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Preview (Teaser)

« For a data-intensive irregular
application from genomics,

« two data-independent approaches to
the many-to-many communication
are considered here,

« one maximizing bandwidth utilization
and message cost amortization via
aggregation (BSP),

e ONne maximizing injection speed, and
communication-hiding (Async)
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Preview (Tease r) - Strong Scaling (CCS Human) on Cori KNL

160 B Communication
« For a data-intensive irregular 140 l ' Synchronization
application from genomics, 1o Computation

« two data-independent approachesto ¢ 100
the many-to-many communication 2 80 l
m .

are considered here, 60 .
e e . “fe . 40
« one maximizing bandwidth utilization o
N . 20 e
and message cost amortization via | ek -—
aggregation (BSP),
« One maximizing injection speed, and Node Count : <; :2 < < < <
. . - ode Coun 1 64 128 256 512
communication-hiding (Async) CoreCount 512 1,024 2,048 4096 8192 16384 32,768
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Preview (Tease r) - Strong Scaling (CCS Human) on Cori KNL

160 B Communication
« For a data-intensive irregular 110 l Synchronization
application from genomics, 120 | Computation
« two data-independent approaches to 7-87 100
the many-to-many communication 2 80 l
are considered here, © 60
« one maximizing bandwidth utilization 40 . —
and message cost amortization via 20 = — —
aggregation (BSP), e s2 s s osE e o
« One maximizing injection speed, and < < < < < < <
communication-hiding (Async) ygiecizun:t 8 10 32 o4 128 26 ) 512
512 1,024 2,048 4096 8192 16,384 32,768

e At first glance, the communication-hiding approach seems trivially to be the right approach

. However, for this type of problem, there is a non-trivial balancing act between the
communication, computation, and memory
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Rewind, Why is balancing communication, computation, and memory
(and achieving good scaling) for this representative problem non-trivial?
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Rewind, Why is balancing communication, computation, and memory
(and achieving good scaling) for this representative problem non-trivial?

Application (Case Study) Background
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Rewind, Why is balancing communication, computation, and memory
(and achieving good scaling) for this representative problem non-trivial?

Application (Case Study) Background

« genome sizes (key factor of the
input size) are highly variable
and can be large

23 billion ‘bp
pmus taeda

' W|k|pedlaorg
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Rewind, Why is balancing communication, computation, and memory
(and achieving good scaling) for this representative problem non-trivial?

Application (Case Study) Background

« genome sizes (key factor of the

input size) are highly variable 150 billion bp
and can be large paris japonica

W|k|ped1a org
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Rewind, Why is balancing communication, computation, and memory
(and achieving good scaling) for this representative problem non-trivial?

Application (Case Study) Background

« genome sizes (key factor of the W VE

input size) are highly variable 150 billion bp
and can be large paris japonica

AkiKipedia. org

« sequencers, which translate
nano-meter scale, supercoiling
DNA molecules into human-
and computer- readable
strings, have limitations

LA -‘.*q“h | Y at v

B Dl g Y g s :y‘. 3; o A R
bty O STk DB diaerg 0 R
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Rewind, Why is balancing communication, computation, and memory
(and achieving good scaling) for this representative problem non-trivial?

Application Background

Sequencers, translating nano-meter scale, supercoiling molecules
into human- and computer- readable strings have limitations

e cannot read entire genomes at once and so produce many
fragments (reads)

« with errors — add, delete, substitute base pairs (~characters)
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AAGAAGAGAGATCGCGAAAGAATTTGCTCATAAG
GTATTCCCAAGTCTGAGCGTCAGCATAACTATTTT
TI'ACGTTAGTATGAAA'I_I'A'ITCCGACCCCACAGCG
TAATGCAZ AC AACCCATTTAGACAGACG

CCA(Q . 3ACT ATGTGAAGTA

AAAG A : AAA

AAAA G AC
TATA ' CAT
AAC B TATT
AACA AAC

/M1 C

' ACTCGGGTCA

GTAA A
CTG/RE. YFcTcTcTCCTTCRGTG
TCTT PPT y:;; ,CATTTTATTCCTTRIGCC
CCAA SGCGAACAAAACEGTTT
GAAG AGEIRE TGCAT@CGCGTAGCATG

GATT, T%GC’GGT BTGCTG
GCAA GC ARSI ARAD TGGAT
CCCO : BJCCAG
CATTGIGH ATAA
GATA / ATGGTC AAA

GAATGCCATGGGTCGAACGGAAATTCCGGCACT
GCGTGGTCATCAGGTAATGATTCCTTCAAAACAA
CAGCGATCAAGGTTTCGGGGCTAGACTTGAACA
AAAGGTGTGGATTAATGACAGTCCGTAATTGACG
CATGTATTTGCGACTGGGCATGATTACGTTGCCG
GGGAGCCTAAGGAGTCCATTTATTGGTCTGAG...
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Rewind, Why is balancing communication, computation, and memory
(and achieving good scaling) for this representative problem non-trivial?

