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What is ROBOTune?

e ROBOTune is an automatic configuration tuning framework.
e What does it aim to tune?
O Cluster-based data analytics applications.
e ROBOTune is geared towards tuning configuration parameters of

Apache Spark.
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The Need for Tuning Spark

e Most data analytics workloads are recurring jobs in a cluster.
O Optimization can save a tremendous amount of time and resources.
e Why not use the default configuration?

O Underperforms significantly compared to near-optimal configurations.

e Why not tune manually?

O Random trial-and-error by inexperienced users would give vastly different results.

O Complex relationship between configuration and performance.



Challenges for Parameter Configuration

e High-dimensional configuration space.

O The number of Spark configuration parameters has increased by 10x!

O Exponential increase in the complexity of the configuration space.

e Costly sample collection.

O State-of-the-art learning-based tuners require a significant number of samples to
work (at least 2000). Impractical!

O Auto-tuners should be cost efficient and flexible.



Bayesian Optimization

e Bayesian Optimization (BO) is a powerful method of optimizing expensive
black-box functions.
O Works for non-convex and noisy functions.
O Effectively avoids local optima.
O A minimal number of samples is required. Thus very cost-efficient!

O Caveat! Works best when the number of dimensions is low.
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Design Overview
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Design Overview Cont.

1. Memoized Sampling.
O Latin Hypercube Sampling (LHS) with a parameter selection cache and a
configuration memoization buffer.
2. Parameter Selection.
O Selects impactful parameters using a Random Forests Model.
3. Bayesian Optimization Engine.
O Balances exploration and exploitation.
O Iteratively searches for the best configuration using a Gaussian Process

(GP) model and a portfolio of acquisition functions.
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Memoized Sampling

e LHS requires fewer samples than random sampling to reach a similar
conclusion.
e Parameter Selection Cache.
O The high-impact parameters of a workload remain the same for a range of
datasets.
O Reuses the selected parameters for new datasets of the same workload.
e Configuration Memoization Buffer.
O Includes well-performing configurations from previous tuning sessions in the BO

training set.
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Parameter Selection - Choice of Random Forests

e Using ML models, we can measure the strength of Z: ML:ZZ““ mRFEj
the relationship between the objective and the 5, : % ___________ o %
parameters. <o, % ________ % _________ %

e Tree-based estimators (e.g., RF) perform better 0.0 S = " =

M 7o 10w

with lower number of samples than Linear models.

e We do not need a perfect predictor!
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Parameter Selection Cont.

Mean Decrease in Accuracy (MDA) is used for feature (parameter) ranking
with RF.

O Slower but more robust than the default method.
Handling collinearity.

O Group dependent parameters with the independent one, during the

parameter importance calculation.
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Bayesian Optimization Engine

Bayesian Optimization is composed of two main components.
O A Bayesian statistical model for modeling the objective function. Also

known as the surrogate.

O An acquisition function that guides the search by selecting candidate

points for sampling.
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Choice of Model - Gaussian Process

e The surrogate can be Random Forests, Gradient Boosted Trees, Gaussian
Process etc.
e A Gaussian Process is a distribution over multivariate functions.
O Provides a theoretically justified way to trade-off exploration and
exploitation.

O Has been applied successfully to real-word systems.
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Choice of Acquisition Function - GP-Hedge

e Three main choices.

O Probability of Improvement (PI).

O Expected Improvement (El).

O Lower Confidence Bound (LCB).
e No acquisition function is guaranteed to perform the best on an unknown objective.
e Why not use all of them?

O GP-Hedge is a portfolio of acquisition functions.

O The probability of choosing an acquisition function is updated based on the

cumulative rewards at each step.
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Implementation Details

e Parameter selection is implemented using the Scikit-learn library.
e Memoized Sampling is implemented using the DOEPY library.

e Bayesian Optimization Engine is built on top of the Scikit-Optimize library.

e More details
O Acquisition functions are optimized using the L-BFGS-B minimizer.
O The covariance kernel is the summation of Matern 5/2 and White noise

kernel.
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https://github.com/tirthajyoti/doepy
https://scikit-optimize.github.io/stable/index.html
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Experimental Setup

e Cluster configuration.

O 6 nodes with a total of 192 cores and 1152 GB of memory.
O Spark 2.4.1.

O HDFS 2.7.3 for data storage.
e Configuration Parameters
O 44 performance-related parameters that cover shuffle, networking, memory
management, execution behavior etc.

O Exhaustive search is infeasible due to the enormity and high-dimensionality

of the configuration space.
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Comparative Solutions And Workloads

e BestConfig: A search-based tuning approach that uses a divide-and-diverge
sampling and recursive bound-and-search algorithm.

e Gunther: A configuration tuner for Hadoop, which utilizes Genetic Algorithm
for searching near-optimal configurations.

e Random Search: A simple random search-based tuning approach.

e Five representative workloads, each with three datasets from SparkBench.

PageRank (PR).

KMeans (KM).
ConnectedComponents (CC).
LogisticRegression (LR).
Terasort (TS).

O OO0OO0O0
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Scaled execution time

Performance Of Optimal Configurations
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e ROBOTune outperforms BestConfig by 1.14x on average and up to 1.3x.

e Similarly, outperforms Gunther by 1.15x on average and up to 1.28x.

e For Random Search, the speedup is 1.15x on average and up to 1.27 x.

e Finds much better configurations for PageRank and CC and and moderately

better for Terasort.



Search Cost
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e The overall improvement of ROBOTune over BestConfig is 1.59x on average

and up to 2.27x.

e The improvement over Gunther is 1.53x on average and up to 1.71x,

e Random Search is outperformed by 1.6x on average and up to 1.93x.
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Why is the Search Cost Lower for ROBOTune?
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e Distribution of workload execution time shows that, ROBOTune in general

samples better performing configurations.
e ROBOTune avoids underperforming and imbalanced configuration regions,

and in turn, lowers search costs.
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Search Speed
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e ROBOTune quickly finds configurations within 5% of the observed best.
e Using well-performing samples in the initial set, ROBOTune immediately
gets within 10% of the best observed time and then further improves the

performance.
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Conclusion

e We have designed and developed ROBOTune for tuning configurations of

data analytics frameworks while tackling the issues of
O High-dimensionality of the configuration space.

O Complex configuration-performance relationship.
e Our evaluation shows that ROBOTune achieves a significant search cost and

search speed improvement while finding better or similar configurations.
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Questions?
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