

BitX: Empower Versatile Inference with Hardware Runtime Pruning

Hongyan Li¹², Hang Lu¹², Jiawen Huang¹, Wenxu Wang¹², Mingzhe Zhang¹, Wei Chen¹, Liang Chang³, Xiaowei Li¹²

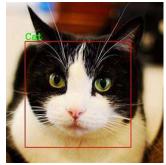
¹State Key Laboratory of Computer Architecture, Institute of Computing Technology, CAS, Beijing, China

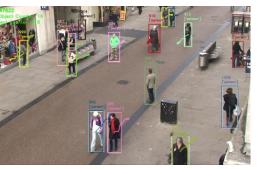
²University of Chinese Academy of Sciences, Beijing, China

³University of Electronic Science and Technology of China, Chengdu, China

Introduction

DNN networks





Model	Params
ResNet50	22.5×10 ⁶
3D-ConvNet	79 ×10 ⁶
Bert_large	340×10 ⁶

Demand of large computation

[1] Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang, Shoumeng Yan, and Changshui,Zhang. 2017. Learning Efficient Convolutional Networks through Network Slimming. In ICCV 50th International Conference on Parallel Processing

(ICPP) August 9-12, 2021 in Virtual Chicago, IL

Introduction

The contribution of this work

Propose a novel hardware runtime pruning method -- BitX, to empower versatile DNN inference

0 Software effortless

No retraining! No fine-tuning!

② Orthogonal to the existing software pruning methodologies

Obtain additional speedup

③ Multi-precision support **Floating point & fixed point DNNs**

Introduction

The contribution of this work

Propose a deep learning accelerator capable of unprecedented hardware runtime pruning to mine the maximum potential of BitX.

Speedup	2.61x~4.82x (fp32), 2.00x (16 fixed point), 4.98x and 14.76x higher over the baseline based on software pruning
Accuracy	Negligible accuracy under fp32, about <mark>1% accuracy improvement</mark> under 16-bit fixed point
Accelerator	Performance 2.00x and 3.79x performance improvement compared with other SOTA

accelerators

BitX is designed for *flexible* and *versatile* DNN inference for the most tasks

Motivation

weight sparsity versus bit sparsity

Model	Weight Sparity	Bit Sparity
DenseNet121	4.84%	48.64%
ResNet50	0.33%	48.64%
ResNet152	0.75%	48.64%
ResNext50_32x4d	0.37%	48.64%
ResNext101_32x8d	3.43%	48.65%
InceptionV3	0.05%	48.64%
MNASNet0.5	0.00%	48.60%
MNASNet1.0	8.07%	48.98 %
MobileNetV2	0.01%	48.67%
ShuffleNetV2_x0_5	0.00%	48.36 %
ShuffleNetV2_x1_0	1.53%	48.63%
SqueezeNet1_0	0.05%	48.64 %
SqueezeNet1_1	0.02%	48.64%

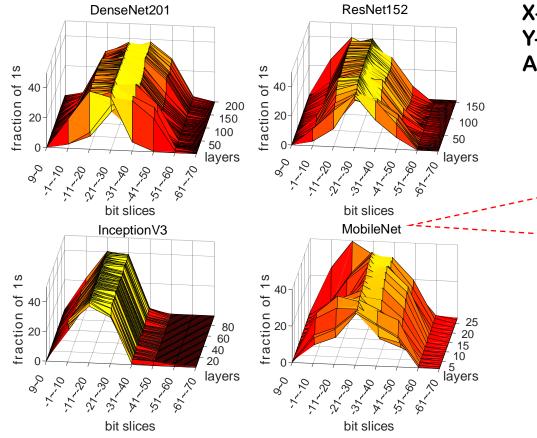
Weight sparsity : the values below 10⁻⁵ over the total parameter size

abundant Bit sparsity : total bit 0s over the total "bit count" of the mantissas

Significantly

Motivation

Trivial bits



X-axis : the bit slice of the binary represented weight (in fp32) Y-axis : the fraction of bit '1' All the evaluated DNNs exhibit an "arched" shape.

