BitX: Empower Versatile Inference with Hardware Runtime Pruning

Hongyan Li12, Hang Lu12, Jiawen Huang1, Wenxu Wang12, Mingzhe Zhang1, Wei Chen1, Liang Chang3, Xiaowei Li12

1State Key Laboratory of Computer Architecture, Institute of Computing Technology, CAS, Beijing, China
2University of Chinese Academy of Sciences, Beijing, China
3University of Electronic Science and Technology of China, Chengdu, China
Introduction

DNN networks

<table>
<thead>
<tr>
<th>Model</th>
<th>Params</th>
</tr>
</thead>
<tbody>
<tr>
<td>ResNet50</td>
<td>22.5×10^6</td>
</tr>
<tr>
<td>3D-ConvNet</td>
<td>79×10^6</td>
</tr>
<tr>
<td>Bert_large</td>
<td>340×10^6</td>
</tr>
</tbody>
</table>

Pruning

Demand of large computation

2~3 days sparse training

3~4 days retraining / fine-tuning

YoloV3

network slimming

6 TITAN Xp
2 Intel Xeon E5-2650 v4

Introduction

The contribution of this work

Propose a novel hardware runtime pruning method -- BitX, to empower versatile DNN inference

① Software effortless
No retraining! No fine-tuning!

② Orthogonal to the existing software pruning methodologies
Obtain additional speedup

③ Multi-precision support
Floating point & fixed point DNNs
Introduction

The contribution of this work

Propose a deep learning accelerator capable of unprecedented hardware runtime pruning to mine the maximum potential of BitX.

Speedup

2.61x~4.82x (fp32), 2.00x (16 fixed point), 4.98x and 14.76x higher over the baseline based on software pruning

Accuracy

Negligible accuracy under fp32, about 1% accuracy improvement under 16-bit fixed point

Accelerator Performance

2.00x and 3.79x performance improvement compared with other SOTA accelerators

BitX is designed for *flexible* and *versatile* DNN inference for the most tasks
Motivation

Weight sparsity versus bit sparsity

<table>
<thead>
<tr>
<th>Model</th>
<th>Weight Sparsity</th>
<th>Bit Sparsity</th>
</tr>
</thead>
<tbody>
<tr>
<td>DenseNet121</td>
<td>4.84%</td>
<td>48.64%</td>
</tr>
<tr>
<td>ResNet50</td>
<td>0.33%</td>
<td>48.64%</td>
</tr>
<tr>
<td>ResNet152</td>
<td>0.75%</td>
<td>48.64%</td>
</tr>
<tr>
<td>ResNext50_32x4d</td>
<td>0.37%</td>
<td>48.64%</td>
</tr>
<tr>
<td>ResNext101_32x8d</td>
<td>3.43%</td>
<td>48.65%</td>
</tr>
<tr>
<td>InceptionV3</td>
<td>0.05%</td>
<td>48.64%</td>
</tr>
<tr>
<td>MNASNet0.5</td>
<td>0.00%</td>
<td>48.60%</td>
</tr>
<tr>
<td>MNASNet1.0</td>
<td>8.07%</td>
<td>48.98%</td>
</tr>
<tr>
<td>MobileNetV2</td>
<td>0.01%</td>
<td>48.67%</td>
</tr>
<tr>
<td>ShuffleNetV2_x0_5</td>
<td>0.00%</td>
<td>48.36%</td>
</tr>
<tr>
<td>ShuffleNetV2_x1_0</td>
<td>1.53%</td>
<td>48.63%</td>
</tr>
<tr>
<td>SqueezeNet1_0</td>
<td>0.05%</td>
<td>48.64%</td>
</tr>
<tr>
<td>SqueezeNet1_1</td>
<td>0.02%</td>
<td>48.64%</td>
</tr>
</tbody>
</table>

Weight sparsity: the values below 10^{-5} over the total parameter size

Bit sparsity: total bit 0s over the total “bit count” of the mantissas

- **Very limited headroom**
- **Significantly abundant**
Motivation

Trivial bits

X-axis: the bit slice of the binary represented weight (in fp32)
Y-axis: the fraction of bit ‘1’
All the evaluated DNNs exhibit an “arched” shape.

Distribution analysis of bit 1s

The central bit slices own most of the bit 1s (~40%). While all these bits are tiny. Taking bit significance $2^{-21} \sim 2^{-30}$ as the representative, the equivalent decimals are in range: 0.0000000477 ($\sim10^{-8}$) to 0.000000000931 ($\sim10^{-11}$)
Problem tackled in this work

Goal: pinpoint the essential bits and prune away the useless bits

Genetic 0 bits
Zero-skipping mechanism to avoid the ineffectual computations caused by the zero bits -- Easy to implement ^_^

Trivial 1 bits
The impact of a single bit to the whole network is not that easy to be determined -- How to tackle this problem? -_-!

