
ROBOTune: High-Dimensional

Configuration Tuning

for Cluster-Based Data Analytics

Md Muhib Khan, Weikuan Yu

Florida State University

Outline ● Introduction

● Background and Motivation

● Design

● Implementation

● Evaluation

● Conclusion

2

What is ROBOTune?

● ROBOTune is an automatic configuration tuning framework.

● What does it aim to tune?

○ Cluster-based data analytics applications.

● ROBOTune is geared towards tuning configuration parameters of

Apache Spark.

3

Outline ● Introduction

● Background and

Motivation

● Design

● Implementation

● Evaluation

● Conclusion

4

The Need for Tuning Spark

● Most data analytics workloads are recurring jobs in a cluster.

○ Optimization can save a tremendous amount of time and resources.

● Why not use the default configuration?

○ Underperforms significantly compared to near-optimal configurations.

● Why not tune manually?

○ Random trial-and-error by inexperienced users would give vastly different results.

○ Complex relationship between configuration and performance.

5

Challenges for Parameter Configuration

● High-dimensional configuration space.

○ The number of Spark configuration parameters has increased by 10x!

○ Exponential increase in the complexity of the configuration space.

● Costly sample collection.

○ State-of-the-art learning-based tuners require a significant number of samples to

work (at least 2000). Impractical!

○ Auto-tuners should be cost efficient and flexible.

6

Bayesian Optimization

● Bayesian Optimization (BO) is a powerful method of optimizing expensive

black-box functions.

○ Works for non-convex and noisy functions.

○ Effectively avoids local optima.

○ A minimal number of samples is required. Thus very cost-efficient!

○ Caveat! Works best when the number of dimensions is low.

7

Outline ● Introduction

● Background and Motivation

● Design

● Implementation

● Evaluation

● Conclusion

8

Design Overview

9

Design Overview Cont.

1. Memoized Sampling.

○ Latin Hypercube Sampling (LHS) with a parameter selection cache and a

configuration memoization buffer.

2. Parameter Selection.

○ Selects impactful parameters using a Random Forests Model.

3. Bayesian Optimization Engine.

○ Balances exploration and exploitation.

○ Iteratively searches for the best configuration using a Gaussian Process

(GP) model and a portfolio of acquisition functions. 10

Memoized Sampling

● LHS requires fewer samples than random sampling to reach a similar

conclusion.

● Parameter Selection Cache.

○ The high-impact parameters of a workload remain the same for a range of

datasets.

○ Reuses the selected parameters for new datasets of the same workload.

● Configuration Memoization Buffer.

○ Includes well-performing configurations from previous tuning sessions in the BO

training set.

11

Parameter Selection - Choice of Random Forests

● Using ML models, we can measure the strength of

the relationship between the objective and the

parameters.

● Tree-based estimators (e.g., RF) perform better

with lower number of samples than Linear models.

● We do not need a perfect predictor!

12

Parameter Selection Cont.

● Mean Decrease in Accuracy (MDA) is used for feature (parameter) ranking

with RF.

○ Slower but more robust than the default method.

● Handling collinearity.

○ Group dependent parameters with the independent one, during the

parameter importance calculation.

13

Bayesian Optimization Engine

● Bayesian Optimization is composed of two main components.

○ A Bayesian statistical model for modeling the objective function. Also

known as the surrogate.

○ An acquisition function that guides the search by selecting candidate

points for sampling.

14

Choice of Model - Gaussian Process

● The surrogate can be Random Forests, Gradient Boosted Trees, Gaussian

Process etc.

● A Gaussian Process is a distribution over multivariate functions.

○ Provides a theoretically justified way to trade-off exploration and

exploitation.

○ Has been applied successfully to real-word systems.

15

Choice of Acquisition Function - GP-Hedge

● Three main choices.

○ Probability of Improvement (PI).

○ Expected Improvement (EI).

○ Lower Confidence Bound (LCB).

● No acquisition function is guaranteed to perform the best on an unknown objective.

● Why not use all of them?

○ GP-Hedge is a portfolio of acquisition functions.

○ The probability of choosing an acquisition function is updated based on the

cumulative rewards at each step.

16

Outline ● Introduction

● Background and Motivation

● Design

● Implementation

● Evaluation

● Conclusion

17

Implementation Details

● Parameter selection is implemented using the Scikit-learn library.

● Memoized Sampling is implemented using the DOEPY library.

● Bayesian Optimization Engine is built on top of the Scikit-Optimize library.

● More details

○ Acquisition functions are optimized using the L-BFGS-B minimizer.

○ The covariance kernel is the summation of Matern 5/2 and White noise

kernel.

18

https://github.com/tirthajyoti/doepy
https://scikit-optimize.github.io/stable/index.html

Outline ● Introduction

● Background and Motivation

● Design

● Implementation

● Evaluation

● Conclusion

19

Experimental Setup

● Cluster configuration.

○ 6 nodes with a total of 192 cores and 1152 GB of memory.

○ Spark 2.4.1.

○ HDFS 2.7.3 for data storage.

● Configuration Parameters

○ 44 performance-related parameters that cover shuffle, networking, memory

management, execution behavior etc.

○ Exhaustive search is infeasible due to the enormity and high-dimensionality

of the configuration space.

20

Comparative Solutions And Workloads

● BestConfig: A search-based tuning approach that uses a divide-and-diverge

sampling and recursive bound-and-search algorithm.

● Gunther: A configuration tuner for Hadoop, which utilizes Genetic Algorithm

for searching near-optimal configurations.

● Random Search: A simple random search-based tuning approach.

● Five representative workloads, each with three datasets from SparkBench.

○ PageRank (PR).

○ KMeans (KM).

○ ConnectedComponents (CC).

○ LogisticRegression (LR).

○ Terasort (TS).
21

Performance Of Optimal Configurations

22

● ROBOTune outperforms BestConfig by 1.14× on average and up to 1.3×.

● Similarly, outperforms Gunther by 1.15× on average and up to 1.28×.

● For Random Search, the speedup is 1.15× on average and up to 1.27×.

● Finds much better configurations for PageRank and CC and and moderately

better for Terasort.

Search Cost

23

● The overall improvement of ROBOTune over BestConfig is 1.59× on average

and up to 2.27×.

● The improvement over Gunther is 1.53× on average and up to 1.71×.

● Random Search is outperformed by 1.6× on average and up to 1.93×.

Why is the Search Cost Lower for ROBOTune?

● Distribution of workload execution time shows that, ROBOTune in general

samples better performing configurations.

● ROBOTune avoids underperforming and imbalanced configuration regions,

and in turn, lowers search costs.
24

Search Speed

25

● ROBOTune quickly finds configurations within 5% of the observed best.

● Using well-performing samples in the initial set, ROBOTune immediately

gets within 10% of the best observed time and then further improves the

performance.

Outline ● Introduction

● Background and Motivation

● Design

● Implementation

● Evaluation

● Conclusion

26

Conclusion

● We have designed and developed ROBOTune for tuning configurations of

data analytics frameworks while tackling the issues of

○ High-dimensionality of the configuration space.

○ Complex configuration-performance relationship.

● Our evaluation shows that ROBOTune achieves a significant search cost and

search speed improvement while finding better or similar configurations.

27

Sponsor of this Research

28

Questions?

29