> The central bit slices own most of the bit 1s (~ 40%). While all these bits are tiny. Taking bit significance $2^{-21} \sim 2^{-30}$ as the representative, the equivalent decimals are in range: 0.000000477 (~10⁻⁸) to 0.0000000931 (~10⁻¹¹)

Distribution analysis of bit 1s

Problem tackled in this work

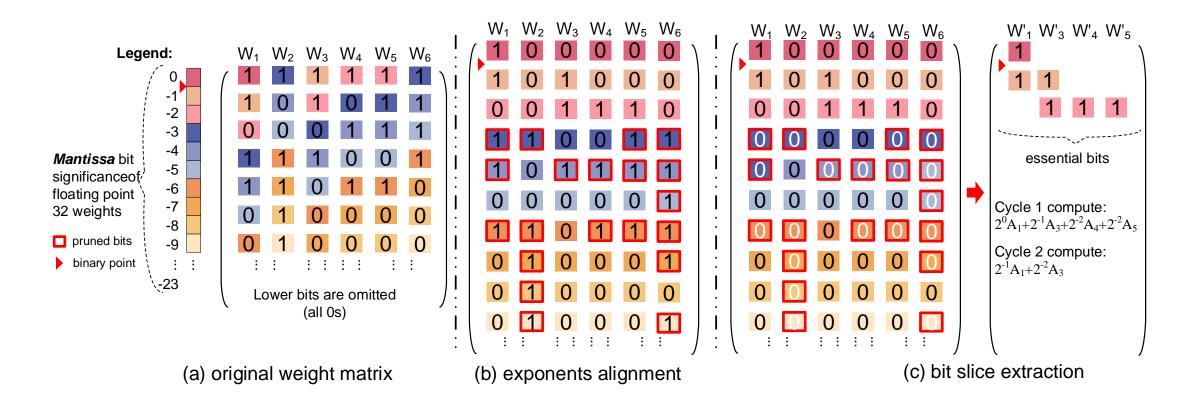
Goal : pinpoint the essential bits and prune away the useless bits

Genetic 0 bits	Zero-skipping mechanism to avoid the ineffectual computations caused by the zero bits Easy to implement ^_^
----------------	---

Trivial 1 bits	The impact of a single bit to the whole network is not that easy to be determined How to tackle this problem?!
----------------	--

We intend to solve the two issues in BitX!

Methodology – core concept



Weights represented in floating-point 32 mode. Different colors indicate the bit significance from 2⁻¹ to 2⁻⁹ after the binary point