We intend to solve the two issues in BitX!
Methodology – core concept

Weights represented in floating-point 32 mode.
Different colors indicate the bit significance from 2^{-1} to 2^{-9} after the binary point.
Methodology – bit pruning

Approximating Matrix Multiplication

- Given an \(m \times n \) matrix \(A \) and an \(n \times p \) matrix \(B \),
- The product \(AB \), is equivalent to the sum of \(n \) rank-one matrices

\[
AB = \sum_{i=1}^{n} (A(i)) (B(i))
\]

- \(A(i) \) the \(i \)-th column of \(A \)
- \(B(i) \) the \(i \)-th row of \(B \)
- Each term in the summation is a rank-one matrix

Metric of selecting rank-one matrices

\[
p_i = \frac{|A(i)| |W(i)|}{\sum_{i'=1}^{l} |A(i')||W(i')|}
\]

\[
= \frac{|A(i)| \sqrt{\sum_{j=1}^{n} \left(2^{E_i^j} \times v_j\right)^2}}{\sqrt{(2^{E_i^j})^2 \times \text{BitCnt}(i)}}
\]

Two determining factors: \(E_i \) and \(\text{BitCnt}(i) \)

Row vector of bit weight matrix

Column vector

\[
[A_1, A_2, \ldots, A_n]^T
\]

of activation matrix

Exponent at position \(j \) of \(i \)-th row

.. j-th bit of the \(i \)-th row vector in \(W \)

\(E_i \) and \(\text{BitCnt}(i) \)

A constant

\[
\sum_{i'=1}^{l} \sqrt{(2^{E_i^j})^2 \times \text{BitCnt}(i')}
\]
Methodology – BitX accelerator

Data shifter Zero-padding

Memory
DMA

Bypassed for fixed-point DNN

Perform bit pruning algorithm

Sort the shifted BitCnt(i) and select the top n largest rows

Methodology – BitX accelerator

Data shifter Zero-padding

Memory
DMA

Bypassed for fixed-point DNN

Perform bit pruning algorithm

Sort the shifted BitCnt(i) and select the top n largest rows

Methodology – BitX accelerator

Data shifter Zero-padding

Memory
DMA

Bypassed for fixed-point DNN

Perform bit pruning algorithm

Sort the shifted BitCnt(i) and select the top n largest rows

Methodology – BitX accelerator

Data shifter Zero-padding

Memory
DMA

Bypassed for fixed-point DNN

Perform bit pruning algorithm

Sort the shifted BitCnt(i) and select the top n largest rows

Methodology – BitX accelerator

Data shifter Zero-padding

Memory
DMA

Bypassed for fixed-point DNN

Perform bit pruning algorithm

Sort the shifted BitCnt(i) and select the top n largest rows
Methodology – computing units

Extract the significance of each essential bit k

Perform the final partial-sum accumulation

Computing Unit (CU)