AAGAAGAGAGATCGCGAAAGAATTTGCTCATAAG
o o GTATTCCCAAGTCTGAGCGTCAGCATAACTATTTT
Ap p| ication Backg round TTACGTTAGTATGAAATTATTCCGACCCCACAGCG
TAATCAACEEACACCTAACCCATTTAGACAGACG
CCAd : SAGHECCATGTGAAGTA
AAAG A . AAA
AAAA NGAC
TATA : CAT

Sequencers, translating nano-meter scale, supercoiling molecules
into human- and computer- readable strings have limitations

AAC A TATT

e cannot read entire genomes at once and so produce many AACA ' CCATCI AAC
GTAA ACTCGGGTCA A

fragments (reads) cTG/ANE. AFcTcTcTeCTTCEBGTG

_ . _ TCTT T 5-:;.; SCATTTTATTCCTTRIGCC

e with errors — add, delete, substitute base pairs (¥characters)  cca GCGAACAAAACEGTTT
GAAQG A GEIIRE TG GAT@C AGCATG

. . . GATT, T%GC’GGT AGTGCTG

e Redundancy is used to compensate — also increases the input gg 1€ \FGANAK Gbci(g
data size for our problem by an order of magnitude CATTGIG ATAA
GATA / PaCo,com AAA

GAATGCCATGGGTCGAACGGAAATTCCGGCACT

GCGTGGTCATCAGGTAATGATTCCTTCAAAACAA

CAGCGATCAAGGTTTCGGGGCTAGACTTGAACA

AAAGGTGTGGATTAATGACAGTCCGTAATTGACG

CATGTATTTGCGACTGGGCATGATTACGTTGCCG

GGGAGCCTAAGGAGTCCATTTATTGGTCTGAG...
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Rewind, Why is balancing communication, computation, and memory
(and achieving good scaling) for this representative problem non-trivial?

Application Background

Sequencers, translating nano-meter scale, supercoiling molecules
into human- and computer- readable strings have limitations

e cannot read entire genomes at once and so produce many
fragments (reads)

« with errors — add, delete, substitute base pairs (~characters)

e Redundancy is used to compensate — also increases the input
data size for our problem by an order of magnitude

« Redundancy or repeats are also inherent in certain genomes,
esp. plants, interesting for biofuel, medicine, food, etc.
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AAGAAGAGAGATCGCGAAAGAATTTGCTCATAAG
GTATTCCCAAGTCTGAGCGTCAGCATAACTATTTT
TI'ACGTTAGTATGAAA'I_I'A'ITCCGACCCCACAGCG
TAATGCAZ AC AACCCATTTAGACAGACG

CCA(Q \/ SACT ATGTGAAGTA

AAAG A . AAA

AAAA G AC
TATA ' CAT
AAC B TATT
AACA AAC

WA \_

‘ ACTCGGGTC A

GTAA A
CTG/RE. YFcTcTcTCCTTCRGTG
TCTT GTT g? SCATTTTATTCCTTRIGCC
CCAA \GCGAACAAAACEGTTT
GAAG AGEIRE TGCAT@CGCGTAGCATG

GATT, GC’GGT BTGCTG
GCAA GC ] AAARE TGGAT
CCCOug ‘ CCAG

CATTGTGGT ATAA
GATARAGTC) ATGGTC TAAA
GAATGCCATGGGTCGAACGGAAATTCCGGCACT
GCGTGGTCATCAGGTAATGATTCCTTCAAAACAA
CAGCGATCAAGGTTTCGGGGCTAGACTTGAACA
AAAGGTGTGGATTAATGACAGTCCGTAATTGACG
CATGTATTTGCGACTGGGCATGATTACGTTGCCG
GGGAGCCTAAGGAGTCCATTTATTGGTCTGAG....
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Rewind, Why are the results non-obvious? Why is
achieving good scaling for this problem non-trivial?
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Rewind, Why are the results non-obvious? Why is
achieving good scaling for this problem non-trivial?

« Sophisticated string similarity measurement (pairwise alignment) is required
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Rewind, Why are the results non-obvious? Why is
achieving good scaling for this problem non-trivial?

