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NFC in Pu’er tea-bricks QRCode in bird's nest RFID in Cow BarCode in lemon

• BarCode and QRCode are both very easy to fake.

• Label can be recycled and attached in another faked product.

Disadvantages:

All the label based technologies are only protecting the label (either BarCode/QR 

code or electronic tag), not the product itself. 

Traditional Traceability Technologies   
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Pu’er Tea-brick Ham WineBird’s Nest

Texture Based Traceability

The best approach for reliable traceability is to extract some natural and unique information 

from the product itself, which is impossible to be duplicated or counterfeited.

Natural texture exists in lots of the products. Some of them are born with different nature texture 

patterns, such as wood, jade, bird’s nest and meat(ham). Some of them are generated during 

production, such as compression tea and cork of wine.
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1-1 Verification

+

1-M Searching

Texture Recognition

Similar to facial recognition, texture recognition should also support 1:1 verification and 1:M 

searching, and M could be million scale. 

*We have demonstrated that local feature extraction (SIFT) and nearest neighbor matching 
algorithm achieves the verification accuracy of 99.6% and the top-1 searching accuracy of 
98.9%, respectively.

* Junsong Wang, Yubo Li, Zhiyong Chang, Haitao Yue and Yonghua Lin, Fine-grained texture identification for reliable product traceability. IEEE International Conference 
on Multimedia and Exop (ICME), Virtual, July 2021
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SIFT

1stNN/2ndNN >0.75, drop

Remove outlies 

and mismatched 

correspondences

Image Matching Pipeline
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The computation complexity of Nearest Neighbor （NN） matching includes: 

𝑂(𝑘𝑛2)

Compute the Euclidean distance for each pair of descriptors from the two images. 

• Computation intensive, computation complexity is              , where k is the dimension of 

feature descriptor, and n is the number of feature descriptors. 

• Considering 768 SIFT descriptors, each matching requires 75 million multi-add operations, 

and the searching in a million texture images need 75 Tera operations.

For each query descriptor, find the top-2 nearest neighbors

• Bandwidth intensive

• Reduce the data movement as much as possible.
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Prior works: OpenCV library already has a CUDA implementation for the NN matching, but the 

performance is relatively low， only has 2,937 images/second in Nvidia Tesla V100 GPU card, 

which is far beyond real-time large-scale searching. The GPU’s capacity is not well explored.

Optimization Metrics:

Capacity: how many feature matrices of the reference texture images can be cached in the 

search system’s memory.

Speed: how many texture image similarity comparisons can be completed in one second.
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We involve the following four optimization strategies to improve the capacity and speed:  

1. A highly optimized cuBLAS + FP16 

implementation dedicated to the 2-nearest 

neighbors algorithm.

2. A batch process for reference feature 

matrices

3. A hybrid cache design to leverage both GPU 

and host memory space to significantly 

enlarge the memory capacity for keeping 

reference feature matrices.

4. An asymmetric local feature extraction is 

adopted for reducing memory footprint.

Capacity improvement: 20×,  Speed improvement: 31×
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𝜌2 𝑥, 𝑦 = 𝑥 − 𝑦 𝑇 𝑥 − 𝑦 = 𝑥 2 + 𝑦 2 − 𝑥𝑇𝑦

𝜌2 𝑹,𝑸 = 𝑁𝑅 + 𝑁𝑄 − 2𝑹𝑻𝑸

The core of cuBLAS is GEMM:

𝑪 = 𝜶 ∗ 𝑨 ∗ 𝑩 + 𝜷 ∗ 𝑪

The core computation is two vectors’ Euclidean distance 

Vincent Garcia, Eric Debreuve, Frank Nielsen, Michel Barlaud, K-NEAREST NEIGHBOR SEARCH: FAST GPU-BASED IMPLEMENTATIONS AND APPLICATION TO HIGH-

DIMENSIONAL FEATURE MATCHING

• Half precision is supported in modern Nvidia GPUs, it can save 50% memory usage, 2x faster.

• Half precision can explore the capability of Tensor Core, which is introduced after Volta GPU.

cuBLAS implementation:

Half Precision (FP16):
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• cuBLAS + FP32, the speed is 6,734 images/s with 3.34x speedup comparing to OpenCV baseline.

• cuBLAS + FP16，the speed is 5,915 images/s with 2.94x speedup  comparing to OpenCV baseline.

• FP16 can reduce half of the GPU memory, resulting 2x improvement in terms of capacity. 

The speed of FP16 is decreased by 12.1% comparing to FP32 implementation. The major reason is that 

the matrix is too small to explore the full capability of CUDA cores and tensor cores, while involves 

extra float<->fp16 conversion.

Performance of cuBLAS implementation
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SIFT Feature Descriptor Normalization

Directly normalize the SIFT descriptor will hurt the matching accuracy
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Introduce the RootSIFT(*) implementation. 