Extract s_0 K_0 K_6 K_7 K_{l-1} E_{max}

A_0 A_1 \ldots A_6 A_7

adder tree

R $>>$ out

Shift according to k's significance
Evaluation

• Accuracy & Sparsity

Parameter to control the granularity of pruning

<table>
<thead>
<tr>
<th>Model</th>
<th>Original</th>
<th>N=10</th>
<th>N=8</th>
<th>N=6</th>
<th>N=4</th>
</tr>
</thead>
<tbody>
<tr>
<td>DenseNet121</td>
<td>71.96/1x</td>
<td>71.95/1.34x</td>
<td>71.00/1.47x</td>
<td>71.00/1.62x</td>
<td>65.00/1.76x</td>
</tr>
<tr>
<td>DenseNet161</td>
<td>75.28/1x</td>
<td>75.20/1.32x</td>
<td>75.14/1.46x</td>
<td>74.79/1.61x</td>
<td>72.00/1.76x</td>
</tr>
<tr>
<td>DenseNet169</td>
<td>73.75/1x</td>
<td>73.56/1.31x</td>
<td>73.55/1.45x</td>
<td>73.55/1.60x</td>
<td>68.62/1.75x</td>
</tr>
<tr>
<td>Densenet201</td>
<td>74.56/1x</td>
<td>74.46/1.30x</td>
<td>74.40/1.44x</td>
<td>74.24/1.59x</td>
<td>69.00/1.74x</td>
</tr>
<tr>
<td>ResNet18</td>
<td>67.28/1x</td>
<td>67.09/1.64x</td>
<td>67.00/1.73x</td>
<td>66.72/1.81x</td>
<td>62.52/1.90x</td>
</tr>
<tr>
<td>ResNet34</td>
<td>71.32/1x</td>
<td>71.11/1.65x</td>
<td>71.10/1.73x</td>
<td>70.92/1.82x</td>
<td>68.00/1.90x</td>
</tr>
<tr>
<td>ResNet50</td>
<td>74.50/1x</td>
<td>74.50/1.41x</td>
<td>74.51/1.54x</td>
<td>74.10/1.67x</td>
<td>67.00/1.80x</td>
</tr>
<tr>
<td>ResNet101</td>
<td>76.00/1x</td>
<td>76.06/1.43x</td>
<td>76.05/1.55x</td>
<td>75.76/1.68x</td>
<td>69.02/1.81x</td>
</tr>
<tr>
<td>ResNet152</td>
<td>77.02/1x</td>
<td>76.56/1.44x</td>
<td>76.55/1.56x</td>
<td>76.46/1.69x</td>
<td>72.30/1.81x</td>
</tr>
<tr>
<td>ResNext50_32x4d</td>
<td>76.29/1x</td>
<td>75.99/1.24x</td>
<td>75.96/1.39x</td>
<td>75.67/1.56x</td>
<td>65.01/1.72x</td>
</tr>
<tr>
<td>ResNext101_32x8d</td>
<td>78.24/1x</td>
<td>78.20/1.27x</td>
<td>78.30/1.42x</td>
<td>78.10/1.58x</td>
<td>73.00/1.74x</td>
</tr>
<tr>
<td>SqueezeNet1_1</td>
<td>54.84/1x</td>
<td>54.86/1.42x</td>
<td>54.70/1.54x</td>
<td>54.40/1.67x</td>
<td>47.30/1.80x</td>
</tr>
<tr>
<td>Avg. loss / sparsity</td>
<td>0.000/1x</td>
<td>0.131/1.40x</td>
<td>0.242/1.52x</td>
<td>0.444/1.66x</td>
<td>6.023/1.79x</td>
</tr>
</tbody>
</table>

1. less than 0.5% average accuracy loss at N = 10, 8, 6.
2. Accuracy **improvement** on some models.

• Speedup

BitX exhibits promising speedup of $\sim 2.6x$ at $N = 10$, and $\sim 4.8x$ at $N = 6$.
Evaluation

- **Design Space Exploration**

<table>
<thead>
<tr>
<th>ResNet50</th>
<th>Original Accuracy: 74.50</th>
<th>DenseNet121</th>
<th>Original Accuracy: 71.96</th>
</tr>
</thead>
<tbody>
<tr>
<td>N=10</td>
<td>74.50</td>
<td>M=8</td>
<td>71.95</td>
</tr>
<tr>
<td>N=8</td>
<td>74.51</td>
<td>M=16</td>
<td>71.97</td>
</tr>
<tr>
<td>N=6</td>
<td>74.10</td>
<td>M=32</td>
<td>72.03</td>
</tr>
<tr>
<td>N=4</td>
<td>67.00</td>
<td>M=64</td>
<td>71.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M=128</td>
<td>71.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M=256</td>
<td>71.84</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M=512</td>
<td>71.83</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ResNet101_32x8d</th>
<th>Original Accuracy: 78.24</th>
<th>SqueezeNet1_1</th>
<th>Original Accuracy: 54.84</th>
</tr>
</thead>
<tbody>
<tr>
<td>N=10</td>
<td>78.20</td>
<td>M=8</td>
<td>54.86</td>
</tr>
<tr>
<td>N=8</td>
<td>78.30</td>
<td>M=16</td>
<td>54.80</td>
</tr>
<tr>
<td>N=6</td>
<td>78.10</td>
<td>M=32</td>
<td>54.00</td>
</tr>
<tr>
<td>N=4</td>
<td>73.00</td>
<td>M=64</td>
<td>54.70</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M=128</td>
<td>54.40</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M=256</td>
<td>54.62</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M=512</td>
<td>54.81</td>
</tr>
</tbody>
</table>

- **M** number of input weights that the accelerator could simultaneously prune

- **Two BitX instances:**
 - BitX-mild (N=10, M=8)
 - BitX-wild (N=6, M=8)

1. M barely influences the overall accuracy scaling from 8~512 for all 4 DNNs.
2. Accuracy improvement in some models.
• Performance of the Fixed-point DNN

