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What is device placement?




Background

> Problem: Large DNNs cannot fit into single GPU (mem limitation).

> Solution: Model parallelism, Partition a DNN across multiple GPUs
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Device placement with deep reinforcement learning

Objective: to find the best way to assign devices to operations to
minimize training time
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Mirhoseini et al. (Google Inc.), “Device placement optimization with
reinforcement learning,” in Proc. ICML 2017.




Device placement with deep reinforcement learning
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Agent design
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Challenges

We notice that Google's ICML 2017 uses about 100 workers and
12 to 27 hours to find the best placement for workloads. It mainly
caused by two reasons:

> The REINFORCE algorithm is inefficient. It requires large number
of samples to train the agent.

> In device placement, the environment is a real-world machine
with multiple devices(CPU and GPUs). Collecting rewards from a
real-world environment is very slow, especially when the
workload is a large DNN.



Solution

> For the first challenge, we replace the REINFORCE algorithm
with PPO algorithm to improve the sample efficiency, however, it
still needs a substantial amount of samples to train the agent.

> For the second challenge, one of the solution is using a
simulated environment instead of a real one (proposed by
Placeto). In that sense, we need to build a model for every
single environment, which is not a model-free methods.

> |s there a way to train the agent with a very few amount of
samples or even without any samples?



Our framework

> To address these challenges, we proposed our DRL-based
framework, Mars, a graph encoder pre-trained by contrastive

learning, followed by a light-weight segment-level sequence-to-
sequence placer.
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Contrastive Learning
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We use contrastive learning to pre-train the graph encoder without
any labeled data. After pre-training, the graph encoder can encode
the operation in computational graph into a node representation

h , which represents the operation in a vector space.
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Contrastive Learning
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Light-weight Placer

> In node classification task, DGl add a logistic regression layer as
classifier after the pre-trained graph encoder, and train it with the
labeled data. To reduce the amount of labeled data required for
training, the classifier added should be simple and easy to train.

> Following this idea, we use a light-weight placer in our agent
design, a segment-level sequence-to-sequence neural network.
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Light-weight Placer

> A segment-level sequence-to-sequence placer has been designed
to avoid placing extremely long operation sequence at a time.

> The light-weight placer can utilize the pre-trained parameters of
the graph encoder better.
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Experimental Results

> From experimental results, ours approach outperforms all state-

of-the-arts.

Per-step runtime (in seconds) of placements found
by different approaches.

Human GPU  Grouper- Encoder- Mars (no
Models Mars N
Experts  Only Placer Placer pre-training)
Inception-V3  0.071 0.071 0.067 0.067 0.067 0.067
GNMT-4 1.661 OOM 1.418 1.437 1.379 1.396
BERT OOM OOM 12.661 11.737 9.214 11.363
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Experimental Results

> With unsupervised pre-training, we achieved better performance
while reducing the agent training time by 13.2% on average.
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