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• At first glance, the communication-hiding approach seems trivially to be the right approach 
• However, for this type of problem, there is a non-trivial balancing act between the 

communication, computation, and memory
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Rewind, Why is balancing communication, computation, and memory 
(and achieving good scaling) for this representative problem non-trivial?

Application Background

pacb.com

AAGAAGAGAGATCGCGAAAGAATTTGCTCATAAG
GTATTCCCAAGTCTGAGCGTCAGCATAACTATTTT
TTACGTTAGTATGAAATTATTCCGACCCCACAGCG
TAATCAACTCACACCTAACCCATTTAGACAGACG
CCACAGGCTGAACAGTGACTCCGATGTGAAGTA
AAAGTTAACTTTTAAGCCAACAGCTGGACAAAAA
AAAAATGAACCAGAAGCAGCGAAAGCGGCAGAC
TATATGAATTAGAAATCTTAAAAAAAAGCTTTACCAT
AACTTACGGTTTCTTTAAGTTTGTGGTATGCGTATT
AACATCCAAACATTATCAATACGGCCGATGATAAC
GTAATTTTTTTGAATGGAATACTCGGGTCAATTTTA
CTGACGCAATACATCTCTCTCTCTCCTTCCCGTG
TCTTGCAGCGGTTCCTGCATTTTATTCCTTATGCC
CCAACGCAATTCGCCTGGCGAACAAAACCGTTT
GAAGCGCCGAGCAAGTGGATGCGCGTAGCATG
GATTAAGGACTTAACGCCAGCGGTAAAGTGCTG
GCAAGTAAGAGCATATGCGGATGAAAAACTGGAT
CCCGCGAGCCTGAACTAAAAATCATGAGACCAG
CATTGTGGTTGGGCAGTGCGCTAAGGCCGATAA
GATAAACTCACCGATATGGTGACGGTCAGGTAAA
GAATGCCATGGGTCGAACGGAAATTCCGGCACT
GCGTGGTCATCAGGTAATGATTCCTTCAAAACAA
CAGCGATCAAGGTTTCGGGGCTAGACTTGAACA
AAAGGTGTGGATTAATGACAGTCCGTAATTGACG
CATGTATTTGCGACTGGGCATGATTACGTTGCCG
GGGAGCCTAAGGAGTCCATTTATTGGTCTGAG…

• Sequencers, translating nano-meter scale, supercoiling molecules 
into human- and computer- readable strings have limitations 
• cannot read entire genomes at once and so produce many 

fragments (reads) 
• with errors — add, delete, substitute base pairs (~characters)

http://pacb.com
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• Redundancy is used to compensate — also increases the input 
data size for our problem by an order of magnitude

• Redundancy or repeats are also inherent in certain genomes, 
esp. plants, interesting for biofuel, medicine, food, etc.
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Application Background
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Rewind, Why are the results non-obvious? Why is 
achieving good scaling for this problem non-trivial?
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• Pairwise alignment is  for strings of length ,  

• in practice  and highly variable

O(n2) n

n ∈ (103, 105)

• With  reads, problem can be solved in  — quickly becomes intractableN O(N2 × n2)

• In practice, runtime analysis and filtering is used to reduce the  to … something 
smaller… 
• yields a sparse unstructured graph that is also very large, discovered at runtime

N2

• Heuristic approaches to pairwise alignment can reduce the  to average-case  
• their early termination leads to more irregularity in the computation at runtime

n2 O(n)
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See also Yelick et al., “The Parallelism Motifs of Genomic Analysis.”  
In Philosophical Transactions of the Royal Society A 378, no. 2166 (2020): 20190394.  
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See also Yelick et al., “The Parallelism Motifs of Genomic Analysis.”  
In Philosophical Transactions of the Royal Society A 378, no. 2166 (2020): 20190394.  

Our case study is a representative Generalized N-Body problem from Genomics



INTERNATIONAL
CONFERENCE ON

PARALLEL
PROCESSING

A Generalized N-Body Problem (Gray and Moore, 2001)
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A Generalized N-Body Problem
• Classic N-Body: simulate the motion of “bodies” (e.g. stars and planets, atoms, pinballs,…) 

according to Newton’s Laws

• Generalized N-Body: measure some type of similarity between (all or many) pairs or tuples of 
bodies i.e. measurements are many-to-many or all-to-all and may be non-Euclidean 

• Our Generalized N-Body instance is a many-to-many comparison of long, variable length 
strings (bodies) via pairwise alignment (similarity metric) 

• with significant similarities to other Generalized N-Body problems in Bioinformatics  

• pangenomics, similarity across genomes 

• metagenomics, clustering DNA fragments from different species in the same sample 

• proteomics, similarity searches in massive protein data sets 

• informatics, more general text and document analysis

(Gray and Moore, 2001)
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Genomics

Text

Image/Video

Signal

Graphs

Simulation

Bi
g 

D
at

a

…

…

…

• Develop scalable software for 
scientific discovery  

• build “wet” science - 
computer science bridges  

• in collaboration with JGI, 
UCB, MCB@UCB 

• Exascale Computing 
Project 

• Generalize and generate 
insights for scaling other 
irregular big data applications 

Scaling Generalized N-Body Problems, a Case Study from Genomics 
Marquita Ellis et al. ICPP’21

Big Picture 
Goals
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Begin Communicate Compute Independently in Parallel