Methodology – bit pruning

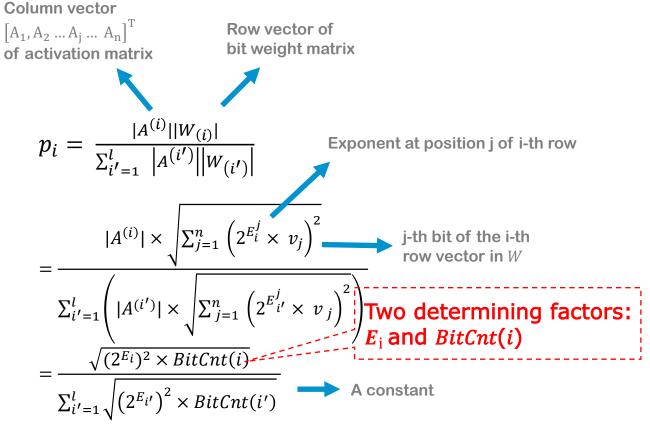
Approximating Matrix Multiplication

Metric of selecting rank-one matrices

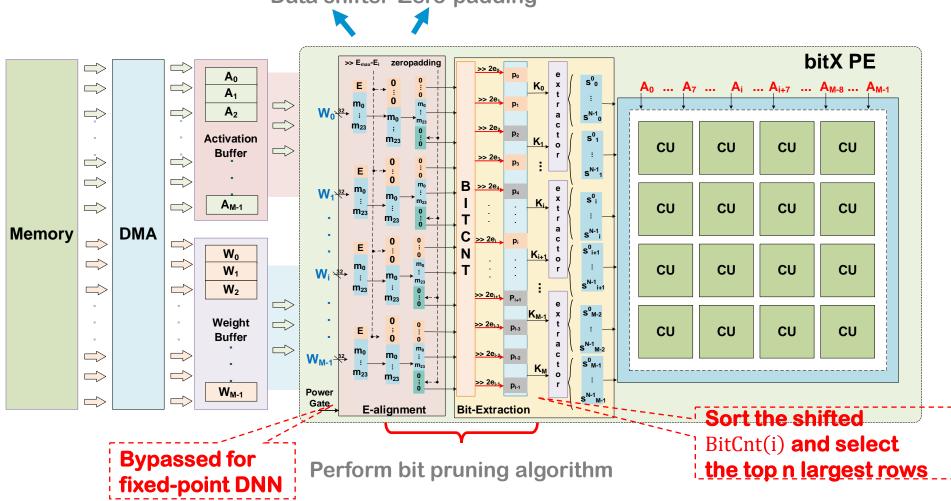
- Given an m×n matrix A and an n × p matrix B,
- The product AB, is equivalent to the sum of n rank-one matrices

•
$$AB = \sum_{i=1}^{n} (A^{(i)}) (B_{(i)})$$

- \succ A⁽ⁱ⁾the i-th column of A
- \succ B_(i) the i-th row of B
- Each term in the summation is a rank-one matrix

