
Accelerated Device Placement
Optimization with Contrastive
Learning

Hao Lan, Li Chen, Baochun Li
University of Toronto
hao.lan@mail.utoronto.ca

mailto:hao.lan@mail.utoroto.cal

What is device placement?

Background

‣ Problem: Large DNNs cannot fit into single GPU (mem limitation).

‣ Solution: Model parallelism, Partition a DNN across multiple GPUs

3Deep Neural Networks Computation Resources

CPU GPU1 GPU3

GPU2 GPU4

Machine

4

Device placement with deep reinforcement learning
Objective: to find the best way to assign devices to operations to
minimize training time

Mirhoseini et al. (Google Inc.), “Device placement optimization with
reinforcement learning,” in Proc. ICML 2017.

Device Placement Optimization with Reinforcement Learning

Figure 5. RL-based placement of Inception-V3. Devices are denoted by colors, where the transparent color represents an operation on a

CPU and each other unique color represents a different GPU. RL-based placement achieves the improvement of 19.7% in running time

compared to expert-designed placement.

Neural MT. We train our Neural MT model on the
WMT14 English-German dataset.1 For these experiments,
we pre-process the dataset into word pieces (Wu et al.,
2016) such that the vocabularies of both languages consist
of 32, 000 word pieces. In order to match our model’s set-
tings, we consider only the translation pairs where no sen-
tence has more than 40 word pieces. We train each model
for 200, 000 steps and record their train perplexities. Each
training machine has 4 Nvidia Tesla K80 GPUs and 1 Intel
Haswell 2300 CPU. Since there are inevitable noises in the
computer systems when measuring the running times, we
train each model 4 times independently and average their
per-step running times and perplexities.

0 50 100 150 200
hours

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

tra
in

 lo
g_

pp
l

Neural MT Training Curves with 1CPU, 4GPUs

RL-based Placement
Human Expert (One layer per device)

Figure 6. Training curves of NMT model using RL-based place-

ment and expert-designed placement. The per-step running time

as well as the perplexities are averaged over 4 runs.

The RL-based placement runs faster than the expert-
designed placement, as shown in the training curves in
Figure 6. Quantitatively, the expert-designed placement,
which puts each layer (LSTM, attention and softmax) on
a different GPU, takes 229.57 hours; meanwhile the RL-
based placement (see Figure 4) takes 165.73 hours, giv-
ing 27.8% speed up of total training time. We note that
the measured speedup rate (and the running times) of these
models appear different than reported in Table 2 because
measuring them in our RL method has several overheads.

1http://www.statmt.org/wmt14/

Inception-V3. We train Inception-V3 on the ImageNet
dataset (Russakovsky et al., 2015) until the model reaches
the accuracy of 72% on the validation set. In practice, more
often, inception models are trained with data parallelism
rather than model parallelism. We thus compare the place-
ments found by our algorithm (see Figure 5) against two
such baselines.

The first baseline, called Asynchronous towers, puts one
replica of the Inception-V3 network on each GPU. These
replicas share the data reading operations, which are as-
signed to the CPU. Each replica independently performs
forward and backward passes to compute the model’s gra-
dients with respect to a minibatch of 32 images and then up-
dates the parameters asynchronously. The second baseline,
called Synchronous Tower, is the same as Asynchronous
towers, except that it waits for the gradients of all copies
before making an update. All settings use the learning rate
of 0.045 and are trained using RMSProp.

0 50 100 150 200 250 300 350
hours

0

2

4

6

8

10

12

14

cu
m

ul
at

iv
e

av
g

tra
in

 lo
ss

Inception Training Curves with 1CPU, 4GPUs

RL-based Placement
Synchronous Towers
Asynchronous Towers

Figure 7. Training curves of Inception-V3 model using RL-based

placement and two expert-designed placements: Synchronous

towers and Asynchronous towers. The per-step running time as

well as the perplexities are averaged over 4 runs.

