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Dynamic Load Balancing

❖ More efficient than static load-balancers for applications 
with sparse of irregular data

❖ Based on prior work-stealing research using the Scioto 
load balancing framework [SC ’08]

❖ Representation uses a PGAS ring buffer partitioned into 
local and shared portions.

❖ Local access to task queue is lock free, but work-stealing 
operation requires a sequence of one-sided 
communications



Work Stealing Example
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Task Queues - Adding Work
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Task Queues - Split Management
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Baseline (SDC) Steal Operation

Stealing:
6 communications / 5 critical path

❖ lock queue (atomic)           Make sure nobody else can steal
❖ get queue metadata (get)      How many tasks can I steal?
❖ update queue metadata (put)   Claim the tasks
❖ unlock queue (atomic)         Let others steal remaining tasks
❖ get tasks (get)               Steal the tasks
❖ update queue steal progress (atomic/deferred)
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Insights and Contributions

❖ The information needed by the stealing process to discover and 
claim work can be represented by a compact data structure

❖ Work discovery and work stealing can be combined into one step

❖ A compact representation of key task queue metadata can be 
operated on with a single atomic communication operation

❖ the additional complexity of this representation adds minimal 
processing to queue metadata upkeep and maintenance. 

❖ Greatest improvement with highly irregular workloads (short 
tasks + large # of spawned tasks)



Structured Atomic Work Stealing (SWS)

❖ Use steal-half heuristic to set amount of tasks to be transferred 

per-steal. Established technique suited for our workloads

❖ Metadata for stealing tasks stored in a 64-bit integer (largest 

value that can be handled by atomic operations)

❖ Reduces number of remote communications from 6 to 3.

❖ Task states used to keep track of progress and determine safety of 

local queue operations



Steal Communication Operations
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SWS Queue Data
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SWS Steal Operation Example

Example:

1) 150 initial tasks gives us the following sequence of 9 steals: {75,37,19,9,5,2,1,1,1} 

2) Initiator steals third block of tasks (19), beginning at the index at tail + 
previously claimed tasks

(500 + 75 + 37 = 612) 

3) Tasks are copied and target’s completion array is updated
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Further Improvements
❖ Steal Dampening

❖ As work becomes more sparse in the system steal attempts increase

❖ When there are many steal attempts on a specific process the attempted-steals 
value can get very large

❖ Steal-dampening ensures we avoid integer overflow which would mess up the 
queue metadata

❖ Completion Epochs

❖ Steals can complete asynchronously which can hinder concurrency

❖ Steal Epochs remedy this by introducing multiple completion arrays
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Experimental Evaluation
❖ Tested against previous Scioto implementation. 

❖ Results show reduced latency for steal operations, lower overhead from the 
load-balancer due to less time spent searching for work, and improved 
responsiveness (throughput) at the target

❖ Experiments run on LOTUS compute cluster at Rhodes College

❖ 44 compute nodes of 48 cores each. Each node is configured with two AMD EPYC 7352 24 core 
CPUs operating at 2.3GHz and 256 gigabytes of memory. 

❖ Mellanox EDR 100Gb/s Infini- Band fabric, using ConnectX-6 InfiniBand host channel adapters.

❖ Benchmarks:

❖ BPC : Bouncing producer consumer

❖ UTS : Unbalanced tree search.



Remote Steal Performance
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Search Time
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Variation Between Runs

Variation in 10  BPC runs Variation in 10 UTS runs
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