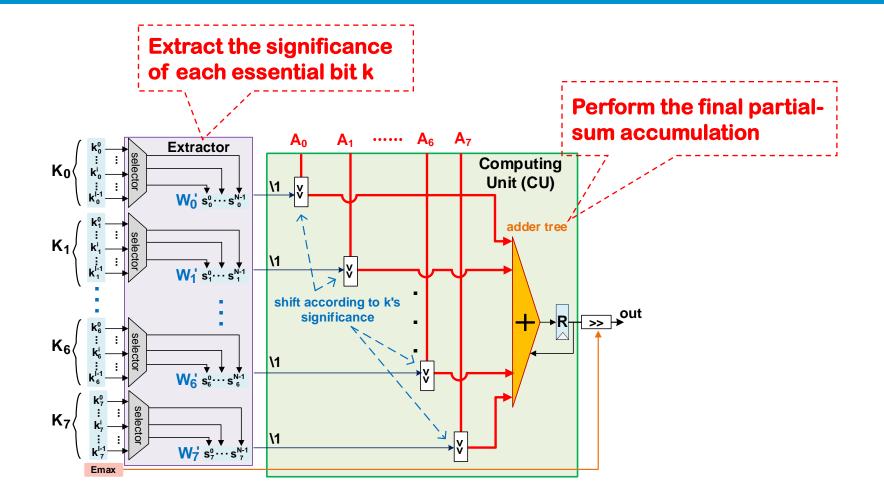


Methodology – BitX accelerator



Data shifter Zero-padding

Methodology – computing units



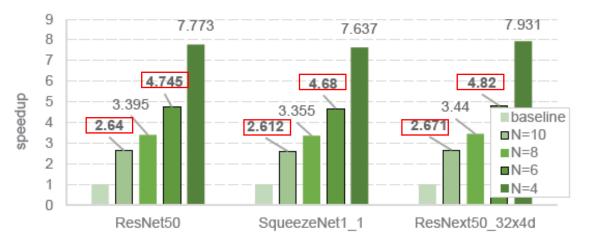
Accuracy & Sparsity

		gra	anularity o	of pruning)
Model	Original	N=10	N=8	N=6	N=4
DenseNet121	71.96/1x	71.95/1.34x	71.00/1.47x	71.00/1.62x	65.00/1.76x
DenseNet161	75.28/1x	75.20/1.32x	75.14/1.46x	74.79/1.61x	72.00/1.76x
DenseNet169	73.75/1x	73.56/1.31x	73.55/1.45x	73.55/1.60x	68.62/1.75x
Densenet201	74.56/1x	74.46/1.30x	74.40/1.44x	74.24/1.59x	69.00/1.74x
ResNet18	67.28/1x	67.09/1.64x	67.00/1.73x	66.72/1.81x	62.52/1.90x
ResNet34	71.32/1x	71.11/1.65x	71.10/1.73x	70.92/1.82x	68.00/1.90x
ResNet50	74.50/1x	74.50/1.41x	74.51 /1.54x	74.10/1.67x	67.00/1.80x
ResNet101	76.00/1x	76.06/1.43x	76.05/1.55x	75.76/1.68x	69.02/1.81x
ResNet152	77.02/1x	76.56/1.44x	76.55/1.56x	76.46/1.69x	72.30/1.81x
ResNext50_32x4d	76.29/1x	75.99/1.24x	75.96/1.39x	75.67/1.56x	65.01/1.72x
ResNext101_32x8d	78.24/1x	78.20/1.27x	78.30/1.42x	78.10/1.58x	73.00/1.74x
SqueezeNet1_1	54.84/1x	54.86 /1.42x	54.70/1.54x	54.40/1.67x	47.30/1.80x
Avg. loss / sparsity	0.000/1x	0.131/1.40x	0.242/1.52x	0.444/1.66x	6.023/1.79x

Parameter to control the

- 1. less than 0.5% average accuracy loss at N = 10, 8, 6.
- 2. Accuracy improvement on some models.

Speedup



BitX exhibits promising speedup of $\sim 2.6x$ at N = 10, and $\sim 4.8x$ at N = 6.

Design Space Exploration

	ResNet50	2	inal Acc	•		DenseNet121		nal Accu	-		
		N=10	N=8	N=6	N=4		N=10	N=8	N=6	N=4	
	M=8	74.50	74.51	74.10	67.00	M=8	71.95	71.00	71.00	65.00	
	M=16	74.54	74.40	73.60	61.00	M=16	71.97	72.00	71.00	62.00	
	M=32	74.00	74.50	73.50	58.20	M=32	72.03	72.00	71.00	58.00	
	M=64	74.39	74.00	73.00	53.30	M=64	71.00	71.00	70.00	55.00	
	M=128	74.41	74.32	72.70	46.30	M=128	71.00	71.00	70.00	49.20	
	M=256	74.51	74.40	72.80	46.80	M=256	71.84	71.00	69.00	49.00	Two BitX instances:
·	M=512	74.30	74.26	71.90	39.40	M=512	71.83	71.60	69.00	34.00	
<i>M</i> :number of input	D N 4101 20 01	Origi	inal Acc	uracy: 7	78.24	0 N 11 1	Origin	nal Accu	iracy: 5	4.84	BitX-mild (<i>N</i> =10, <i>M</i> =8)
weights that the	ResNext101_32x8d	Origi N=10	inal Acc N=8	uracy: 7 N=6	7 8.2 4 N=4	SqueezeNet1_1	Origin N=10	nal Accu N=8	ıracy: 5 N=6	4.84 N=4	BitX-mild (<i>N</i> =10, <i>M</i> =8) BitX-wild (<i>N</i> =6, <i>M</i> =8)
weights that the accelerator could	ResNext101_32x8d M=8			-		SqueezeNet1_1 M=8	0		•		
weights that the accelerator could simultaneously		N=10	N=8	N=6	N=4		N=10	N=8	N=6	N=4	
weights that the accelerator could	 M=8	N=10 78.20	N=8 78.30	N=6 78.10	N=4 73.00	M=8	N=10 54.86	N=8 54.70	N=6	N=4 47.30	
weights that the accelerator could simultaneously	 M=8 M=16	N=10 78.20 78.20	N=8 78.30 78.00	N=6 78.10 77.50	N=4 73.00 66.00	M=8 M=16	N=10 54.86 54.80	N=8 54.70 54.74	N=6 54.40 53.00	N=4 47.30 41.60	
weights that the accelerator could simultaneously	M=8 M=16 M=32	N=10 78.20 78.20 78.20	N=8 78.30 78.00 78.00	N=6 78.10 77.50 78.20	N=4 73.00 66.00 65.00	M=8 M=16 M=32	N=10 54.86 54.80 54.00	N=8 54.70 54.74 54.50	N=6 54.40 53.00 53.64	N=4 47.30 41.60 41.70	
weights that the accelerator could simultaneously	M=8 M=16 M=32 M=64	N=10 78.20 78.20 78.20 78.20 78.20	N=8 78.30 78.00 78.00 78.20	N=6 78.10 77.50 78.20 77.30	N=4 73.00 66.00 65.00 62.00	M=8 M=16 M=32 M=64	N=10 54.86 54.80 54.00 54.70	N=8 54.70 54.74 54.50 54.77	N=6 54.40 53.00 53.64 53.50	N=4 47.30 41.60 41.70 37.10	

