
Junsong Wang1, Xiaofan Zhang2, YuBo Li1, Yonghua Lin1,
1V-Origin Technology,

2University of Illinois at Urbana-Champaign

EXPLORING HW/SW CO-OPTIMIZATIONS FOR ACCELERATING
LARGE-SCALE TEXTURE IDENTIFICATION ON DISTRIBUTED GPUS

INTERNATIONAL

CONFERENCE ON
PARALLEL

PROCESSING

NFC in Pu’er tea-bricks QRCode in bird's nest RFID in Cow BarCode in lemon

• BarCode and QRCode are both very easy to fake.

• Label can be recycled and attached in another faked product.

Disadvantages:

All the label based technologies are only protecting the label (either BarCode/QR

code or electronic tag), not the product itself.

Traditional Traceability Technologies

INTERNATIONAL

CONFERENCE ON
PARALLEL

PROCESSING

Pu’er Tea-brick Ham WineBird’s Nest

Texture Based Traceability

The best approach for reliable traceability is to extract some natural and unique information

from the product itself, which is impossible to be duplicated or counterfeited.

Natural texture exists in lots of the products. Some of them are born with different nature texture

patterns, such as wood, jade, bird’s nest and meat(ham). Some of them are generated during

production, such as compression tea and cork of wine.

INTERNATIONAL

CONFERENCE ON
PARALLEL

PROCESSING

1-1 Verification

+

1-M Searching

Texture Recognition

Similar to facial recognition, texture recognition should also support 1:1 verification and 1:M

searching, and M could be million scale.

*We have demonstrated that local feature extraction (SIFT) and nearest neighbor matching
algorithm achieves the verification accuracy of 99.6% and the top-1 searching accuracy of
98.9%, respectively.

* Junsong Wang, Yubo Li, Zhiyong Chang, Haitao Yue and Yonghua Lin, Fine-grained texture identification for reliable product traceability. IEEE International Conference
on Multimedia and Exop (ICME), Virtual, July 2021

INTERNATIONAL

CONFERENCE ON
PARALLEL

PROCESSING

SIFT

1stNN/2ndNN >0.75, drop

Remove outlies

and mismatched

correspondences

Image Matching Pipeline

INTERNATIONAL

CONFERENCE ON
PARALLEL

PROCESSING Nearest Neighbor （NN） Matching

The computation complexity of Nearest Neighbor （NN） matching includes:

𝑂(𝑘𝑛2)

Compute the Euclidean distance for each pair of descriptors from the two images.

• Computation intensive, computation complexity is , where k is the dimension of

feature descriptor, and n is the number of feature descriptors.

• Considering 768 SIFT descriptors, each matching requires 75 million multi-add operations,

and the searching in a million texture images need 75 Tera operations.

For each query descriptor, find the top-2 nearest neighbors

• Bandwidth intensive

• Reduce the data movement as much as possible.

INTERNATIONAL

CONFERENCE ON
PARALLEL

PROCESSING GPU Acceleration for NN Matching

Prior works: OpenCV library already has a CUDA implementation for the NN matching, but the

performance is relatively low， only has 2,937 images/second in Nvidia Tesla V100 GPU card,

which is far beyond real-time large-scale searching. The GPU’s capacity is not well explored.

Optimization Metrics:

Capacity: how many feature matrices of the reference texture images can be cached in the

search system’s memory.

Speed: how many texture image similarity comparisons can be completed in one second.

INTERNATIONAL

CONFERENCE ON
PARALLEL

PROCESSING Optimization Strategies for NN Matching

We involve the following four optimization strategies to improve the capacity and speed:

1. A highly optimized cuBLAS + FP16

implementation dedicated to the 2-nearest

neighbors algorithm.

2. A batch process for reference feature

matrices

3. A hybrid cache design to leverage both GPU

and host memory space to significantly

enlarge the memory capacity for keeping

reference feature matrices.

4. An asymmetric local feature extraction is

adopted for reducing memory footprint.