Descriptor Normalization

* R. Arandjelovic and A. Zisserman, “Three things everyone should know to improve object retrieval,” in 

Computer Vision and Pattern Recognition (CVPR), 2012.

a) 𝐿1 normalize the SIFT vector; 

b) square root each element. 𝐻 𝑋, 𝑌 = ෍

𝑖=1

𝑁

𝑥𝑖𝑦𝑖

Hellinger kernel: for two 𝐿1
normalized histograms, 𝑥 and 𝑦:

RootSIFT descriptor is 𝐿2 normalized

𝑋
𝑇
𝑋 =෍

𝑖=1

𝑁

𝑥𝑖 = 1

𝜌2 𝑋 − 𝑌 = 2 − 2𝐻(𝑋, 𝑌)

RootSIFT descriptors using Euclidean distance is equivalent to using the Hellinger kernel

Hellinger distance is used to quantify the 

similarity between two probability 

distributions



INTERNATIONAL

CONFERENCE ON
PARALLEL

PROCESSING Simplified Algorithm

The step 3 2+𝐀 and square root could be performed in place directly after the step 2 to minimize 

the data movement.
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Even with cuBLAS implementation, the actual computation 

is only 147 Mega FLOPS * 8620 = 1.27 TFLOS,  which is far 

from the GPU capacity (28 TFLOS(FP16), V100 card) , and 

the major reason is the matric is two small. The matrix is 

only 768*128.

CTC

Roofline Model

Increasing CTC by Batching

28

60

Source: https://software.intel.com/content/www/us/en/develop/documentation/advisor-user-guide/top/optimize-cpu-

usage/cpu-roofline-perspective/identify-performance-bottlenecks-on-cpu/cpu-roofline-report-overview.html
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• With batching the reference features, the size of matrix B is significantly increased, resulting in 

higher data reuse and CUDA core utilization.

• The following sorting process can also fully utilize the CUDA cores.
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• With batch size=1024, P100 GPU, the speed is improved from 5,753 images/s to 45,539 images/s with a 

significant speedup of 7.9x.

• With batch size=1024, V100 GPU, the speed is improved from 9,024 images/s to 67,612 images/s with a 

significant speedup of 7.5x

• w/ Tensor Core in V100 GPU, peak performance is 86,519 images/s which is an additional 1.3x speedup
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Hybrid memory cache scheme by using the GPU memory 

as the first level cache and the host memory as the second 

level cache and perform in a FIFO way. The new item will 

firstly be enqueued to the GPU memory, while oldest item 

in GPU memory will be swapped to host memory if the GPU 

memory is full. 

Even with half precision, each image’s feature descriptors need ~0.2MB GPU memory, and single 16GB Tesla 

V100 card only can cache ~80,000 images.

With this hybrid memory caching scheme, the capacity of 

single node with extra 64GB host memory can be improved 

by ~5x, however the searching speed is decreased from 

45,539 to 25,362 images/s (dropped 43.9%) in worst case 

according to different searching scope, since a host to GPU 

memory copy is required if the descriptors are cached in 

host side



INTERNATIONAL

CONFERENCE ON
PARALLEL

PROCESSING Computation and MemCopy Overlap

Using multiple CUDA streams to overlap the computation and memory copy between the host and GPU.

Profiled in RTX2080 with 4 

streams 

Kernel, H2D, D2H are well overlapped

Since we use Aliyun cloud GPU VM, we can directly use nvvp to tuning the performance. This figure is 

captured in our local workstation with RTX2080 card.
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Profiled in RTX2080 with 4 

streams 

Using multiple CUDA streams can significantly improve the speed & efficiency.

• For batch size = 512, we achieved 41,546 images/s using 8 streams with the schedule efficiency of 87.3%, 

which is very close to the theoretical peak speed. 

• More extra GPU memory is used since each stream needs a dedicated GPU memory to store some 

temporary intermediate data.
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Profiled in RTX2080 with 4 

streams 

• Reference features are only used for ratio tests to distinguish distinct features from non-distinct features in 

the query texture image.

• Slightly reducing feature number of reference texture images will not significantly affect the search accuracy.

• We can observe that the optimal solution is 

m=384, n=768. 

• The accuracy loss is very limited (only 0.28%).

• The speed is improved by 34.6% compared to 

the baseline with m = 768, n = 768.
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GPU VM

By considering the performance and cost, we deployed 14 P100 cards to support our first large scale texture 

identification use case –- Pu’er tea traceability.  

Feature DB 
(SIFT descriptors) • Each GPU VM has a Tesla P100 16GB PCIE3.0 

16x card.

• Each GPU VM has 96GB memory, 64GB is 

reserved for caching SIFT descriptors (FP16).

• All the SIFT descriptors are equally 

allocated to 14 GPU VMs.

• Select the Redis as the message queue

• Support ADD, DELETE, UPDATE, SEARCHING 

functions. 

Finally, this GPU Cluster has the capacity of 10.8 millions texture images, and the speed is 

872,984 images/second. 
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Thanks