Figure 7 shows the training curves of the three settings for
Inception-V3. As can be seen from the figure, the end-to-
end training result confirms that the RL-based placement
indeed speedups the training process by 19.7% compared

Device placement with deep reinforcement learning

5Neural Networks Computation Resources

CPU GPU 1 GPU 3

GPU 2 GPU 4

Machine

1

543

2

876

Agent

Policy
Network

1

543

2

876

observation

action

reward

1

543

2

876

1

543

2

876

Grouper Placer

1

543

2

876

Agent design

6

Encoder

1

543

2

876

Placer

1

543

2

876

1

543

2

876

merge
Node Features Group Embeddings Placement

Node Features Node Embeddings Placement

Challenges

We notice that Google’s ICML 2017 uses about 100 workers and
12 to 27 hours to find the best placement for workloads. It mainly
caused by two reasons:

‣ The REINFORCE algorithm is inefficient. It requires large number
of samples to train the agent.

‣ In device placement, the environment is a real-world machine
with multiple devices(CPU and GPUs). Collecting rewards from a
real-world environment is very slow, especially when the
workload is a large DNN.

7

Solution

‣ For the first challenge, we replace the REINFORCE algorithm
with PPO algorithm to improve the sample efficiency, however, it
still needs a substantial amount of samples to train the agent.

‣ For the second challenge, one of the solution is using a
simulated environment instead of a real one (proposed by
Placeto). In that sense, we need to build a model for every
single environment, which is not a model-free methods.

‣ Is there a way to train the agent with a very few amount of
samples or even without any samples?

8

Neural
Network

Adjacency Matrix

Node Features

0 1 … 0 0
1 0 … 0 1……

0 1 … 1 0

op_type
input_shape

output_shape Node Representation

0.232 … 0.876

…
0.521 … 0.391

…

… …

Seq-to-Seq
Placer

input sequence

output sequence

Placement Policy

0.021 … 0.547

…

0.602 … 0.102

… …

LSTM LSTM ……

Softmax

DGI
Graph Encoder

Published as a conference paper at ICLR 2019

~xi

~exj

(X,A)

(eX, eA)

~hi

~ehj

(H,A)

(eH, eA)

E

C

E

~s

R
D

D

+

�

Figure 1: A high-level overview of Deep Graph Infomax. Refer to Section 3.4 for more details.

Table 1: Summary of the datasets used in our experiments.

Dataset Task Nodes Edges Features Classes Train/Val/Test Nodes

Cora Transductive 2,708 5,429 1,433 7 140/500/1,000
Citeseer Transductive 3,327 4,732 3,703 6 120/500/1,000
Pubmed Transductive 19,717 44,338 500 3 60/500/1,000
Reddit Inductive 231,443 11,606,919 602 41 151,708/23,699/55,334

PPI Inductive 56,944 818,716 50 121 44,906/6,514/5,524
(24 graphs) (multilbl.) (20/2/2 graphs)

4 CLASSIFICATION PERFORMANCE

We have assessed the benefits of the representation learnt by the DGI encoder on a variety of node
classification tasks (transductive as well as inductive), obtaining competitive results. In each case,
DGI was used to learn patch representations in a fully unsupervised manner, followed by evaluating
the node-level classification utility of these representations. This was performed by directly using
these representations to train and test a simple linear (logistic regression) classifier.

4.1 DATASETS

We follow the experimental setup described in Kipf & Welling (2016a) and Hamilton et al. (2017a)
on the following benchmark tasks: (1) classifying research papers into topics on the Cora, Cite-
seer and Pubmed citation networks (Sen et al., 2008); (2) predicting the community structure of a
social network modeled with Reddit posts; and (3) classifying protein roles within protein-protein
interaction (PPI) networks (Zitnik & Leskovec, 2017), requiring generalisation to unseen networks.

Further information on the datasets may be found in Table 1 and Appendix A.

4.2 EXPERIMENTAL SETUP

For each of three experimental settings (transductive learning, inductive learning on large graphs,
and multiple graphs), we employed distinct encoders and corruption functions appropriate to that
setting (described below).