Capacity improvement: 20×, Speed improvement: 31×

INTERNATIONAL

CONFERENCE ON
PARALLEL

PROCESSING Optimization 1: cuBLAS + FP16 Implementation

𝜌2 𝑥, 𝑦 = 𝑥 − 𝑦 𝑇 𝑥 − 𝑦 = 𝑥 2 + 𝑦 2 − 𝑥𝑇𝑦

𝜌2 𝑹,𝑸 = 𝑁𝑅 + 𝑁𝑄 − 2𝑹𝑻𝑸

The core of cuBLAS is GEMM:

𝑪 = 𝜶 ∗ 𝑨 ∗ 𝑩 + 𝜷 ∗ 𝑪

The core computation is two vectors’ Euclidean distance

Vincent Garcia, Eric Debreuve, Frank Nielsen, Michel Barlaud, K-NEAREST NEIGHBOR SEARCH: FAST GPU-BASED IMPLEMENTATIONS AND APPLICATION TO HIGH-

DIMENSIONAL FEATURE MATCHING

• Half precision is supported in modern Nvidia GPUs, it can save 50% memory usage, 2x faster.

• Half precision can explore the capability of Tensor Core, which is introduced after Volta GPU.

cuBLAS implementation:

Half Precision (FP16):

INTERNATIONAL

CONFERENCE ON
PARALLEL

PROCESSING

• cuBLAS + FP32, the speed is 6,734 images/s with 3.34x speedup comparing to OpenCV baseline.

• cuBLAS + FP16，the speed is 5,915 images/s with 2.94x speedup comparing to OpenCV baseline.

• FP16 can reduce half of the GPU memory, resulting 2x improvement in terms of capacity.

The speed of FP16 is decreased by 12.1% comparing to FP32 implementation. The major reason is that

the matrix is too small to explore the full capability of CUDA cores and tensor cores, while involves

extra float<->fp16 conversion.

Performance of cuBLAS implementation

INTERNATIONAL

CONFERENCE ON
PARALLEL

PROCESSING Can the NN cuBLAS approach be simplified?

SIFT Feature Descriptor Normalization

Directly normalize the SIFT descriptor will hurt the matching accuracy

INTERNATIONAL

CONFERENCE ON
PARALLEL

PROCESSING

Introduce the RootSIFT(*) implementation.

Descriptor Normalization

* R. Arandjelovic and A. Zisserman, “Three things everyone should know to improve object retrieval,” in

Computer Vision and Pattern Recognition (CVPR), 2012.

a) 𝐿1 normalize the SIFT vector;

b) square root each element. 𝐻 𝑋, 𝑌 = ෍

𝑖=1

𝑁

𝑥𝑖𝑦𝑖

Hellinger kernel: for two 𝐿1
normalized histograms, 𝑥 and 𝑦:

RootSIFT descriptor is 𝐿2 normalized

𝑋
𝑇
𝑋 =෍

𝑖=1

𝑁

𝑥𝑖 = 1

𝜌2 𝑋 − 𝑌 = 2 − 2𝐻(𝑋, 𝑌)

RootSIFT descriptors using Euclidean distance is equivalent to using the Hellinger kernel

Hellinger distance is used to quantify the

similarity between two probability

distributions

INTERNATIONAL

CONFERENCE ON
PARALLEL

PROCESSING Simplified Algorithm

The step 3 2+𝐀 and square root could be performed in place directly after the step 2 to minimize

the data movement.

INTERNATIONAL

CONFERENCE ON
PARALLEL

PROCESSING GPU Efficiency is Very Low!

Even with cuBLAS implementation, the actual computation

is only 147 Mega FLOPS * 8620 = 1.27 TFLOS, which is far

from the GPU capacity (28 TFLOS(FP16), V100 card) , and

the major reason is the matric is two small. The matrix is

only 768*128.

CTC

Roofline Model

Increasing CTC by Batching

28

60

Source: https://software.intel.com/content/www/us/en/develop/documentation/advisor-user-guide/top/optimize-cpu-

usage/cpu-roofline-perspective/identify-performance-bottlenecks-on-cpu/cpu-roofline-report-overview.html

INTERNATIONAL

CONFERENCE ON
PARALLEL

PROCESSING Optimization 2: Batching the Reference Descriptors

• With batching the reference features, the size of matrix B is significantly increased, resulting in

higher data reuse and CUDA core utilization.