- 1. M barely influences the over all accuracy scaling from 8~512 for all 4 DNNs.
- 2. Accuracy improvement in some models.

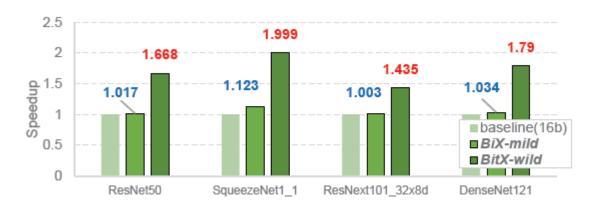
Performance of the Fixed-point DNN

Accuracy

Model	Baseline(16b)	BitX-mild	BitX-wild
ResNet50	74.50	74.50	74.10
		(0.00)	(-0.40)
SqueezeNet1_1	54.86	54.80	54.40
-		(-0.06)	(-0.46)
DenseNet121	71.00	71.90	71.80
		(+0.90)	(+0.80)
ResNext101_32x8d	78.00	78.20	78.10
_		(+0.20)	(+0.10)

BitX-mild and *BitX-wild* both exhibit higher accuracy than most of non-pruned models.

Speedup



1. \sim 2x speedup in *BitX-wild*.

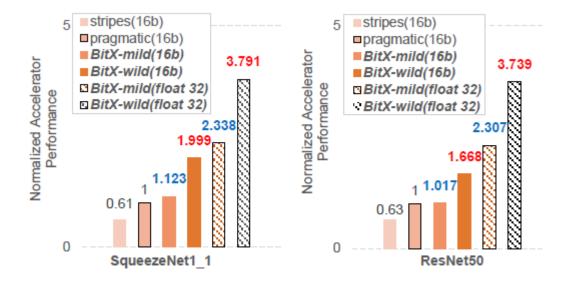
2. ∼10% but abundant speedup in *BitX-mild*.

Working with Software-based Pruning

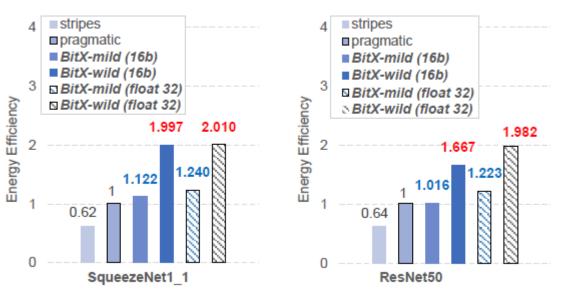
BitX is orthogonal to any software-based pruning schemes

Method	mAP(%)	Speedup(x)	Higher speedup than
YoloV3 (baseline)	50.36	1	software based pruning
YoloV3 + <i>BitX-mild</i>	(50.42)	2.75	
	(+0.06)		
YoloV3 + <i>BitX-wild</i>	50.05	4.98	
	(-0.31)		
YoloV3 + Slimming (baseline)	50.23	2.35	ç
	(-0.13)		Considerable speedu
YoloV3 + Slimming + <i>BitX-mild</i>	50.30	7.22	than genetic model
	(+0.07)		
YoloV3 + Slimming + <i>BitX-wild</i>	48.72	14.76	
	(-1.64)		