Transductive learning. For the transductive learning tasks (Cora, Citeseer and Pubmed), our en-
coder is a one-layer Graph Convolutional Network (GCN) model (Kipf & Welling, 2016a), with the
following propagation rule:

E(X,A) = �

⇣
D̂

� 1
2 ÂD̂

� 1
2X⇥

⌘
(3)

where Â = A + IN is the adjacency matrix with inserted self-loops and D̂ is its corresponding
degree matrix; i.e. D̂ii =

P
j Âij . For the nonlinearity, �, we have applied the parametric ReLU

6

Published as a conference paper at ICLR 2019

~xi

~exj

(X,A)

(eX, eA)

~hi

~ehj

(H,A)

(eH, eA)

E

C

E

~s

R
D

D

+

�

Figure 1: A high-level overview of Deep Graph Infomax. Refer to Section 3.4 for more details.

Table 1: Summary of the datasets used in our experiments.

Dataset Task Nodes Edges Features Classes Train/Val/Test Nodes

Cora Transductive 2,708 5,429 1,433 7 140/500/1,000
Citeseer Transductive 3,327 4,732 3,703 6 120/500/1,000
Pubmed Transductive 19,717 44,338 500 3 60/500/1,000
Reddit Inductive 231,443 11,606,919 602 41 151,708/23,699/55,334

PPI Inductive 56,944 818,716 50 121 44,906/6,514/5,524
(24 graphs) (multilbl.) (20/2/2 graphs)

4 CLASSIFICATION PERFORMANCE

We have assessed the benefits of the representation learnt by the DGI encoder on a variety of node
classification tasks (transductive as well as inductive), obtaining competitive results. In each case,
DGI was used to learn patch representations in a fully unsupervised manner, followed by evaluating
the node-level classification utility of these representations. This was performed by directly using
these representations to train and test a simple linear (logistic regression) classifier.

4.1 DATASETS

We follow the experimental setup described in Kipf & Welling (2016a) and Hamilton et al. (2017a)
on the following benchmark tasks: (1) classifying research papers into topics on the Cora, Cite-
seer and Pubmed citation networks (Sen et al., 2008); (2) predicting the community structure of a
social network modeled with Reddit posts; and (3) classifying protein roles within protein-protein
interaction (PPI) networks (Zitnik & Leskovec, 2017), requiring generalisation to unseen networks.

Further information on the datasets may be found in Table 1 and Appendix A.

4.2 EXPERIMENTAL SETUP

For each of three experimental settings (transductive learning, inductive learning on large graphs,
and multiple graphs), we employed distinct encoders and corruption functions appropriate to that
setting (described below).

Transductive learning. For the transductive learning tasks (Cora, Citeseer and Pubmed), our en-
coder is a one-layer Graph Convolutional Network (GCN) model (Kipf & Welling, 2016a), with the
following propagation rule:

E(X,A) = �

⇣
D̂

� 1
2 ÂD̂

� 1
2X⇥

⌘
(3)

where Â = A + IN is the adjacency matrix with inserted self-loops and D̂ is its corresponding
degree matrix; i.e. D̂ii =

P
j Âij . For the nonlinearity, �, we have applied the parametric ReLU

6

corruption

GCNs

Published as a conference paper at ICLR 2019

~xi

~exj

(X,A)

(eX, eA)

~hi

~ehj

(H,A)

(eH, eA)

E

C

E

~s

R
D

D

+

�

Figure 1: A high-level overview of Deep Graph Infomax. Refer to Section 3.4 for more details.

Table 1: Summary of the datasets used in our experiments.

Dataset Task Nodes Edges Features Classes Train/Val/Test Nodes

Cora Transductive 2,708 5,429 1,433 7 140/500/1,000
Citeseer Transductive 3,327 4,732 3,703 6 120/500/1,000
Pubmed Transductive 19,717 44,338 500 3 60/500/1,000
Reddit Inductive 231,443 11,606,919 602 41 151,708/23,699/55,334

PPI Inductive 56,944 818,716 50 121 44,906/6,514/5,524
(24 graphs) (multilbl.) (20/2/2 graphs)

4 CLASSIFICATION PERFORMANCE

We have assessed the benefits of the representation learnt by the DGI encoder on a variety of node
classification tasks (transductive as well as inductive), obtaining competitive results. In each case,
DGI was used to learn patch representations in a fully unsupervised manner, followed by evaluating
the node-level classification utility of these representations. This was performed by directly using
these representations to train and test a simple linear (logistic regression) classifier.

