ROBOTune: High-Dimensional
Configuration Tuning
for Cluster-Based Data Analytics

Md Muhib Khan, Weikuan Yu
Florida State University

Outline

Introduction

Background and Motivation
Design

Implementation

Evaluation

Conclusion

What is ROBOTune?

e ROBOTune is an automatic configuration tuning framework.
e What does it aim to tune?
O Cluster-based data analytics applications.
e ROBOTune is geared towards tuning configuration parameters of

Apache Spark.

Outline

Introduction
Background and
Motivation
Design
Implementation
Evaluation
Conclusion

The Need for Tuning Spark

e Most data analytics workloads are recurring jobs in a cluster.
O Optimization can save a tremendous amount of time and resources.
e Why not use the default configuration?

O Underperforms significantly compared to near-optimal configurations.

e Why not tune manually?

O Random trial-and-error by inexperienced users would give vastly different results.

O Complex relationship between configuration and performance.

Challenges for Parameter Configuration

e High-dimensional configuration space.

O The number of Spark configuration parameters has increased by 10x!

O Exponential increase in the complexity of the configuration space.

e Costly sample collection.

O State-of-the-art learning-based tuners require a significant number of samples to
work (at least 2000). Impractical!

O Auto-tuners should be cost efficient and flexible.

Bayesian Optimization

e Bayesian Optimization (BO) is a powerful method of optimizing expensive
black-box functions.
O Works for non-convex and noisy functions.
O Effectively avoids local optima.
O A minimal number of samples is required. Thus very cost-efficient!

O Caveat! Works best when the number of dimensions is low.

Outline

Introduction

Background and Motivation
Design

Implementation

Evaluation

Conclusion

Design Overview

Selected
Parameters

T

Random
Forests

' Generic LHS
Samples

Parameter Selection

Workload, Budget

Optimal Configuration

v

Parameter
Selection Cache

Memoization Buffer

Configuration

miss hit
r

N

@ Selected Set

Latin Hypercube
Sampling

A

Best Recent
Configs
LHS Tuning
Samples

Memoized Sampling

Updated Mode

Training Set
v Next i
Gaussian Process Sample |

Acquisition Functions
EIl LCB PI

Bayesian Optimization

Design Overview Cont.

1. Memoized Sampling.
O Latin Hypercube Sampling (LHS) with a parameter selection cache and a
configuration memoization buffer.
2. Parameter Selection.
O Selects impactful parameters using a Random Forests Model.
3. Bayesian Optimization Engine.
O Balances exploration and exploitation.
O Iteratively searches for the best configuration using a Gaussian Process

(GP) model and a portfolio of acquisition functions.

10

Memoized Sampling

e LHS requires fewer samples than random sampling to reach a similar
conclusion.
e Parameter Selection Cache.
O The high-impact parameters of a workload remain the same for a range of
datasets.
O Reuses the selected parameters for new datasets of the same workload.
e Configuration Memoization Buffer.
O Includes well-performing configurations from previous tuning sessions in the BO

training set.
11

Parameter Selection - Choice of Random Forests

e Using ML models, we can measure the strength of Z: ML:ZZ““ mRFEj
the relationship between the objective and the 5, : % ___________ o %
parameters. <o, % ________ % _________ %

e Tree-based estimators (e.g., RF) perform better 0.0 S = " =

M 7o 10w

with lower number of samples than Linear models.

e We do not need a perfect predictor!

12

Parameter Selection Cont.

Mean Decrease in Accuracy (MDA) is used for feature (parameter) ranking
with RF.

O Slower but more robust than the default method.
Handling collinearity.

O Group dependent parameters with the independent one, during the

parameter importance calculation.

13

Bayesian Optimization Engine

Bayesian Optimization is composed of two main components.
O A Bayesian statistical model for modeling the objective function. Also

known as the surrogate.

O An acquisition function that guides the search by selecting candidate

points for sampling.

14

Choice of Model - Gaussian Process

e The surrogate can be Random Forests, Gradient Boosted Trees, Gaussian
Process etc.
e A Gaussian Process is a distribution over multivariate functions.
O Provides a theoretically justified way to trade-off exploration and
exploitation.

O Has been applied successfully to real-word systems.

15

Choice of Acquisition Function - GP-Hedge

e Three main choices.

O Probability of Improvement (PI).

O Expected Improvement (El).

O Lower Confidence Bound (LCB).
e No acquisition function is guaranteed to perform the best on an unknown objective.
e Why not use all of them?

O GP-Hedge is a portfolio of acquisition functions.

O The probability of choosing an acquisition function is updated based on the

cumulative rewards at each step.

16

Outline

Introduction

Background and Motivation
Design

Implementation

Evaluation

Conclusion

17

Implementation Details

e Parameter selection is implemented using the Scikit-learn library.
e Memoized Sampling is implemented using the DOEPY library.

e Bayesian Optimization Engine is built on top of the Scikit-Optimize library.

e More details
O Acquisition functions are optimized using the L-BFGS-B minimizer.
O The covariance kernel is the summation of Matern 5/2 and White noise

kernel.