Comparison with SOTA Accelerators

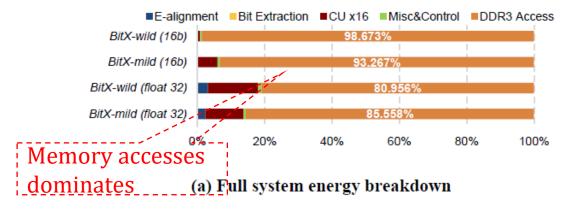


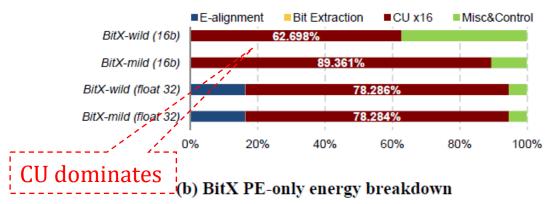
- 1. The speedup shows **better result** over other SOTA accelerator both in *BitX-wild* and *BitX-mild*.
- 2. The floating-point results are higher than the fixed-point results.



Energy efficiency of *BitX* also **outperforms** other accelerators.

Energy breakdown





INTERNATIONAL

CONFERENCE ON

PARALLEL

PROCESSING

Area and Power breakdown

Precision	<i>BitX</i> (floating∙	-point 32)	<i>BitX</i> (16b fixed point)
Item	Area (mm ²)	Power (mW)	Power (mW)
E-alignment	0.017 (43.60%)	11.15 (16.20%)	-
Bit Extraction	0.008 (20.10%)	0.04 (0.05%)	0.026 (0.07%)
16 CUs	0.003 (7.70%)	53.71 (78.30%)	35.81 (98.40%)
Misc&Control	0.011 (28.20%)	(70.50%) 3.72 (5.40%)	0.576 (1.60%)
Total	0.039	(3.40%) 68.62	36.41

1. Area : only 0.039 mm²

2. 36.41 mW : high speedup, high power consumption

3. 68.62 mW : low speedup, low power consumption

acm> In-Cooperation

npc

Recap

The contribution of this work

① Propose a novel hardware runtime pruning method -- BitX, to empower versatile DNN inference

Software effortless

No retraining! No fine-tuning!

Orthogonal to the existing software pruning methodologies

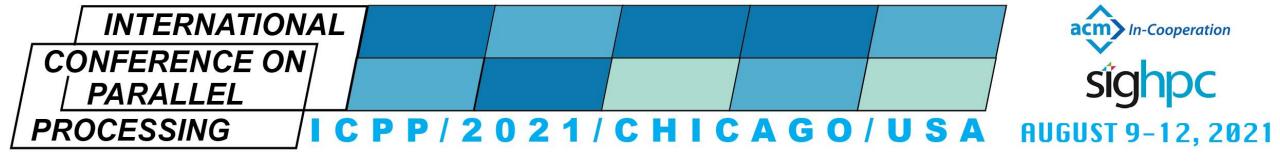
obtain additional speedup

Multi-precision support

floating point & fixed point DNNs

② Propose a deep learning accelerator capable of unprecedented hardware runtime pruning to mine the maximum potential of BitX.

Applications, and what's more?



Thanks for listening!

Questions?

Hongyan Li¹², Hang Lu¹², Jiawen Huang¹, Wenxu Wang¹², Mingzhe Zhang¹, Wei Chen¹, Liang Chang³, Xiaowei Li¹²

¹State Key Laboratory of Computer Architecture, Institute of Computing Technology, CAS, Beijing, China

²University of Chinese Academy of Sciences, Beijing, China

³University of Electronic Science and Technology of China, Chengdu, China