4.1 DATASETS

We follow the experimental setup described in Kipf & Welling (2016a) and Hamilton et al. (2017a)
on the following benchmark tasks: (1) classifying research papers into topics on the Cora, Cite-
seer and Pubmed citation networks (Sen et al., 2008); (2) predicting the community structure of a
social network modeled with Reddit posts; and (3) classifying protein roles within protein-protein
interaction (PPI) networks (Zitnik & Leskovec, 2017), requiring generalisation to unseen networks.

Further information on the datasets may be found in Table 1 and Appendix A.

4.2 EXPERIMENTAL SETUP

For each of three experimental settings (transductive learning, inductive learning on large graphs,
and multiple graphs), we employed distinct encoders and corruption functions appropriate to that
setting (described below).

Transductive learning. For the transductive learning tasks (Cora, Citeseer and Pubmed), our en-
coder is a one-layer Graph Convolutional Network (GCN) model (Kipf & Welling, 2016a), with the
following propagation rule:

E(X,A) = �

⇣
D̂

� 1
2 ÂD̂

� 1
2X⇥

⌘
(3)

where Â = A + IN is the adjacency matrix with inserted self-loops and D̂ is its corresponding
degree matrix; i.e. D̂ii =

P
j Âij . For the nonlinearity, �, we have applied the parametric ReLU

6

Published as a conference paper at ICLR 2019

~xi

~exj

(X,A)

(eX, eA)

~hi

~ehj

(H,A)

(eH, eA)

E

C

E

~s

R
D

D

+

�

Figure 1: A high-level overview of Deep Graph Infomax. Refer to Section 3.4 for more details.

Table 1: Summary of the datasets used in our experiments.

Dataset Task Nodes Edges Features Classes Train/Val/Test Nodes

Cora Transductive 2,708 5,429 1,433 7 140/500/1,000
Citeseer Transductive 3,327 4,732 3,703 6 120/500/1,000
Pubmed Transductive 19,717 44,338 500 3 60/500/1,000
Reddit Inductive 231,443 11,606,919 602 41 151,708/23,699/55,334

PPI Inductive 56,944 818,716 50 121 44,906/6,514/5,524
(24 graphs) (multilbl.) (20/2/2 graphs)

4 CLASSIFICATION PERFORMANCE

We have assessed the benefits of the representation learnt by the DGI encoder on a variety of node
classification tasks (transductive as well as inductive), obtaining competitive results. In each case,
DGI was used to learn patch representations in a fully unsupervised manner, followed by evaluating
the node-level classification utility of these representations. This was performed by directly using
these representations to train and test a simple linear (logistic regression) classifier.

4.1 DATASETS

We follow the experimental setup described in Kipf & Welling (2016a) and Hamilton et al. (2017a)
on the following benchmark tasks: (1) classifying research papers into topics on the Cora, Cite-
seer and Pubmed citation networks (Sen et al., 2008); (2) predicting the community structure of a
social network modeled with Reddit posts; and (3) classifying protein roles within protein-protein
interaction (PPI) networks (Zitnik & Leskovec, 2017), requiring generalisation to unseen networks.

Further information on the datasets may be found in Table 1 and Appendix A.

4.2 EXPERIMENTAL SETUP

For each of three experimental settings (transductive learning, inductive learning on large graphs,
and multiple graphs), we employed distinct encoders and corruption functions appropriate to that
setting (described below).