18

https://github.com/tirthajyoti/doepy
https://scikit-optimize.github.io/stable/index.html

Outline

Introduction

Background and Motivation
Design

Implementation

Evaluation

Conclusion

19

Experimental Setup

e Cluster configuration.

O 6 nodes with a total of 192 cores and 1152 GB of memory.
O Spark 2.4.1.

O HDFS 2.7.3 for data storage.
e Configuration Parameters
O 44 performance-related parameters that cover shuffle, networking, memory
management, execution behavior etc.

O Exhaustive search is infeasible due to the enormity and high-dimensionality

of the configuration space.

20

Comparative Solutions And Workloads

e BestConfig: A search-based tuning approach that uses a divide-and-diverge
sampling and recursive bound-and-search algorithm.

e Gunther: A configuration tuner for Hadoop, which utilizes Genetic Algorithm
for searching near-optimal configurations.

e Random Search: A simple random search-based tuning approach.

e Five representative workloads, each with three datasets from SparkBench.

PageRank (PR).

KMeans (KM).
ConnectedComponents (CC).
LogisticRegression (LR).
Terasort (TS).

O OO0OO0O0

21

Scaled execution time

Performance Of Optimal Configurations

PageRank KMeans ConnectedComponents | LogisticRegression Terasort
224 ROBOTune [T BestConfig Gunther
T T T ;

il
H
2,

,‘
y
a2,

T T
. 2 <§
ol o
s
< P

<3
5
-
&
%

,
et

hat

e
55
"
&
%

5%

X
<

%

{ X

&
v,
&
55

o
&

K

25

25
T
e

o
55

°
| |

5

¢ ‘
L
g ‘ ‘ ‘

TS-D1 TS-D2Z TS-D3

CC-DZ2 CC-D3 LR-D1 LR-D

7

55
&
%

s

A
ol

X

(0
X

S

o

PR-D1 PR-D2Z PR-D3 KM-D1

e ROBOTune outperforms BestConfig by 1.14x on average and up to 1.3x.

e Similarly, outperforms Gunther by 1.15x on average and up to 1.28x.

e For Random Search, the speedup is 1.15x on average and up to 1.27 x.

e Finds much better configurations for PageRank and CC and and moderately

better for Terasort.

Search Cost

B
" XX
RIS

3 022222
o i i
5 R
R
)
g £
8 O w
w m W7
1M 7Z R
—~ 3 !
3 AR
Ll % I
m
a2 = ¥
A
g Ry
j=X © i J
g 2 v
§ £
T O ST roonaoad
g8 &
3] i ;
: =
8 B TR
E %
W
=

KMeans

bR A KRR,
BERDET
Jeleletele%e %%

i

PageRank

B S S
RISRRKKRS

" LR-D1

D2 CC-D3

PR-D2 PR-D3

o
—

TS-D2 TS-D3

TS-D1

LR-D3

C LR-D2

CC-D1 C

KM-D1 KM-D2 KM-D3

PR-D1

< 5 <
— o o

awr) YoJIeas [B10] pPa[eods

e The overall improvement of ROBOTune over BestConfig is 1.59x on average

and up to 2.27x.

e The improvement over Gunther is 1.53x on average and up to 1.71x,

e Random Search is outperformed by 1.6x on average and up to 1.93x.

23

Why is the Search Cost Lower for ROBOTune?

(o]
o
o

D
o
o

Wb
o
o

Execution time(s)
S
o

0
ROBOTuneBestConfig Gunther Random ROBOTuneBestConfig Gunther Random

(a) Distribution for PR-D3 (b) Distribution for KM-D3
e Distribution of workload execution time shows that, ROBOTune in general

samples better performing configurations.
e ROBOTune avoids underperforming and imbalanced configuration regions,

and in turn, lowers search costs.

24

Search Speed

—_ Y 180
2 il == ROBOTune 2 = ROBOTune
Q 100"“'.1 """""""""""""" == = BestConfig | & == = BestConfig
g ‘.\ === Gunther E LA ==== Gunther
; , Random : 160 gt =T Random
S 801 9 HRiZS
E E SN
© S140¢ ST v
b4 »d
4] 60_ (]
g =
S S 120

0 25 50 75 100 0 25 50 75 100

Iteration Number Iteration Number
(a) PR-D1 (b) PR-D3

e ROBOTune quickly finds configurations within 5% of the observed best.
e Using well-performing samples in the initial set, ROBOTune immediately
gets within 10% of the best observed time and then further improves the

performance.
25

Outline

Introduction

Background and Motivation
Design

Implementation

Evaluation

Conclusion

26

Conclusion

e We have designed and developed ROBOTune for tuning configurations of

data analytics frameworks while tackling the issues of
O High-dimensionality of the configuration space.

O Complex configuration-performance relationship.
e Our evaluation shows that ROBOTune achieves a significant search cost and

search speed improvement while finding better or similar configurations.

27

Sponsor of this Research

28

Questions?

29

