[INTERNATIONAL ac@) NS
CONFERENCE ON
/ | PARALLEL / sighppc

PROCESSING [ICPP/2021/CHICAGO/USA AUGUST9-12,2021

EXPLORING HW/SW CO-OPTIMIZATIONS FOR ACCELERATING
LARGE-SCALE TEXTURE IDENTIFICATION ON DISTRIBUTED GPUS

Junsong Wang?!, Xiaofan Zhang?, YuBo Li%, Yonghua Lin?,
V-Origin Technology,
2University of lllinois at Urbana-Champaign

| INTERNA TIONAL N\, .
CONFERENCE ON acm) In-Cooperation

Z==" Traditional Traceability Technologies v sgc

Disadvantages:

« BarCode and QRCode are both very easy to fake.
« Label can be recycled and attached in another faked product.

NFC in Pu’er. te;-bricks QRCode in bird's nest RFID in Cow BarCodé in lemon

All the label based technologies are only protecting the label (either BarCode/QR
code or electronic tag), not the product itself.

20th International Conference on Parallel Processing (ICPP) August 9-12, 2021 in Virtual Chicago, IL S

/ INTERNATIONAL N\

=" Texture Based Traceability O .

Natural texture exists in lots of the products. Some of them are born with different nature texture
patterns, such as wood, jade, bird’s nest and meat(ham). Some of them are generated during
production, such as compression tea and cork of wine.

Pu’er Tea-brick Bird’s Nest

The best approach for reliable traceability is to extract some natural and unique information
from the product itself, which is impossible to be duplicated or counterfeited.

20th International Conference on Parallel Processing (ICPP) August 9-12, 2021 in Virtual Chicago, IL S

/ INTERNATIONAL N\,

&t Texture Recognition o

1-1 Verification 1-M Searching

PROCESSING

Similar to facial recognition, texture recognition should also support 1:1 verification and 1:M
searching, and M could be million scale.

*We have demonstrated that local feature extraction (SIFT) and nearest neighbor matching
algorithm achieves the verification accuracy of 99.6% and the top-1 searching accuracy of
98.9%, respectively.

* Junsong Wang, Yubo Li, Zhiyong Chang, Haitao Yue and Yonghua Lin, Fine-grained texture identification for reliable product traceability. IEEE International Conference
on Multimedia and Exop (ICME), Virtual, July 2021

20th International Conference on Parallel Processing (ICPP) August 9-12, 2021 in Virtual Chicago, IL BN

/ INTERNA TIONAL N\, .
acm)) In-Cooperation

= Image Matching Pipeline ez
e
region selector
region selector

SIFT

Geometrical

Matching verification
(RANSAC)

Remove outlies
and mismatched
correspondences

15tNN/2"dNN >0.75, drop

20th International Conference on Parallel Processing (ICPP) August 9-12, 2021 in Virtual Chicago, IL

/ INTERNATIONAL /N

="/ Nearest Neighbor (NN) Matching D g

The computation complexity of Nearest Neighbor (NN) matching includes:

Compute the Euclidean distance for each pair of descriptors from the two images.

« Computation intensive, computation complexity is O(knz) , Where k is the dimension of
feature descriptor, and n is the number of feature descriptors.

* Considering 768 SIFT descriptors, each matching requires 75 million multi-add operations,
and the searching in a million texture images need 75 Tera operations.

For each query descriptor, find the top-2 nearest neighbors
* Bandwidth intensive

* Reduce the data movement as much as possible.

20th International Conference on Parallel Processing (ICPP) August 9-12, 2021 in Virtual Chicago, IL

Pa
acm)» In-Cooperation

sighpc

| INTERNATIONAL
/ CONFERENCE ON

| PARALLEL
PROCESSING |

OpenCV library already has a CUDA implementation for the NN matching, but the
performance is relatively low, only has 2,937 images/second in Nvidia Tesla V100 GPU card,
which is far beyond real-time large-scale searching. The GPU’s capacity is not well explored.

Capacity: how many feature matrices of the reference texture images can be cached in the
search system’s memory.

Speed: how many texture image similarity comparisons can be completed in one second.