Transductive learning. For the transductive learning tasks (Cora, Citeseer and Pubmed), our en-
coder is a one-layer Graph Convolutional Network (GCN) model (Kipf & Welling, 2016a), with the
following propagation rule:

E(X,A) = �

⇣
D̂

� 1
2 ÂD̂

� 1
2X⇥

⌘
(3)

where Â = A + IN is the adjacency matrix with inserted self-loops and D̂ is its corresponding
degree matrix; i.e. D̂ii =

P
j Âij . For the nonlinearity, �, we have applied the parametric ReLU

6

readout

Published as a conference paper at ICLR 2019

~xi

~exj

(X,A)

(eX, eA)

~hi

~ehj

(H,A)

(eH, eA)

E

C

E

~s

R
D

D

+

�

Figure 1: A high-level overview of Deep Graph Infomax. Refer to Section 3.4 for more details.

Table 1: Summary of the datasets used in our experiments.

Dataset Task Nodes Edges Features Classes Train/Val/Test Nodes

Cora Transductive 2,708 5,429 1,433 7 140/500/1,000
Citeseer Transductive 3,327 4,732 3,703 6 120/500/1,000
Pubmed Transductive 19,717 44,338 500 3 60/500/1,000
Reddit Inductive 231,443 11,606,919 602 41 151,708/23,699/55,334

PPI Inductive 56,944 818,716 50 121 44,906/6,514/5,524
(24 graphs) (multilbl.) (20/2/2 graphs)

4 CLASSIFICATION PERFORMANCE

We have assessed the benefits of the representation learnt by the DGI encoder on a variety of node
classification tasks (transductive as well as inductive), obtaining competitive results. In each case,
DGI was used to learn patch representations in a fully unsupervised manner, followed by evaluating
the node-level classification utility of these representations. This was performed by directly using
these representations to train and test a simple linear (logistic regression) classifier.

4.1 DATASETS

We follow the experimental setup described in Kipf & Welling (2016a) and Hamilton et al. (2017a)
on the following benchmark tasks: (1) classifying research papers into topics on the Cora, Cite-
seer and Pubmed citation networks (Sen et al., 2008); (2) predicting the community structure of a
social network modeled with Reddit posts; and (3) classifying protein roles within protein-protein
interaction (PPI) networks (Zitnik & Leskovec, 2017), requiring generalisation to unseen networks.

Further information on the datasets may be found in Table 1 and Appendix A.

4.2 EXPERIMENTAL SETUP

For each of three experimental settings (transductive learning, inductive learning on large graphs,
and multiple graphs), we employed distinct encoders and corruption functions appropriate to that
setting (described below).

Transductive learning. For the transductive learning tasks (Cora, Citeseer and Pubmed), our en-
coder is a one-layer Graph Convolutional Network (GCN) model (Kipf & Welling, 2016a), with the
following propagation rule:

E(X,A) = �

⇣
D̂

� 1
2 ÂD̂

� 1
2X⇥

⌘
(3)

where Â = A + IN is the adjacency matrix with inserted self-loops and D̂ is its corresponding
degree matrix; i.e. D̂ii =

P
j Âij . For the nonlinearity, �, we have applied the parametric ReLU

6

1

543

2

876

Our framework

‣ To address these challenges, we proposed our DRL-based
framework, Mars, a graph encoder pre-trained by contrastive
learning, followed by a light-weight segment-level sequence-to-
sequence placer.

9

Contrastive Learning

10

We use contrastive learning to pre-train the graph encoder without
any labeled data. After pre-training, the graph encoder can encode
the operation in computational graph into a node representation

, which represents the operation in a vector space.⃗h

Graph
Neural

Network

Computational Graph

Corrupted
Computational Graph

⃗h

⃗h̃
Summary ⃗s

Unsupervised
Loss ℒ (⋅)

Contrastive Learning

11

Graph
Encoder Placer PlacementNode

Representations
Node

Features

Graph
Neural

Network

⃗h

⃗h̃
Summary ⃗s

Unsupervised
Loss ℒ (⋅)

Parameters
DRL agent

Computational Graph

Corrupted
Computational Graph

Light-weight Placer

12

Pre-trained
Graph

Encoder
Placer PlacementNode

Embeddings
Node

Features

DRL agent

‣ In node classification task, DGI add a logistic regression layer as
classifier after the pre-trained graph encoder, and train it with the
labeled data. To reduce the amount of labeled data required for
training, the classifier added should be simple and easy to train.

