
Optimizing Work Stealing Communication
With Structured Atomic Operations

James Dinan
Intel Corporation

jdinan@nvidia.com

D. Brian Larkins
Rhodes College

larkinsb@rhodes.edu

Hannah Cartier
University of Utah

u1361980@umail.utah.edu

mailto:jdinan@nvidia.com
mailto:larkinsb@rhodes.edu
mailto:u1361980@umail.utah.edu

Dynamic Load Balancing

❖ More efficient than static load-balancers for applications
with sparse of irregular data

❖ Based on prior work-stealing research using the Scioto
load balancing framework [SC ’08]

❖ Representation uses a PGAS ring buffer partitioned into
local and shared portions.

❖ Local access to task queue is lock free, but work-stealing
operation requires a sequence of one-sided
communications

Work Stealing Example

L

L

L

L

L

L

S

S

S

S

S

S

L

L

S

S

S

L

Process 0 Process 1 Process 3

Task Queues - Adding Work

queue
meta
data

tail split head

shared local

push/wrap
queue
meta
data

tail splithead

shared local

push
queue
meta
data

tail split head

shared local

Task Queues - Split Management

queue
meta
data

tail split head

shared local

queue
meta
data

tail split head

shared localrelease

acquire
queue
meta
data

tail split head

shared local

Baseline (SDC) Steal Operation

Stealing:
6 communications / 5 critical path

❖ lock queue (atomic) Make sure nobody else can steal
❖ get queue metadata (get) How many tasks can I steal?
❖ update queue metadata (put) Claim the tasks
❖ unlock queue (atomic) Let others steal remaining tasks
❖ get tasks (get) Steal the tasks
❖ update queue steal progress (atomic/deferred)

queue
meta
data

tail split head

shared local

Insights and Contributions

❖ The information needed by the stealing process to discover and
claim work can be represented by a compact data structure

❖ Work discovery and work stealing can be combined into one step

❖ A compact representation of key task queue metadata can be
operated on with a single atomic communication operation

❖ the additional complexity of this representation adds minimal
processing to queue metadata upkeep and maintenance.

❖ Greatest improvement with highly irregular workloads (short
tasks + large # of spawned tasks)

Structured Atomic Work Stealing (SWS)

❖ Use steal-half heuristic to set amount of tasks to be transferred

per-steal. Established technique suited for our workloads

❖ Metadata for stealing tasks stored in a 64-bit integer (largest

value that can be handled by atomic operations)

❖ Reduces number of remote communications from 6 to 3.

❖ Task states used to keep track of progress and determine safety of

local queue operations

Steal Communication Operations

atomic swap

get

put

atomic swap

get

lock queue

fetch
metadata

update
metadata

unlock queue

fetch stolen
tasks

ack steal
completion

stealing
process

target
process

operation Scioto SDC SWS

stealing
process

target
process

get

atomic fetch-add

atomic fetch-addatomic fetch-add

SWS Queue Data
64

24
 Attempted

Steals
Tail

Index

19
Initial
Tasks

valid
1 20

2 150 500

SWS Steal Operation Example

Example:

1) 150 initial tasks gives us the following sequence of 9 steals: {75,37,19,9,5,2,1,1,1}

2) Initiator steals third block of tasks (19), beginning at the index at tail +
previously claimed tasks

(500 + 75 + 37 = 612)

3) Tasks are copied and target’s completion array is updated

queue
meta
data

tail split head

shared local

64

24
 Attempted

Steals
Tail

Index

19
Initial
Tasks

valid

1 20

2 150 500

Further Improvements
❖ Steal Dampening

❖ As work becomes more sparse in the system steal attempts increase

❖ When there are many steal attempts on a specific process the attempted-steals
value can get very large

❖ Steal-dampening ensures we avoid integer overflow which would mess up the
queue metadata

❖ Completion Epochs

❖ Steals can complete asynchronously which can hinder concurrency

❖ Steal Epochs remedy this by introducing multiple completion arrays
64

24

 Attempted
Steals

Epoch
Tail

19

Initial
tasks

Epoch #

2 19

Experimental Evaluation
❖ Tested against previous Scioto implementation.

❖ Results show reduced latency for steal operations, lower overhead from the
load-balancer due to less time spent searching for work, and improved
responsiveness (throughput) at the target

❖ Experiments run on LOTUS compute cluster at Rhodes College

❖ 44 compute nodes of 48 cores each. Each node is configured with two AMD EPYC 7352 24 core
CPUs operating at 2.3GHz and 256 gigabytes of memory.

❖ Mellanox EDR 100Gb/s Infini- Band fabric, using ConnectX-6 InfiniBand host channel adapters.

❖ Benchmarks:

❖ BPC : Bouncing producer consumer

❖ UTS : Unbalanced tree search.

Remote Steal Performance

Relative Performance

 90

 95

 100

 105

 110

 115

 24 48 96 192
 384

 576
 1152

 1728

R
el

at
iv

e
P

er
fo

rm
an

ce
 (%

 o
f B

as
el

in
e)

Number of Processes

PAWS

 40

 50

 60

 70

 80

 90

 100

 110

 24 48 96 192
 384

 576
 1152

 1728

E
ffi

ci
en

cy

Number of Processes

baseline
PAWS

Relative UTS run-time performance
improvement with SWS over baseline.

Relative BPC run-time performance
improvement with SWS over baseline.

Search Time

 90

 95

 100

 105

 110

 115

 24 48 96 192
 384

 576
 1152

 1728

R
el

at
iv

e
P

er
fo

rm
an

ce
 (%

 o
f B

as
el

in
e)

Number of Processes

PAWS

 40

 50

 60

 70

 80

 90

 100

 110

 24 48 96 192
 384

 576
 1152

 1728

E
ffi

ci
en

cy

Number of Processes

baseline
PAWS

Average time spent searching for work
Per process (BPC)

Average time spent searching for work
per process (UTS)

Variation Between Runs

Variation in 10 BPC runs Variation in 10 UTS runs

Acknowledgements / Q&A
❖ Thanks to NSF/XSEDE and NVIDIA

❖ Funded by NSF grant number ACI-1053575 and NSF award 2018758.

❖ Contact: u1361980@umail.utah.edu

❖ LinkedIn: https://www.linkedin.com/in/hannah-cartier-
ba97031a5/

mailto:larkinsb@rhodes.edu
https://www.linkedin.com/in/hannah-cartier-ba97031a5/
https://www.linkedin.com/in/hannah-cartier-ba97031a5/