20th International Conference on Parallel Processing (ICPP) August 9-12, 2021 in Virtual Chicago, IL

| INTERNATIONAL N :

CONFERENCE ON ac\n}) In-Cooperation

| PARALLEL SIghpC
PROCESSING __|

We involve the following four optimization strategies to improve the capacity and speed:

1. A h]ghly Optimized cuBLAS + FP16 t Asymmetric Features
. . . - capacity: 850,000
implementation dedicated to the 2-nearest 1000k specd: 62,356
neighbors algorithm. Hybrid Cache

2 A b t h f f f t capacity: 425,000

: atch process for reference feature capacioy 42
. 100K S
matrices Z
° . &

3. Ahybrid cache design to leverage both GPU = cuBLAS+FP16
and host memory space to significantly O L aeaion |
enlarge the memory capacity for keeping AOpenCy CUDA T Capocity: 55,000

. capacity: 42,500 speed: 45,392
reference feature matrices. sped: 2012 | | .
. . . — ' ey

4. An asymmetric local feature extraction is 0 10,000 20,000 30,000 40,000 50000 60,000
adopted for reducing memory footprint. Speed (images/s)

Capacity improvement: 20 X, Speed improvement: 31 X

20th International Conference on Parallel Processing (ICPP) August 9-12, 2021 in Virtual Chicago, IL

/ INTERNATIONAL
/ CONFERENCE ON eacC m) In-Cooperation

Z=="/ Optimization 1: cuBLAS + FP16 ImplementatiGhs+

Algorithm 1 KNN cuBLAS implementation

Compute the Vector Np using CUDA;
Compute the Vector Ng using CUDA;

The core computation is two vectors’ Euclidean distance Compute the m n matrix A = —2RT Q using cuBLAS’s GEMM:
Add the ith element of Ny to every element of the i*? row of

2 (X, y) — (x - y)T (x - y) — Hx H 2 + Hy H 2 - xTy the matrix A using CUDA; // in-place, no extra GPU memory

5: Sort each column of A in parallel using CUDA; // in-place, no
2 (R Q) — N + N _ ZRTQ extra GPU memory;
¢ R Q 6: Add the j'h element of No to the first k elements of the jth
1 column of A using CUDA; // in-place, no extra GPU memory
7. compute the square root of the first k elements using CUDA; //
in-place, no extra GPU memory

cuBLAS implementation:

L

The core of cuBLAS is GEMM: 8: Extract the uppermost k X n matrix of A, which is the distance
matrix for the k-nearest neighbors of each query feature. Move
_ this sub-matrix and its corresponding keypoint index to CPU

C — O * A * B + ﬁ * C host memory for further process.

Half Precision (FP16):

» Half precision is supported in modern Nvidia GPUs, it can save 50% memory usage, 2x faster.
« Half precision can explore the capability of Tensor Core, which is introduced after Volta GPU.

Vincent Garcia, Eric Debreuve, Frank Nielsen, Michel Barlaud, K-NEAREST NEIGHBOR SEARCH: FAST GPU-BASED IMPLEMENTATIONS AND APPLICATION TO HIGH-
DIMENSIONAL FEATURE MATCHING 50th International Conference on Parallel Processing (ICPP) August 9-12, 2021 in Virtual Chicago, IL

| INTERNA TIONAL

CONFERENCE ON

PROCESSING

=" Performance of cuBLAS implementation

/\

acm)) In-Cooperation

'

sighpc

Table 1: cuBLAS implementation performance, m = n = 768, d = 128, measured in Nvidia Tesla P100/16GB GPU. The GPU
memory usage is evaluated with storing 10,000 reference feature matrices and their corresponding Np,.

Execution step CUDA (OpenCV) cuBLAS[9] cuBLAS (ours) cuBLAS+FP16 (ours)
GEMM/setp3(us) - 35.22 35.22 24.92
Add Ng/step4(us) - 8.94 8.04 8.98
Top-2 sort/step5(us) - 221.5 40.20 68.32
Add Ng and Sqrt/step6 &7 (us) - 4.71 4.71 4.87
Device to Host memory copy/step8(us) - 47.32 47.32 44.73
Post-processing/CPU(us) - 12.60 12.60 17.18
Total time(us) 497.0 330.3 148.5 169.0
Speed (images/s) 2012 3027 6734 5917
GPU Memory usage (MB) 4271 4307 4307 2307

cuBLAS + FP32, the speed is 6,734 images/s with 3.34x speedup comparing to OpenCV baseline.
CuBLAS + FP16, the speed is 5,915 images/s with 2.94x speedup comparing to OpenCV baseline.