‣ Following this idea, we use a light-weight placer in our agent
design, a segment-level sequence-to-sequence neural network.

Light-weight Placer
‣ A segment-level sequence-to-sequence placer has been designed

to avoid placing extremely long operation sequence at a time.

‣ The light-weight placer can utilize the pre-trained parameters of
the graph encoder better.

13

BiLSTM

LSTM

go

LSTM…

p1

<latexit sha1_base64="L9+bI12Jl5hHRCq4tY8c/VkFrFA=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0WPRi8cKpi20oWy2k3bpZhN2N0IJ/Q1ePCji1R/kzX/jts1BWx8MPN6bYWZemAqujet+O6W19Y3NrfJ2ZWd3b/+genjU0kmmGPosEYnqhFSj4BJ9w43ATqqQxqHAdji+m/ntJ1SaJ/LRTFIMYjqUPOKMGiv5aT/3pv1qza27c5BV4hWkBgWa/epXb5CwLEZpmKBadz03NUFOleFM4LTSyzSmlI3pELuWShqjDvL5sVNyZpUBiRJlSxoyV39P5DTWehKHtjOmZqSXvZn4n9fNTHQT5FymmUHJFouiTBCTkNnnZMAVMiMmllCmuL2VsBFVlBmbT8WG4C2/vEpaF3Xvsn71cFlr3BZxlOEETuEcPLiGBtxDE3xgwOEZXuHNkc6L8+58LFpLTjFzDH/gfP4Axp6OrA==</latexit>

{~h1,~h2 . . .~hs}

<latexit sha1_base64="YrEda0aTTwyqeeUKQzFwOJ5iTYI=">AAACE3icbZDLSgMxFIbPeK31NurSTbAIIlJmSkWXRTcuK9gLdIYhk2ba0MyFJFMoQ9/Bja/ixoUibt24821M26Fo64HAl/9ckvP7CWdSWda3sbK6tr6xWdgqbu/s7u2bB4dNGaeC0AaJeSzaPpaUs4g2FFOcthNBcehz2vIHt5N8a0iFZHH0oEYJdUPci1jACFZa8sxzJ0POkJKsP/bsizlWkNONlZzfNY09s2SVrWmgZbBzKEEedc/80kNIGtJIEY6l7NhWotwMC8UIp+Oik0qaYDLAPdrRGOGQSjeb7jRGp1rpoiAW+kQKTdXfHRkOpRyFvq4MserLxdxE/C/XSVVw7WYsSlJFIzJ7KEg5UjGaGIS6TFCi+EgDJoLpvyLSxwITpW0sahPsxZWXoVkp29Xy5X21VLvJ7SjAMZzAGdhwBTW4gzo0gMAjPMMrvBlPxovxbnzMSleMvOcI/oTx+QNBOZ3K</latexit>

ps

<latexit sha1_base64="ltBEKEGmzWXf7MWdup2do/2ZSn0=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0WPRi8cKpi20oWy2k3bpZhN2N0IJ/Q1ePCji1R/kzX/jts1BWx8MPN6bYWZemAqujet+O6W19Y3NrfJ2ZWd3b/+genjU0kmmGPosEYnqhFSj4BJ9w43ATqqQxqHAdji+m/ntJ1SaJ/LRTFIMYjqUPOKMGiv5aT/X03615tbdOcgq8QpSgwLNfvWrN0hYFqM0TFCtu56bmiCnynAmcFrpZRpTysZ0iF1LJY1RB/n82Ck5s8qARImyJQ2Zq78nchprPYlD2xlTM9LL3kz8z+tmJroJci7TzKBki0VRJohJyOxzMuAKmRETSyhT3N5K2IgqyozNp2JD8JZfXiWti7p3Wb96uKw1bos4ynACp3AOHlxDA+6hCT4w4PAMr/DmSOfFeXc+Fq0lp5g5hj9wPn8AKveO7g==</latexit>