« Sophisticated string similarity measurement (pairwise alignment) is required
. Pairwise alignment is O(n?) for strings of length n,

. in practice n € (102, 10°) and highly variable
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Rewind, Why are the results non-obvious? Why is
achieving good scaling for this problem non-trivial?

« Sophisticated string similarity measurement (pairwise alignment) is required
. Pairwise alignment is O(n?) for strings of length n,
. in practice n € (102, 10°) and highly variable

o With N reads, problem can be solved in O(N2 X nz) — quickly becomes intractable
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Rewind, Why are the results non-obvious? Why is
achieving good scaling for this problem non-trivial?

« Sophisticated string similarity measurement (pairwise alignment) is required
. Pairwise alignment is O(n?) for strings of length n,
. in practice n € (102, 10°) and highly variable
o With N reads, problem can be solved in O(N2 X nz) — quickly becomes intractable

e In practice, runtime analysis and filtering is used to reduce the N?to ... something
smaller...

o vields a sparse unstructured graph that is also very large, discovered at runtime
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Rewind, Why are the results non-obvious? Why is
achieving good scaling for this problem non-trivial?

« Sophisticated string similarity measurement (pairwise alignment) is required
. Pairwise alignment is O(n?) for strings of length n,
. in practice n € (102, 10°) and highly variable
o With N reads, problem can be solved in O(N2 X nz) — quickly becomes intractable

e In practice, runtime analysis and filtering is used to reduce the N?to ... something
smaller...

o vields a sparse unstructured graph that is also very large, discovered at runtime

e Heuristic approaches to pairwise alignment can reduce the n’to average-case O(n)
o their early termination leads to more irregularity in the computation at runtime
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SO rti n g distributed joins
graphs ™ aignment

hash tables

Generalized N-Body

irregular all-to-all
many-to-many
sparse matrix multiply
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SO rti n g distributed joins
graphs ™ aignment

hash tables
Generalized N-Body

iIrregular all-to-all
many-to-many
sparse matrix multiply

See also Yelick et al., “The Parallelism Motifs of Genomic Analysis.”

In Philosophical Transactions of the Royal Society A 378, no. 2166 (2020): 20190394.
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Our case study is a representative Generalized N-Body problem from Genomics

SO rtl n g distributed joins
g ra phS alignment

Generallzed N Body

irregular all-to-a

many-to-many
sparse maitrix multiply
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A Generalized N-Body Problem
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A Generalized N-Body Problem

® Classic N-Body: simulate the motion of “bodies” (e.g. stars and planets, atoms, pinballs,...)
according to Newton’s Laws
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A Generalized N-Body Problem

® Classic N-Body: simulate the motion of “bodies” (e.g. stars and planets, atoms, pinballs,...)
according to Newton’s Laws

® Generalized N-Body: measure some type of similarity between (all or many) pairs or tuples of
bodies i.e. measurements are many-to-many or all-to-all and may be non-Euclidean
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A Generalized N-Body Problem

® Classic N-Body: simulate the motion of “bodies” (e.g. stars and planets, atoms, pinballs,...)
according to Newton’s Laws

® Generalized N-Body: measure some type of similarity between (all or many) pairs or tuples of
bodies i.e. measurements are many-to-many or all-to-all and may be non-Euclidean

® Our Generalized N-Body instance is a many-to-many comparison of long, variable length
strings (bodies) via pairwise alignment (similarity metric)
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A Generalized N-Body Problem

® Classic N-Body: simulate the motion of “bodies” (e.g. stars and planets, atoms, pinballs,...)
according to Newton’s Laws

® Generalized N-Body: measure some type of similarity between (all or many) pairs or tuples of
bodies i.e. measurements are many-to-many or all-to-all and may be non-Euclidean

® Our Generalized N-Body instance is a many-to-many comparison of long, variable length
strings (bodies) via pairwise alignment (similarity metric)

® with significant similarities to other Generalized N-Body problems in Bioinformatics

® pangenomics, similarity across genomes

® metagenomics, clustering DNA fragments from different species in the same sample
® proteomics, similarity searches in massive protein data sets
°

informatics, more general text and document analysis
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Big Picture
Goals E

e Develop scalable software for Genomics
scientific discovery

e build “wet” science -
computer science bridges

e in collaboration with JGI,
UCB, MCB@UCB

e Exascale Computing
Project

Image/Video

Big Data

e Generalize and generate DR -
< s . Simulation -
insights for scaling other
irregular big data applications
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Data-Independent Approach (1/2), Bulk-Synchronous Parallel (BSP)