FP16 can reduce half of the GPU memory, resulting 2x improvement in terms of capacity.

The speed of FP16 is decreased by 12.1% comparing to FP32 implementation. The major reason is that

the matrix is too small to explore the full capability of CUDA cores and tensor cores, while involves

extra float<->fp16 conversion.

20th International Conference on Parallel Processing (ICPP) August 9-12, 2021 in Virtual Chicago, IL

/ INTERNATIONAL N, :
CONFERENCE ON acm)) In-Cooperation

Z="7/Can the NN cuBLAS approach be simplified? ~ v

g SIFT Feature Descriptor Normalization

Algorithm 1 KNN cuBLAS implementation

3: Compute the m X n matrix A = —2RTQ using cuBLAS's GEMM:;
. Add the ffh E‘]E‘IFHE'H%' of Np to E'“EIF"_-‘ clement of the i1 row of

5: Sort each column of A in pamllel usmg C‘UDA // in-place, no
extra GPU memory:

7. compute the square root of the first k elements using CUDA; //
in-place, no extra GPU memory

8: Extract the uppermost k x n matrix of A, which is the distance
matrix for the k-nearest neighbors of each query feature. Move
this sub-matrix and its corresponding keypoint index to CPU
host memory for further process.

Directly normalize the SIFT descriptor will hurt the matching accuracy

20th International Conference on Parallel Processing (ICPP) August 9-12, 2021 in Virtual Chicago, IL

| INTERNATIONAL N\ _
acm)» In-Cooperation

CONFERENCE ON 0
/ sighpc

| PARALLEL
PROCESSING |

Hellinger kernel: for two L,
normalized histograms, x and y:

Introduce the RootSIFT(*) implementation.

a) L, normalize the SIFT vector; N
b) square root each element. H(X,Y) = 2 VXiVi
1=1
RootSIFT descriptor is L, normalized Hellinger distance is used to quantify the

similarity between two probability
distributions

N
T
\/j?: NJCX?:== :EE: Xi = 1
=1
RootSIFT descriptors using Euclidean distance is equivalent to using the Hellinger kernel

p?(VX —=VY) =2 -2H(X,Y)

*R. Arandjelovic and A. Zisserman, “Three things everyone should know to improve object retrieval,” in
Computer Vision and Pattern Recognition (CVPR), 2012.

20th International Conference on Parallel Processing (ICPP) August 9-12, 2021 in Virtual Chicago, IL

/ INTERNATIONAL N, :
CONFERENCE ON acm)) In-Cooperation

Slmpllfled Algorithm P e

Algorithm 2 Simplified cuBLAS implementation of 2-nearest
neighbors with RootSIFT

1: Compute the m x n matrix A = —2R! Q using cuBLAS’s GEMM:

2: Sort (find top-2 smallest elements) each column of A in parallel
using CUDA; // in-place, no extra GPU memory

3: compute the square root of the first two elements of 2 + A; //
in-place, no extra GPU memory

4: Extract the uppermost 2 X n matrix of A, which is the distance
matrix for the 2-nearest neighbors of each query feature. Move

this sub-matrix and its corresponding keypoint index to CPU
host memory for further process.

The step 3 2+A and square root could be performed in place directly after the step 2 to minimize
the data movement.

20th International Conference on Parallel Processing (ICPP) August 9-12, 2021 in Virtual Chicago, IL

| INTERNATIONAL N, :
/ CONFERENCE ON acm)) In-Cooperation

GPU Efficiency is Very Low! Y sghnc

el || Cores: 1 @ j|v FLOAT. No Callstacks ~ | £I* Compare = ||,* Guidance « 6
2 3 4 =

1
[loop in matvec at Multiply.c:82]

Even with cuBLAS implementation, the actual computation =
is only 147 Mega FLOPS * 8620 = 1.27 TFLOS, which is far oo g S e I R, PR

from the GPU capacity (28 TFLOS(FP16), V100 card) , and I
the major reason is the matric is two small. The matrix is ol

only 768*128. i

6 "ecliFr FMA Peak: 113.26 =3:L|.-]3:'S + Point Info

Sd4014D

?
Scalar Add Peak: 6.79 GFLOPS

B 9 Copy To Clipboard
=+ Memory Metrics

[loop in matvec at Multiply.c:82]
Scalar; processes Float32 data type(s)
Performance: 2.422 GFLOPS 10
L1 Arithmetic Intensity: 0.167 FLOF/Byte r