BiLSTM

LSTM LSTM…

… BiLSTM

{~hs+1,~hs+2 . . .~h2s}

<latexit sha1_base64="oBQJzaXGFKscBE9JZw838xC3W1o=">AAACHnicbVBdS8MwFE3n15xfVR99CQ5BUEY7NvRx6IuPE9wHrKWkWbqFpWlJ0sEo/SW++Fd88UERwSf9N2Zbwbl5IHByzr03ucePGZXKsr6Nwtr6xuZWcbu0s7u3f2AeHrVllAhMWjhikej6SBJGOWkpqhjpxoKg0Gek449up35nTISkEX9Qk5i4IRpwGlCMlJY8s+6k0BkTnA4zL5UXdna5eK1m0OlHSv5qVamlzDPLVsWaAa4SOydlkKPpmZ96Dk5CwhVmSMqebcXKTZFQFDOSlZxEkhjhERqQnqYchUS66Wy9DJ5ppQ+DSOjDFZypix0pCqWchL6uDJEaymVvKv7n9RIVXLsp5XGiCMfzh4KEQRXBaVawTwXBik00QVhQ/VeIh0ggrHSiJR2CvbzyKmlXK3atUr+vlRs3eRxFcAJOwTmwwRVogDvQBC2AwSN4Bq/gzXgyXox342NeWjDynmPwB8bXDzYLoo4=</latexit>

…

ps+1

<latexit sha1_base64="TscH+swoFubHMonoJLX/s026G54=">AAAB7nicbVBNSwMxEJ2tX7V+VT16CRZBEMquVPRY9OKxgv2AdinZNNuGZpOQZIWy9Ed48aCIV3+PN/+NabsHbX0w8Hhvhpl5keLMWN//9gpr6xubW8Xt0s7u3v5B+fCoZWSqCW0SyaXuRNhQzgRtWmY57ShNcRJx2o7GdzO//US1YVI82omiYYKHgsWMYOuktupn5iKY9ssVv+rPgVZJkJMK5Gj0y1+9gSRpQoUlHBvTDXxlwwxrywin01IvNVRhMsZD2nVU4ISaMJufO0VnThmgWGpXwqK5+nsiw4kxkyRynQm2I7PszcT/vG5q45swY0KllgqyWBSnHFmJZr+jAdOUWD5xBBPN3K2IjLDGxLqESi6EYPnlVdK6rAa16tVDrVK/zeMowgmcwjkEcA11uIcGNIHAGJ7hFd485b14797HorXg5TPH8Afe5w8EUY9e</latexit>

p2s

<latexit sha1_base64="KqtLmZbbX70mwPn4nVuskq2IqAo=">AAAB7XicbVBNSwMxEJ34WetX1aOXYBE8ld1S0WPRi8cK9gPapWTTbBubTZYkK5Sl/8GLB0W8+n+8+W9M2z1o64OBx3szzMwLE8GN9bxvtLa+sbm1Xdgp7u7tHxyWjo5bRqWasiZVQulOSAwTXLKm5VawTqIZiUPB2uH4dua3n5g2XMkHO0lYEJOh5BGnxDqplfSzqpn2S2Wv4s2BV4mfkzLkaPRLX72BomnMpKWCGNP1vcQGGdGWU8GmxV5qWELomAxZ11FJYmaCbH7tFJ87ZYAjpV1Ji+fq74mMxMZM4tB1xsSOzLI3E//zuqmNroOMyyS1TNLFoigV2Co8ex0PuGbUiokjhGrubsV0RDSh1gVUdCH4yy+vkla14tcql/e1cv0mj6MAp3AGF+DDFdThDhrQBAqP8Ayv8IYUekHv6GPRuobymRP4A/T5A51Zjyo=</latexit>

