgure 15: The timeline of computing recursive out-of-core
QR, the blocksize is 8192. OR, the blocksize is 8192.

Final Results: Ditferent sizes and shapes

Partition Recursive Blocking
Matrix Size | 65536765536
GEMMs 10.5s 18.9s
Panel 2.7s 2.7s
Matrix Size | 262144765536
GEMMs 38.5s 77.0s
Panel 9.0s 9.0s

Table 4: The total time cost of GEMMs and panel of
two different sizes of QR factorization (65536765536 and
262144765536) with blocksize 8192.

summary

* [n terms of out-of-core processing, the recursive strategy has
better performance
* Less data movement
* Higher in-core GEMMs rate
* Higher overlap ratio

* The higher (computation speed)/(memory capacity) ratio Is, the
more speedup brings by recursion

* RTX 20,30 series have similar TensorCore computation speed, but much
smaller memory

Future work

* Deploy such algorithms on A100

* Try to use the same strategy for LU and Cholesky factorization

* The factorization steps are very similar: panel factorization and trialing
matrix update using GEMMs

Thanks!

