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What is ROBOTune?

● ROBOTune is an automatic configuration tuning framework.

● What does it aim to tune?

○ Cluster-based data analytics applications.

● ROBOTune is geared towards tuning configuration parameters of 

Apache Spark.
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The Need for Tuning Spark

● Most data analytics workloads are recurring jobs in a cluster.

○ Optimization can save a tremendous amount of time and resources.

● Why not use the default configuration?

○ Underperforms significantly compared to near-optimal configurations.

● Why not tune manually?

○ Random trial-and-error by inexperienced users would give vastly different results.

○ Complex relationship between configuration and performance.
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Challenges for Parameter Configuration

● High-dimensional configuration space.

○ The number of Spark configuration parameters has increased by 10x!

○ Exponential increase in the complexity of the configuration space.

● Costly sample collection.

○ State-of-the-art learning-based tuners require a significant number of samples to 

work (at least 2000). Impractical!

○ Auto-tuners should be cost efficient and flexible.
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Bayesian Optimization

● Bayesian Optimization (BO) is a powerful method of optimizing expensive 

black-box functions.

○ Works for non-convex and noisy functions.

○ Effectively avoids local optima.

○ A minimal number of samples is required. Thus very cost-efficient!

○ Caveat! Works best when the number of dimensions is low.
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Design Overview
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Design Overview Cont.

1. Memoized Sampling.

○ Latin Hypercube Sampling (LHS) with a parameter selection cache and a 

configuration memoization buffer.

2. Parameter Selection.

○ Selects impactful parameters using a Random Forests Model. 

3. Bayesian Optimization Engine.

○ Balances exploration and exploitation.

○ Iteratively searches for the best configuration using a Gaussian Process 

(GP) model and a portfolio of acquisition functions. 10



Memoized Sampling

● LHS requires fewer samples than random sampling to reach a similar 

conclusion.

● Parameter Selection Cache.

○ The high-impact parameters of a workload remain the same for a range of 

datasets.

○ Reuses the selected parameters for new datasets of the same workload.

● Configuration Memoization Buffer.

○ Includes well-performing configurations from previous tuning sessions in the BO 

training set.
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Parameter Selection - Choice of Random Forests

● Using ML models, we can measure the strength of 

the relationship between the objective and the 

parameters.

● Tree-based estimators (e.g., RF) perform better 

with lower number of samples than Linear models. 

● We do not need a perfect predictor!
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Parameter Selection Cont.

● Mean Decrease in Accuracy (MDA) is used for feature (parameter) ranking 

with RF.

○ Slower but more robust than the default method. 

● Handling collinearity.

○ Group dependent parameters with the independent one, during the 

parameter importance calculation.
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Bayesian Optimization Engine

● Bayesian Optimization is composed of two main components.

○ A Bayesian statistical model for modeling the objective function. Also 

known as the surrogate.

○ An acquisition function that guides the search by selecting candidate 

points for sampling. 
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Choice of Model - Gaussian Process

● The surrogate can be  Random Forests, Gradient Boosted Trees, Gaussian 

Process etc.

● A Gaussian Process is a distribution over multivariate functions.

○ Provides a theoretically justified way to trade-off exploration and 

exploitation.

○ Has been applied successfully to real-word systems.

15



Choice of Acquisition Function - GP-Hedge

● Three main choices.

○ Probability of Improvement (PI). 

○ Expected Improvement (EI). 

○ Lower Confidence Bound (LCB).

● No acquisition function is guaranteed to perform the best on an unknown objective.

● Why not use all of them?

○ GP-Hedge is a portfolio of acquisition functions. 

○ The probability of choosing an acquisition function is updated based on the 

cumulative rewards at each step.
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Implementation Details

● Parameter selection is implemented using the Scikit-learn library.

● Memoized Sampling is implemented using the DOEPY library.

● Bayesian Optimization Engine is built on top of the Scikit-Optimize library.

● More details

○ Acquisition functions are optimized using the L-BFGS-B minimizer.

○ The covariance kernel is the summation of Matern 5/2 and White noise 

kernel.
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https://github.com/tirthajyoti/doepy
https://scikit-optimize.github.io/stable/index.html
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Experimental Setup

● Cluster configuration.

○ 6 nodes with a total of 192 cores and 1152 GB of memory.

○ Spark 2.4.1.

○ HDFS 2.7.3 for data storage.

● Configuration Parameters

○ 44 performance-related parameters that cover shuffle, networking, memory 

management, execution behavior etc.

○ Exhaustive search is infeasible due to the enormity and high-dimensionality 

of the configuration space.
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Comparative Solutions And Workloads

● BestConfig: A search-based tuning approach that uses a divide-and-diverge 

sampling and recursive bound-and-search algorithm.

● Gunther: A configuration tuner for Hadoop, which utilizes Genetic Algorithm 

for searching near-optimal configurations.

● Random Search: A simple random search-based tuning approach.

● Five representative workloads, each with three datasets from SparkBench.

○ PageRank (PR).

○ KMeans (KM). 

○ ConnectedComponents (CC).

○ LogisticRegression (LR).

○ Terasort (TS).
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Performance Of Optimal Configurations
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● ROBOTune outperforms BestConfig by 1.14× on average and up to 1.3×.

● Similarly, outperforms Gunther by 1.15× on average and up to 1.28×.

● For Random Search, the speedup is 1.15× on average and up to 1.27×.

● Finds much better configurations for PageRank and CC and and moderately 

better for Terasort. 



Search Cost
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● The overall improvement of ROBOTune over BestConfig is 1.59× on average 

and up to 2.27×.

● The improvement over Gunther is 1.53× on average and up to 1.71×.

● Random Search is outperformed by 1.6× on average and up to 1.93×. 



Why is the Search Cost Lower for ROBOTune?

● Distribution of workload execution time shows that, ROBOTune in general 

samples better performing configurations.

● ROBOTune avoids underperforming and imbalanced configuration regions, 

and in turn, lowers search costs.
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Search Speed
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● ROBOTune quickly finds configurations within 5% of the observed best.

● Using well-performing samples in the initial set, ROBOTune immediately 

gets within 10% of the best observed time and then further improves the 

performance.  
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Conclusion

● We have designed and developed ROBOTune for tuning configurations of 

data analytics frameworks while tackling the issues of

○ High-dimensionality of the configuration space.

○ Complex configuration-performance relationship.

● Our evaluation shows that ROBOTune achieves a significant search cost and 

search speed improvement while finding better or similar configurations.
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Questions?
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