Communication Avoiding All-Pairs Shortest Paths Algorithm for Sparse Graphs

Lin Zhu, Qiang-sheng Hua*, and Hai Jin

Huazhong University of Science and Technology, China
Outline

- Background
- Several Algorithmic Techniques
- Our Method
- Proof of Lower Bound
- Summary
The all-pairs shortest-paths problem

An undirected weighted graph $G = \{V, E, W\}$

- vertex set V containing $n = |V|$ vertices
- edge set E with $m = |E|$ edges
- weights W

The all-pairs shortest path problem computes the length of the shortest paths between every pair of vertices in the graph G.
We quantify interprocessor bandwidth (the number of words) and latency (the number of messages) costs of a parallelization via a network model.

- The architecture is homogeneous.
- A processor can only send/receive a message to/from one other processor at a time.
- There is a link between each processor pair (all-to-all network).
Previous work

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Research problem</th>
<th>Applicable graph</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>2D-DC APSP</td>
<td>APSP</td>
<td>dense graphs</td>
<td>distributed-memory model</td>
</tr>
<tr>
<td>Edgar Solomonik</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>et al. IPDPS 2013</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SuperFW</td>
<td>APSP</td>
<td>dense/sparse graphs</td>
<td>share-memory model</td>
</tr>
<tr>
<td>Piyush Sao et al.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PPoPP 2020</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dSparseLU3D</td>
<td>LU factorization</td>
<td>sparse matrices</td>
<td>distributed-memory model</td>
</tr>
<tr>
<td>Piyush Sao et al.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IPDPS 2018</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

However, there are few studies focusing on efficient APSP algorithms for sparse graphs in distributed memory system.
Goals

• To design an APSP algorithm with minimum communication cost for sparse graphs

• To give the lower bound of bandwidth cost and latency cost
Goals

• To design an APSP algorithm with minimum communication cost for sparse graphs
 • Bandwidth cost: \(O\left(\frac{n^2 \log^2 P}{P} + |S|^2 \log^2 P\right) \)
 • Latency cost: \(O(\log^2 P) \)

• To give the lower bound of bandwidth cost and latency cost
 • Bandwidth lower bound: \(\Omega\left(\frac{n^2}{P} + |S|^2\right) \)
 • Latency lower bound: \(\Omega(\log^2 P) \)
Floyd-Warshall algorithm (FW)

Floyd-Warshall algorithm

At each iteration k, the distance matrix A is updated

$$A(i, j) = A(i, j) \oplus A(i, k) \otimes A(k, j)$$

$$x \oplus y = \min\{x, y\}, x \otimes y = x + y$$

Blocked Floyd-Warshall algorithm

Divide A into $\frac{n}{b} \times \frac{n}{b}$ blocks, each of size $b \times b$

At each iteration k

- $A(k, k) = FW(A(k, k))$
- $A(:, k) = A(:, k) \oplus A(:, k) \otimes A(k, k)$
- $A(k, :) = A(k, :) \oplus A(k, k) \otimes A(k, :)$
- $A(i, j) = A(i, j) \oplus A(i, k) \otimes A(k, j)$

For example: $k=3$

All blocks of A need to be updated

How to avoid the update of certain blocks for sparse graphs?
Several Algorithmic Techniques

Outline

- Background
- Several Algorithmic Techniques
- Our Method
- Proof of Lower Bound
- Summary
Several Algorithmic Techniques

For \(k = 3 \), if \(\text{Dist}(4, 3) = \infty \), then \(\text{Dist}(4, :) = \min\{\text{Dist}(4, :) \), \(\text{Dist}(4, 3) + \text{Dist}(3, :))\} = \text{Dist}(4, :) \)

The update of \(\text{Dist}(4, :) \) can be avoided

Similar, for \(k = 3 \), if all entries in block \(A(4, 3) \) is \(\infty \), then \(A(4, :) = A(4, :) \oplus A(4, 3) \otimes A(3, :) \)

The update of \(A(4, :) \) can be avoided

However, \(A \) is irregular and there may not be all infinite values in a block

Updates to these blocks can be avoided
Nested-Dissection Ordering (ND process)

ND process: reorder the adjacency matrix

Find the vertex separator S, S partitions V into three disjoints sets, $V = V_1 \cup S \cup V_2$, and

- No edges between V_1 and V_2
- $|V_1| \approx |V_2|$
- S is as small as possible

V_1, V_2 and S are called supernodes

The vertices within V_1 and V_2 have consecutive indices; vertices in S have a higher index

All entries in block $A(1,2)$ and $A(2,1)$ are ∞
Elimination tree (eTree)

By computing the separator of the graph G, we can get a two-level elimination tree (eTree).

By recursively computing the separators of V_1 and V_2, we can obtain a multi-level eTree.

The eTree can guide parallelism.
- The elimination of supernodes in the same level is independent.
The computational cost of the FW algorithm is $O(n^3)$. Using ND process and eTree techniques, the computational cost can be reduced to $O(n^2 S)$.

How to reduce communication cost in the distributed memory model?
Outline

- Background
- Several Algorithmic Techniques
- Our Method
- Proof of Lower Bound
- Summary
We map the supernodal block sparse matrix A to a $\sqrt{P} \times \sqrt{P}$ grid in a block layout.