Begin Communicate Compute Independently in Parallel
Input Reads & Alignment Tasks Exchange Required Reads Pairwise Alignments
B
@ Po N Po =
000 2 (YY)
N [ § H
<
PR & AR &
000 1 000
S
Q
=
a :
000 o000
End: output alignments exceeding minimum scoring threshold in parallel
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Data-Independent Approach (1/2), Bulk-Synchronous Parallel (BSP)

® Maximizes
bandwidth utilization

Begin Communicate Compute Independently in Parallel
Input Reads & Alignment Tasks Exchange Required Reads Pairwise Alignments Of Sparse ma ny'tO'
B many string exchange
Py N Po =
000 = 000
2 H
<
PR & AR &
000 ] 000
<
Q
=
a :
000 000
End: output alignments exceeding minimum scoring threshold in parallel
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Data-Independent Approach (1/2), Bulk-Synchronous Parallel (BSP)

® Maximizes
bandwidth utilization

Begin Communicate Compute Independently in Parallel
Input Reads & Alignment Tasks Exchange Required Reads Pairwise Alignments of Sparse ma ny'tO'
@ » E » B many string exchange
Py N Po | ..
YY) = YY) ® Maximizes
@ » 3 » = independently
P K& A5 B parallel pairwise
000 13 000 | ] t
5 alignment
N / < H computation
000 000
End: output alignments exceeding minimum scoring threshold in parallel
| INTERNATIONAL I\
/ CONFERENCE ON / acm) In-Cooperation
[_PARALLEL A P
PROCESSING __| SIghpC




Data-Independent Approach (1/2), Bulk-Synchronous Parallel (BSP)

® Maximizes
bandwidth utilization
of sparse many-to-
many string exchange

Begin Communicate Compute Independently in Parallel

Input Reads & Alignment Tasks Exchange Required Reads Pairwise Alignments

Sl e
» =
=)

71

® Maximizes

g (XX |
@ » E: independently
0o " 53 \E parallel pairwise
= allgnment.
2 computation

™~
o

End: output alignments exceeding minimum scoring threshold in parallel

In practice, communicating
in multiple memory-limited
exchanges may be

necessary
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Data-Independent Approach (2/2), Asynchronous (Async)
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Data-Independent Approach (2/2), Asynchronous (Async)

e Each remote string is retrieved one at a time, asynchronously (as necessary)
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Data-Independent Approach (2/2), Asynchronous (Async)
High-Level lllustration (SPMD)
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Data-Independent Approach (2/2), Asynchronous (Async)
High-Level lllustration (SPMD)

]

Po
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25°
P p-1
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Data-Independent Approach (2/2), Asynchronous (Async)

High-Level lllustration (SPMD)

o
S
C
%
kol
[

P] o @ lv| —_—
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Data-Independent Approach (2/2), Asynchronous (Async

High-Level lllustration (SPMD)

I

]

5°

e

Potentially long-running
pairwise alignment tasks

Po

.
]

Pp_]

°9
>
®
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%
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N\
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Data-Independent Approach (2/2), Asynchronous (Async

High-Level lllustration (SPMD)
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Potentially long-running
pairwise alignment tasks
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Nonblocking request
for remote data
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Data-Independent Approach (2/2), Asynchronous (Async

High-Level lllustration (SPMD)
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Potentially long-running
pairwise alignment tasks

ol
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Nonblocking request
for remote data

i

Asynchronous data
lookup-and-send task
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Data-Independent Approach (2/2), Asynchronous (Async

High-Level lllustration (SPMD)

I

]

Potentially long-running
pairwise alignment tasks

U
-

3@

SR T e Q\ea‘?’e
QS P e

-

Nonblocking request
for remote data

i

Asynchronous data
lookup-and-send task

I
i
i
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Data-Independent Approach (2/2), Asynchronous (Async

High-Level lllustration (SPMD)

—

I

Potentially long-running
pairwise alignment tasks

| ||H\ |

5o

Nonblocking request
for remote data

i

Asynchronous data
lookup-and-send task
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Data-Independent Approach (2/2), Asynchronous (Async

High-Level lllustration (SPMD)
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Asynchronous data
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Unclear how well the Async approach will
perform in practice

Potential Advantages Potential Disadvantages
e “maximizes injection speed e “maximizes number of messages
e “minimizes memory footprint e pays round-trip cost for each
. communication-computation remote read (datum) as needed
hiding « exacerbated load imbalance
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How do these approaches perform with real workloads?