Self Time: 1.824 = '
Self Elapsed Time: 1.824 5

Roofline Model N

Total Time: 1.824 5 ; A
| Total Elapsed Time: 1.824 5 FLOP/Byte (Arithmetic intensity)
| Self Memory Traffic: 26.508 GB 4

7 0.04 0.07 0.1
Physical Cores: 4 ¥ App Threads: 1 @ Self Elapsed Time: 1.824 5 Total Elapsed Time: 1.824 =

28

Source: https://software.intel.com/content/www/us/en/develop/documentation/advisor-user-guide/top/optimize-cpu-
usage/cpu-roofline-perspective/identify-performance-bottlenecks-on-cpu/cpu-roofline-report-overview.htmi

& A

= & B

> M

60 CTC

Increasing CTC by Batching N ¢

20th International Conference on Parallel Processing (ICPP) August 9-12, 2021 in Virtual Chicago, IL

| INTERNATIO

In COG eration

[Dptimization 2: Batching the Reference Descriptsss

Query feature matrix
n

d| Q
£ d
:
: £| Ri ARLQ) |z
E E
: §] R AR2,Q) |2
S5 Re | ARRQ) |

« With batching the reference features, the size of matrix B is significantly increased, resulting in
higher data reuse and CUDA core utilization.

* The following sorting process can also fully utilize the CUDA cores.

20th International Conference on Parallel Processing (ICPP) August 9-12, 2021 in Virtual Chicago, IL

/ INTERNATIONAL /N

z&="/ Batching Performance D e

100000

90000 86519

A7
m Tesla P100 m Tesla V100 Tesla V100 w/ TensorCore 82420
80000
72737
67612

70000
- 64444
e
S 60000 58458
oD
E 50506
o~ 350000 45539
= 42660 49317 44452
=
¥ 40000
dﬁ? 30863 31196

30000 26720

20000 14516

0024 10412
10000 5753 .
, 1R
16 64 256 1024

Batch Size
« With batch size=1024, P100 GPU, the speed is improved from 5,753 images/s to 45,539 images/s with a

significant speedup of 7.9x.

« With batch size=1024, V100 GPU, the speed is improved from 9,024 images/s to 67,612 images/s with a
significant speedup of 7.5x

« w/ Tensor Core in V100 GPU, peak performance is 86,519 images/s which is an additional 1.3x speedup

20th International Conference on Parallel Processing (ICPP) August 9-12, 2021 in Virtual Chicago, IL BN

| INTERNATIONAL / N\

CONFERENCE ON acm)) In-Cooperation
/ | PARALLEL

V o
PROCESSING | SlghpC

Even with half precision, each image’s feature descriptors need ~0.2MB GPU memory, and single 16GB Tesla
V100 card only can cache ~80,000 images.

Hybrid memory cache scheme by using the GPU memory
as the first level cache and the host memory as the second
level cache and perform in a FIFO way. The new item will
firstly be enqueued to the GPU memory, while oldest item

in GPU memory will be swapped to host memory if the GPU

. | | Feature matrix in
memory is full. GPU memory

Host Memory

S

|) Feature matrix in

With this hybrid memory caching scheme, the capacity of host memory
single node with extra 64GB host memory can be improved PCIE Gen3 16x

by ~5X, however the searching speed is decreased from
45,539 to 25,362 images/s (dropped 43.9%) in worst case
according to different searching scope, since a host to GPU

memory copy is reCIUil‘ed if the deSCI‘iptors are cached in NSNS ITy ——
host side GPU Memory

l | Idle

20th International Conference on Parallel Processing (ICPP) August 9-12, 2021 in Virtual Chicago, IL

/ INTERNATIONAL
/ CONFERENCE ON

Pa
acC I'I"I) In-Cooperation

Computatlon and MemCopy Overlap oo

Using multiple CUDA streams to overlap the computation and memory copy between the host and GPU.

= [0] GeForce RTX 2080
[=| Context 1 (CUDA)

= 5F MemCpy (HtoD)
- 5F MemCpy (DtoH)

(=l Compute
- 57.4% turing_h16...

- 42.6% batched s...