Symbol description:
- $A(k)$: the set of all ancestors of supernode k
- $D(k)$: the set of all descendants of supernode k
- $C(k)$: the set of all cousins of supernode k
- Q_l: the collection of the l-th level supernodes
- R_l: the updated region of A during the elimination of the l-th level supernodes

$$R_l = \bigcup_{k \in Q_l} (k \cup A(k) \cup D(k), k \cup A(k) \cup D(k))$$
Our Method

Divide R_l into four subsets:

- $R^1_l = \bigcup_{k \in Q_l} (k, k)$
- $R^2_l = \bigcup_{k \in Q_l} (A(k) \cup D(k), k) \cup (k, A(k) \cup D(k))$
- $R^3_l = \bigcup_{k \in Q_l} (A(k) \cup D(k), D(k)) \cup (D(k), A(k))$
- $R^4_l = \bigcup_{k \in Q_l} (A(k), A(k))$

For each $(i, j) \in R_l$, the update of $A(i, j)$ is

$$A(i, j) = A(i, j) \oplus \sum_k A(i, k) \otimes A(k, j)$$

where $k \in (A(i) \cup D(i)) \cap (A(j) \cup D(j)) \cap Q_l$
The update of R^1_l, R^2_l and R^3_l

The update of R^1_l: P_{kk} performs local updates

The update of R^2_l:
- P_{kk} broadcast to all P_{ik}, where $i \in A(k) \cup D(k)$
- P_{kk} broadcast to all P_{kj}, where $j \in A(k) \cup D(k)$

The update of R^3_l:
- For each $(i, k) \in R^2_l$, P_{ik} broadcast to all P_{ij}, $j \in A(k) \cup D(k)$
- For each $(k, j) \in R^2_l$, P_{kj} broadcast to all P_{ij}, $i \in A(k) \cup D(k)$
The update of R_l^4:

If $|(A(i) \cup D(i)) \cap (A(j) \cup D(j)) \cap Q_l| = q$, then $A(i, j)$ needs to be updated q times, i.e.,

$$A(i, j) = A(i, j) \oplus A(i, 1) \otimes A(1, j) \oplus A(i, 2) \otimes A(2, j) \ldots \oplus A(i, q) \otimes A(q, j)$$

A trivial strategy: $P_{i_1}, P_{i_2}, \ldots, P_{i_q}$ send local data to P_{ij} in sequential

- latency cost: $\Omega(q)$

Optimal strategy: $P_{i_1}, P_{i_2}, \ldots, P_{i_q}$ send local data to q different processors, each processor performs a computing unit and then reduce to $P(i, j)$.

- latency cost: $O(\log q)$

There are more than one block $A(i, j)$ in R_l^4 needs to be updated.
The update of R_i^4

In order to update all the blocks in R_i^4 with a maximum degree of parallelization, the optimal strategy is to allocate each computing unit that updates R_i^4 to a separate processor one-to-one.

The number of computing units required to update R_i^4 is $O(P)$.

• by summing the number of units of each A_{ij}

We get such an one-to-one mapping from the computing units for updating R_i^4 to the processors.

• for each $A(i,j)$ in R_i^4, each computing unit is all $A(i,k) \otimes A(k,j)$, where $k \in Q_l \cap D(i) \cap D(j)$.

• each computing unit can be assigned to a separate processor P_{fg}, where $f = \sum_{b=h+1}^{h} 2^{b} + (a - l)$, $g = k - \sum_{b=h-1}^{h-1} 2^{b}$, $a \in \{l + 1, l + 2 ..., h\}$ and $c \in \{a, a + 1 ..., h\}$.
Outline

- Background
- Several Algorithmic Techniques
- Our Method
- Proof of Lower Bound
- Summary
3NL computation model

The computation of matrix multiplication and APSP can be expressed in a three nested-loop (3NL) way. multiplying two \(n \times n \) matrices:

\[
C_{ij} = C_{ij} + A_{ik} \cdot B_{kj}
\]

Informally, the 3NL computation model is defined as follows:

- There are two non-trivial parameter-dependent functions \(f_{ij}, g_{ijk} \) such that \(C_{ij} = f_{ij}(g_{ijk}(A_{ik}, B_{kj})) \)
- The elements in A, B, and C are mapped to memory locations one by one

3NL computation model lower bound:

- bandwidth lower bounds \(\Omega\left(\frac{F}{P \sqrt{M}}\right) \)
- latency lower bounds \(\Omega\left(\frac{F}{PM^{2/3}}\right) \)

\(F \): the number of computation operations
\(M \): per-process memory size.
Proof of Lower Bound

Computing the APSP of a sparse graph is a 3NL computation.

The total number of operations to compute the APSP is $\Omega(n^2 |S|)$.

- By calculating the number of computation operations required in the elimination of the top-level supernodes, which is a part of the total operations

The bandwidth and latency lower bounds for solving the APSP of sparse graphs are $\Omega(n^2 P + |S|^2)$ and $\Omega(\log^2 p)$, respectively.

- By applying the lower bound of operations and M to the 3NL computation model lower bound
- By summing the lower bound of the latency cost during the elimination of each level of supernodes
Outline

- Background
- Several Algorithmic Techniques
- Our Method
- Proof of Lower Bound
- Summary
Summary

<table>
<thead>
<tr>
<th>Parameter</th>
<th>2D-DC-APSP</th>
<th>SPARSE-APSP</th>
<th>Lower bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>Per-process memory (M)</td>
<td>$O\left(\frac{n^2}{P}\right)$</td>
<td>$O\left(\frac{n^2}{P} +</td>
<td>S</td>
</tr>
<tr>
<td>Bandwidth cost (B)</td>
<td>$O\left(\frac{n^2}{\sqrt{P}}\right)$</td>
<td>$O\left(\frac{n^2 \log^2 P}{P} +</td>
<td>S</td>
</tr>
<tr>
<td>Latency cost (L)</td>
<td>$O\left(\sqrt{P} \log^2 P\right)$</td>
<td>$O\left(\log^2 P\right)$</td>
<td>$\Omega\left(\sqrt{P}\right)$</td>
</tr>
</tbody>
</table>
Thank you!