Experimental Setup

Short Name Species Reads Tasks
Intra-node strong scaling E. coli30x  Escherichia coli 16,890 2,270,260
1-128 node strong scaling E. coli 100X  Escherichia coli 91,394 24,869,171
8 - 512 node strong scaling Human CCS  Homo sapiens 1,148,839 87,621,409

Cray XC40, “Cori KNL” (KNL partition)

Cray Aries, Dragonfly Topology

Node architecture:

e Single socket

¢ Intel Xeon Phi Knights Landing
processor

e 68 cores @1.4 GHz

e 4-way hardware hyperthreading

e 16 GB MCDRAM HBM

e 96 GBDDR

— more description and details available in the full text —
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Intra-node strong scaling E. coli30x  Escherichia coli 16,890 2,270,260
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Strong Scaling (CCS Human) on Cori KNL

180 -
160 - B Communication
140 - & Synchronization
— 120 - @ Computation
()] -
£ 100
c 80 -
=
60 -
40 -
20 -
0 - oo e
c =
> o 2
< <
Node Count § 256 512

Core Count 512 1,024 2,048 4,096 8,192 16,384 32,768
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Strong Scaling (CCS Human) on Cori KNL

180 - . e same computation
160 - B Communication )
o time (gray, bottom
140 - & Synchronization bars) is expected
—~120 E=F = % Computation (same workload)
o ]
£ 100
€ 80 -
=
60 -
40 -
20 -
0 - B e
(el O o ([l O
2 S = B¢
< < <
Node Count § 256 512

Core Count 512 1,024 2,048 4,096 8,192 16,384 32,768
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Strong Scaling (CCS Human) on Cori KNL
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8-32 nodes, memory limits necessitate multiple BSP
exchanges, increasing overall communication overhead

Strong Scaling (CCS Human) on Cori KNL
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8-32 nodes, memory limits necessitate multiple BSP
exchanges, increasing overall communication overhead
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With sufficient memory for a single BSP exchange,
64-512 nodes, efficiency gap decreases to 4-13%

Strong Scaling (CCS Human) on Cori KNL
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What are the relative unhidden communication costs?
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What is expected across different architectures
and applications? (Conclusions and Future Work)
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What is expected across different architectures
and applications? (Conclusions and Future Work)

o Cori’s high-bandwidth low-latency interconnect supports both approaches well
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e Keys for effective communication-computation overlap for data-intensive Generalized
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N-Body problems like these

* balance of round-trip or one-sided message latencies to pairwise/tuple-wise
computations on average
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What is expected across different architectures
and applications? (Conclusions and Future Work)

o Cori’s high-bandwidth low-latency interconnect supports both approaches well

« with a high-bandwidth, high-latency interconnect, these results may very well flip

e Keys for effective communication-computation overlap for data-intensive Generalized
N-Body problems like these

* balance of round-trip or one-sided message latencies to pairwise/tuple-wise
computations on average

e one example implication: optimizing the computation (pairwise alignment) in this
case is only independent from communication optimization up to a point...
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e Keys for bulk-synchronous approaches for data-intensive Generalized N-Body
problems like these
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problems like these
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communication-bound for any given workload

« Other opportunities and optimization suggestions are highlighted in the full text
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What is expected across different architectures
and applications? (Conclusions and Future Work)

e Keys for bulk-synchronous approaches for data-intensive Generalized N-Body
problems like these

e bisection bandwidth and memory enabling (or limiting) message aggregation for
the many-to-many communication

e expect that, optimization to the computation will lower the number of parallel
processors at which performance crosses-over from being computation-bound to
communication-bound for any given workload

« Other opportunities and optimization suggestions are highlighted in the full text

« also more depth on both the computational and communication load imbalance...
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Final Remarks

e The code is available on SourceForge (DiBELLA)
« for use with general DNA inputs for read to read overlap and alignment

« and for other bioinformatics problems, e.g. proteomics, with
reasonable refactoring effort

 for performance-focused studies and benchmarking as demonstrated
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Lemma: (in general) any partitioning of the reads will cut hyperedges
due to the underlying sequencing methodology

Perfect world: no errors, uniform read lengths, perfectly
uniform coverage, no repeats, “circular” genome
Unknown Underlying Genome
P=2

N

 Each read overlaps with \ ’
P=4

e Partitioning cannot cut fewer than (P x d) hyperedges, P > 1
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Reality: the hypergraphs are sparse

* we expect this from k-mer filtering among other

reasons
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Reality: the hypergraphs are sparse Plotted as Read by Read Matrix

* we expect this from k-mer filtering among other 0 ZOIOO 4090 60|00 SOIOO 10?00 12?00 14900 16?00

reasons
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Large sparse unstructured hypergraph
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Large sparse unstructured hypergraph

Histogram, Human 10x Read Lengths

Histogram of Read Lengths in E.coli 30x (Sample)
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