• The following sorting process can also fully utilize the CUDA cores.

INTERNATIONAL

CONFERENCE ON
PARALLEL

PROCESSING Batching Performance

• With batch size=1024, P100 GPU, the speed is improved from 5,753 images/s to 45,539 images/s with a

significant speedup of 7.9x.

• With batch size=1024, V100 GPU, the speed is improved from 9,024 images/s to 67,612 images/s with a

significant speedup of 7.5x

• w/ Tensor Core in V100 GPU, peak performance is 86,519 images/s which is an additional 1.3x speedup

INTERNATIONAL

CONFERENCE ON
PARALLEL

PROCESSING
Optimization 3: Hybrid Caching

Hybrid memory cache scheme by using the GPU memory

as the first level cache and the host memory as the second

level cache and perform in a FIFO way. The new item will

firstly be enqueued to the GPU memory, while oldest item

in GPU memory will be swapped to host memory if the GPU

memory is full.

Even with half precision, each image’s feature descriptors need ~0.2MB GPU memory, and single 16GB Tesla

V100 card only can cache ~80,000 images.

With this hybrid memory caching scheme, the capacity of

single node with extra 64GB host memory can be improved

by ~5x, however the searching speed is decreased from

45,539 to 25,362 images/s (dropped 43.9%) in worst case

according to different searching scope, since a host to GPU

memory copy is required if the descriptors are cached in

host side

INTERNATIONAL

CONFERENCE ON
PARALLEL

PROCESSING Computation and MemCopy Overlap

Using multiple CUDA streams to overlap the computation and memory copy between the host and GPU.

Profiled in RTX2080 with 4

streams

Kernel, H2D, D2H are well overlapped

Since we use Aliyun cloud GPU VM, we can directly use nvvp to tuning the performance. This figure is

captured in our local workstation with RTX2080 card.

INTERNATIONAL

CONFERENCE ON
PARALLEL

PROCESSING Multiple CUDA Stream Evaluation

Profiled in RTX2080 with 4

streams

Using multiple CUDA streams can significantly improve the speed & efficiency.

• For batch size = 512, we achieved 41,546 images/s using 8 streams with the schedule efficiency of 87.3%,

which is very close to the theoretical peak speed.

• More extra GPU memory is used since each stream needs a dedicated GPU memory to store some

temporary intermediate data.

INTERNATIONAL

CONFERENCE ON
PARALLEL

PROCESSING Asymmetric Local Feature Extraction

Profiled in RTX2080 with 4

streams

• Reference features are only used for ratio tests to distinguish distinct features from non-distinct features in

the query texture image.

• Slightly reducing feature number of reference texture images will not significantly affect the search accuracy.

• We can observe that the optimal solution is

m=384, n=768.

• The accuracy loss is very limited (only 0.28%).

• The speed is improved by 34.6% compared to

the baseline with m = 768, n = 768.

INTERNATIONAL

CONFERENCE ON
PARALLEL

PROCESSING Distributed Texture Search System

W
e
b
 S

e
rv

ic
e

(R
e
sfu

l)

Redis

Service

GPU VM

GPU VM

GPU VM

GPU VM

By considering the performance and cost, we deployed 14 P100 cards to support our first large scale texture

identification use case –- Pu’er tea traceability.

Feature DB
(SIFT descriptors) • Each GPU VM has a Tesla P100 16GB PCIE3.0

16x card.

• Each GPU VM has 96GB memory, 64GB is

reserved for caching SIFT descriptors (FP16).

• All the SIFT descriptors are equally

allocated to 14 GPU VMs.

• Select the Redis as the message queue

• Support ADD, DELETE, UPDATE, SEARCHING

functions.

Finally, this GPU Cluster has the capacity of 10.8 millions texture images, and the speed is

872,984 images/second.

INTERNATIONAL

CONFERENCE ON
PARALLEL

PROCESSING

Thanks