P1 P1
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End: output alignments exceeding minimum scoring threshold in parallel

M
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Data-Independent Approach (1/2), Bulk-Synchronous Parallel (BSP)
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Alignment Stage (4 of 4)

P0 P0

Input Reads & Alignment Tasks Exchange Required Reads         Pairwise Alignments

Begin Communicate Compute Independently in Parallel

P1 P1

PN-1 PN-1

End: output alignments exceeding minimum scoring threshold in parallel

M
any-to-M

any

Data-Independent Approach (1/2), Bulk-Synchronous Parallel (BSP)

In practice, communicating 
in multiple memory-limited 
exchanges may be 
necessary

• Maximizes 
bandwidth utilization 
of sparse many-to-
many string exchange 

• Maximizes 
independently 
parallel pairwise 
alignment 
computation
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Data-Independent Approach (2/2), Asynchronous (Async)
• Each remote string is retrieved one at a time, asynchronously (as necessary) 
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Unclear how well the Async approach will 
perform in practice 

Potential Advantages 
• ~maximizes injection speed 
• ~minimizes memory footprint 
• communication-computation 

hiding 
…

Potential Disadvantages 
• ~maximizes number of messages 
• pays round-trip cost for each 

remote read (datum) as needed 
• exacerbated load imbalance 
…
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How do these approaches perform with real workloads?

Intra-node strong scaling 
1 - 128 node strong scaling 
8 - 512 node strong scaling

Cray XC40, “Cori KNL” (KNL partition) 
Cray Aries, Dragonfly Topology 
Node architecture: 
• Single socket 
• Intel Xeon Phi Knights Landing 

processor  
• 68 cores @1.4 GHz 
• 4-way hardware hyperthreading 
• 16 GB MCDRAM HBM 
• 96 GB DDR 

Experimental Setup

— more description and details available in the full text —
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How do these approaches perform with real workloads?

Intra-node strong scaling 
1 - 128 node strong scaling 
8 - 512 node strong scaling

Cray XC40, “Cori KNL” (KNL partition) 
Cray Aries, Dragonfly Topology 
Node architecture: 
• Single socket 
• Intel Xeon Phi Knights Landing 

processor  
• 68 cores @1.4 GHz 
• 4-way hardware hyperthreading 
• 16 GB MCDRAM HBM 
• 96 GB DDR 

Experimental Setup

— more description and details available in the full text —

In this talk
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• same computation 
time (gray, bottom 
bars) is expected 
(same workload) 

• synchronization 
time (orange, 
middle bars) is 
dominated by load 
imbalance in 
individual pairwise 
alignments (module 
shared by each) 

• focus now: 
communication 
time (blue, top bars)
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• 8-32 nodes, BSP 
communication 
overhead is 18-37% 

• Async is up to 20% 
more efficient with 
effective 
communication 
hiding
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8-32 nodes, memory limits necessitate multiple BSP 
exchanges, increasing overall communication overhead
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With sufficient memory for a single BSP exchange, 
64-512 nodes, efficiency gap decreases to 4-13% 

^ note, y-axis scale adjustment of 6x
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)• Measured/validated 
using a mode that skips 
the computation
• Async sends many more 

messages with variable 
round-trip latency
• Number of messages 

scale inversely with the 
number of parallel 
processors
• In aggregate, Async 

communication-
computation overlap 
balance out
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What is expected across different architectures 
and applications? (Conclusions and Future Work)
• Cori’s high-bandwidth low-latency interconnect supports both approaches well

• with a high-bandwidth, high-latency interconnect, these results may very well flip

• Keys for effective communication-computation overlap for data-intensive Generalized 
N-Body problems like these

• balance of round-trip or one-sided message latencies to pairwise/tuple-wise 
computations on average

• one example implication: optimizing the computation (pairwise alignment) in this 
case is only independent from communication optimization up to a point…
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What is expected across different architectures 
and applications? (Conclusions and Future Work)

• Keys for bulk-synchronous approaches for data-intensive Generalized N-Body 
problems like these

• bisection bandwidth and memory enabling (or limiting) message aggregation for 
the many-to-many communication

• expect that, optimization to the computation will lower the number of parallel 
processors at which performance crosses-over from being computation-bound to 
communication-bound for any given workload

• Other opportunities and optimization suggestions are highlighted in the full text

• also more depth on both the computational and communication load imbalance… 
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Final Remarks
• The code is available on SourceForge (DiBELLA) 
• for use with general DNA inputs for read to read overlap and alignment 
• and for other bioinformatics problems, e.g. proteomics, with 

reasonable refactoring effort 
• for performance-focused studies and benchmarking as demonstrated
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Lemma: (in general) any partitioning of the reads will cut hyperedges  
due to the underlying sequencing methodology

Perfect world: no errors, uniform read lengths, perfectly 
uniform coverage, no repeats, “circular” genome

• Each read overlaps with 2(d-1) other reads 

• Partitioning cannot cut fewer than (P x d) hyperedges, P > 1

Unknown Underlying Genome

…

…
d

L

P=2

P=3

P=4
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Plotted as Read by Read Matrix

Looks dense but is very sparse!
• nnz/(# reads 2)= ~0.008
• ~16,890 reads
• ~2.2 million overlaps
• making the non-zeros visible in the 

plot, makes the matrix look dense

Reality: the hypergraphs are sparse
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