[=| Streams
- Stream 15
- Stream 16
L Stream 17

L Stream 18

| Memcpy HtoD ... Memcpy HtoD ... Memcpy HtoD... Memcpy HtoD... Memcpy HtoD... Memcpy HtoD... Memcpy Hto... | | Memcpy HtoD... Memcpy HtoD...
| | |
|l N | I il I |
— s . —— - . - i s |
.
-] - - - - - - - .
-
— N -] - -
-
vemcpy HEoD.. | [Wemepy Hio-— ||| [vemcey b~
| vemcpy Htod. [| vem -py Hto.. | [l ooy Ho.]|
| femcpy HEoD.. HE =H = Wemepy HioD.. | 1l |
| | M | I

Kernel, H2D, D2H are well overlapped

Since we use Aliyun cloud GPU VM, we can directly use nvvp to tuning the performance. This figure is
captured in our local workstation with RTX2080 card.

20th International Conference on Parallel Processing (ICPP) August 9-12, 2021 in Virtual Chicago, IL e

/ INTERNA TIONAL

==’ Multiple CUDA Stream Evaluation

Table 6: GPU efficiency with multiple CPU threads and CUDA streams, m

n

= 768, d = 128, measured in Nvidia Tesla

P100/16GB GPU.
BatchSize CUDA Streams Extra GPU Memory (GB) Speed (images/s) Efficiency
512 1 0.989 24,984 02.59%
512 2 1.667 29,459 61.9%
512 4 3.027 37,955 79.8%
512 8 5.819 41.546 87.3%
256 1 0.683 24,554 21.5%
256 2 0.911 28.259 09.3%
256 4 1.701 36.733 17.2%
256 8 3.053 40.310 34.7%

acm)) In-Cooperation

sighpc

* For batch size = 512, we achieved 41,546 images/s using 8 streams with the schedule efficiency of 87.3%,
which is very close to the theoretical peak speed.

* More extra GPU memory is used since each stream needs a dedicated GPU memory to store some
temporary intermediate data.

Q Using multiple CUDA streams can significantly improve the speed & efficiency.

20th International Conference on Parallel Processing (ICPP) August 9-12, 2021 in Virtual Chicago, IL

| INTERNA TIONAL
CONFERENCE ON

Pa
acm)) In-Cooperation

Z= ' Asymmetric Local Feature Extraction M

« Reference features are only used for ratio tests to distinguish distinct features from non-distinct features in

the query texture image.

« Slightly reducing feature number of reference texture images will not significantly affect the search accuracy.

Table 7: Performance of asymmetric feature number for ref-
erence and query texture images, d = 128, batch size is 256,
measured in Nvidia Tesla P100/16GB GPU.

m (reference) n (query) Accuracy Speed (images/s)

768 768 07.74% 46,323
012 768 07.74% 57,859
384 768 97.46% 62,356
256 768 94.07% 68,472
384 1024 08.02% 46,204
384 768 97.46% 62,356
384 512 05.76% 91,367
384 384 91.81% 111,818

We can observe that the optimal solution is
m=384, n=768.

The accuracy loss is very limited (only 0.28%).
The speed is improved by 34.6% compared to
the baseline with m = 768, n = 768.

20th International Conference on Parallel Processing (ICPP) August 9-12, 2021 in Virtual Chicago, IL

INTERNA TIONAL /N
/ acC m) In-Cooperation

=" Distributed Texture Search System P

By considering the performance and cost, we deployed 14 P100 cards to support our first large scale texture
identification use case -- Pu’er tea traceability.

l Feature.DB
(SIFT descriptors) =S - FEach GPU VM has a Tesla P100 16GB PCIE3.0
7% 16x card.
m— ===+ Fach GPU VM has 96GB memory, 64GB is
Redis T reserved for caching SIFT descriptors (FP16).

« All the SIFT descriptors are equally
allocated to 14 GPU VMs.

« Select the Redis as the message queue

« Support ADD, DELETE, UPDATE, SEARCHING
functions.

Service

D
—~ D
==
N
M

Finally, this GPU Cluster has the capacity of 10.8 millions texture images, and the speed is
872,984 images/second.

20th International Conference on Parallel Processing (ICPP) August 9-12, 2021 in Virtual Chicago, IL NS

| INTERNATIONAL N\, .
/ CONFERENCE ON acm) In-Cooperation

proGESIE] sighpc

20th International Conference on Parallel Processing (ICPP) August 9-12, 2021 in Virtual Chicago, IL BN