{~hks+1,~hks+2 . . .~hn}

<latexit sha1_base64="NA8bxijgvKz6pz3JbnXtqBxD+A0=">AAACHXicbVDLSgMxFM34rPVVdekmWARBKTOlosuiG5cV7AM6w5BJ0zY0kxmSO4UyzI+48VfcuFDEhRvxb0wfiG09EDg5596b3BPEgmuw7W9rZXVtfWMzt5Xf3tnd2y8cHDZ0lCjK6jQSkWoFRDPBJasDB8FasWIkDARrBoPbsd8cMqV5JB9gFDMvJD3Ju5wSMJJfqLgpdoeMpv3MTwf63Mku5u7lDLudCPSvKLGb+YWiXbInwMvEmZEimqHmFz7NEJqETAIVROu2Y8fgpUQBp4JleTfRLCZ0QHqsbagkIdNeOtkuw6dG6eBupMyRgCfq346UhFqPwsBUhgT6etEbi/957QS6117KZZwAk3T6UDcRGCI8jgp3uGIUxMgQQhU3f8W0TxShYALNmxCcxZWXSaNcciqly/tKsXoziyOHjtEJOkMOukJVdIdqqI4oekTP6BW9WU/Wi/VufUxLV6xZzxGag/X1A3ktois=</latexit>

LSTM LSTM…

pks+1

<latexit sha1_base64="gOGJlWf/nAQPBzTCxlg1VGCbo0M=">AAAB73icbVBNS8NAEJ34WetX1aOXxSIIQkmkoseiF48V7Ae0oWy2m3bpZhN3J0IJ/RNePCji1b/jzX/jts1BWx8MPN6bYWZekEhh0HW/nZXVtfWNzcJWcXtnd2+/dHDYNHGqGW+wWMa6HVDDpVC8gQIlbyea0yiQvBWMbqd+64lrI2L1gOOE+xEdKBEKRtFK7aSXjcy5N+mVym7FnYEsEy8nZchR75W+uv2YpRFXyCQ1puO5CfoZ1SiY5JNiNzU8oWxEB7xjqaIRN342u3dCTq3SJ2GsbSkkM/X3REYjY8ZRYDsjikOz6E3F/7xOiuG1nwmVpMgVmy8KU0kwJtPnSV9ozlCOLaFMC3srYUOqKUMbUdGG4C2+vEyaFxWvWrm8r5ZrN3kcBTiGEzgDD66gBndQhwYwkPAMr/DmPDovzrvzMW9dcfKZI/gD5/MHzmOP0w==</latexit>

pn

<latexit sha1_base64="zonkzzpXaKIaqbE4VuXA51tCqo0=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0WPRi8cKpi20oWy2m3bpZhN2J0IJ/Q1ePCji1R/kzX/jts1BWx8MPN6bYWZemEph0HW/ndLa+sbmVnm7srO7t39QPTxqmSTTjPsskYnuhNRwKRT3UaDknVRzGoeSt8Px3cxvP3FtRKIecZLyIKZDJSLBKFrJT/u5mvarNbfuzkFWiVeQGhRo9qtfvUHCspgrZJIa0/XcFIOcahRM8mmllxmeUjamQ961VNGYmyCfHzslZ1YZkCjRthSSufp7IqexMZM4tJ0xxZFZ9mbif143w+gmyIVKM+SKLRZFmSSYkNnnZCA0ZygnllCmhb2VsBHVlKHNp2JD8JZfXiWti7p3Wb96uKw1bos4ynACp3AOHlxDA+6hCT4wEPAMr/DmKOfFeXc+Fq0lp5g5hj9wPn8AI16O6Q==</latexit>

Experimental Results
‣ From experimental results, ours approach outperforms all state-

of-the-arts.

14

Models Human
Experts

 GPU
Only

 Grouper-
Placer

 Encoder-
Placer Mars Mars (no

pre-training)

Inception-V3 0.071 0.071 0.067 0.067 0.067 0.067

GNMT-4 1.661 OOM 1.418 1.437 1.379 1.396

BERT OOM OOM 12.661 11.737 9.214 11.363

Per-step runtime (in seconds) of placements found
by different approaches.

Experimental Results
‣ With unsupervised pre-training, we achieved better performance

while reducing the agent training time by 13.2% on average.

Thank you