<table>
<thead>
<tr>
<th>Model</th>
<th>Baseline(16b)</th>
<th>BitX-mild</th>
<th>BitX-wild</th>
</tr>
</thead>
<tbody>
<tr>
<td>ResNet50</td>
<td>74.50</td>
<td>74.50</td>
<td>74.10</td>
</tr>
<tr>
<td></td>
<td>(0.00)</td>
<td>(-0.40)</td>
<td></td>
</tr>
<tr>
<td>SqueezeNet1_1</td>
<td>54.86</td>
<td>54.80</td>
<td>54.40</td>
</tr>
<tr>
<td></td>
<td>(-0.06)</td>
<td>(-0.46)</td>
<td></td>
</tr>
<tr>
<td>DenseNet121</td>
<td>71.00</td>
<td>71.90</td>
<td>71.80</td>
</tr>
<tr>
<td></td>
<td>(+0.90)</td>
<td>(+0.80)</td>
<td></td>
</tr>
<tr>
<td>ResNext101_32x8d</td>
<td>78.00</td>
<td>78.20</td>
<td>78.10</td>
</tr>
<tr>
<td></td>
<td>(+0.20)</td>
<td>(+0.10)</td>
<td></td>
</tr>
</tbody>
</table>

BitX-mild and BitX-wild both exhibit higher accuracy than most of non-pruned models.

1. ~2x speedup in BitX-wild.
2. ~10% but abundant speedup in BitX-mild.
Evaluation

- **Working with Software-based Pruning**

<table>
<thead>
<tr>
<th>Method</th>
<th>mAP(%)</th>
<th>Speedup(x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>YoloV3 (baseline)</td>
<td>50.36</td>
<td>1</td>
</tr>
<tr>
<td>YoloV3 + BitX-mild</td>
<td>(50.42)</td>
<td>(+0.06)</td>
</tr>
<tr>
<td>YoloV3 + BitX-wild</td>
<td>50.05</td>
<td>4.98</td>
</tr>
<tr>
<td>YoloV3 + Slimming (baseline)</td>
<td>50.23</td>
<td>2.35</td>
</tr>
<tr>
<td>YoloV3 + Slimming + BitX-mild</td>
<td>50.30</td>
<td>(+0.07)</td>
</tr>
<tr>
<td>YoloV3 + Slimming + BitX-wild</td>
<td>48.72</td>
<td>14.76</td>
</tr>
</tbody>
</table>

BitX is orthogonal to any software-based pruning schemes

- Higher speedup than software based pruning
- Considerable speedup than genetic model
Evaluation

- **Comparison with SOTA Accelerators**

1. The speedup shows better result over other SOTA accelerator both in BitX-wild and BitX-mild.

2. The floating-point results are higher than the fixed-point results.

Energy efficiency of BitX also outperforms other accelerators.
Evaluation

- **Energy breakdown**

 ![Energy Breakdown Chart]

 - Memory accesses dominate
 - CU dominates

- **Area and Power breakdown**

<table>
<thead>
<tr>
<th>Precision</th>
<th>BitX (floating-point 32)</th>
<th>BitX (16b fixed point)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item</td>
<td>Area (mm²)</td>
<td>Power (mW)</td>
</tr>
<tr>
<td>E-alignment</td>
<td>0.017 (43.60%)</td>
<td>11.15 (16.20%)</td>
</tr>
<tr>
<td>Bit Extraction</td>
<td>0.008 (20.10%)</td>
<td>0.04 (0.05%)</td>
</tr>
<tr>
<td>16 CUs</td>
<td>0.003 (7.70%)</td>
<td>53.71 (78.30%)</td>
</tr>
<tr>
<td>Misc&Control</td>
<td>0.011 (28.20%)</td>
<td>3.72 (5.40%)</td>
</tr>
<tr>
<td>Total</td>
<td>0.039</td>
<td>68.62</td>
</tr>
</tbody>
</table>

1. **Area**: only 0.039 mm²
2. **36.41 mW**: high speedup, high power consumption
3. **68.62 mW**: low speedup, low power consumption
Recap

The contribution of this work

1. Propose a novel hardware runtime pruning method -- BitX, to empower versatile DNN inference

 - Software effortless
 - No retraining! No fine-tuning!

 - Orthogonal to the existing software pruning methodologies
 - Obtain additional speedup

 - Multi-precision support
 - Floating point & fixed point DNNs

2. Propose a deep learning accelerator capable of unprecedented hardware runtime pruning to mine the maximum potential of BitX.

Applications, and what’s more?
Thanks for listening!

Questions?

Hongyan Li12, Hang Lu12, Jiawen Huang1, Wenxu Wang12, Mingzhe Zhang1, Wei Chen1, Liang Chang3, Xiaowei Li12

1State Key Laboratory of Computer Architecture, Institute of Computing Technology, CAS, Beijing, China

2University of Chinese Academy of Sciences, Beijing, China

3University of Electronic Science and Technology of China, Chengdu, China