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Introduction

Model Params

ResNet50 22.5×106

3D-ConvNet 79×106

Bert_large 340×106

2~3 days sparse training

3~4 days retraining / fine-tuning

Demand of  large computation

Time-consuming 

6 TITAN Xp

2 Intel Xeon E5-2650 v4

DNN networks

Pruning

YoloV3

network slimming[1]

[1] Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang, Shoumeng Yan, and Changshui,Zhang. 2017. Learning Efficient Convolutional Networks through Network Slimming. In ICCV
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Introduction

The contribution of  this work

Propose a novel hardware runtime pruning method -- BitX, to empower 

versatile DNN inference

No retraining!  No fine-tuning! Software effortless

 Orthogonal to the existing software pruning methodologies

 Multi-precision support

Obtain additional speedup

Floating point & fixed point DNNs
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Introduction

The contribution of  this work

2.61x~4.82x (fp32), 2.00x (16 fixed point), 4.98x and 14.76x higher over the 

baseline based on software pruning
Speedup

Accuracy

Accelerator Performance

Negligible accuracy under fp32, about 1% accuracy improvement under 

16-bit fixed point

2.00x and 3.79x performance improvement compared with other SOTA 

accelerators

BitX is designed for flexible and versatile DNN inference for the most tasks

Propose a deep learning accelerator capable of unprecedented hardware runtime pruning 

to mine the maximum potential of BitX.
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Motivation

Model Weight Sparity Bit Sparity

DenseNet121 4.84% 48.64%

ResNet50 0.33% 48.64%

ResNet152 0.75% 48.64%

ResNext50_32x4d 0.37% 48.64%

ResNext101_32x8d 3.43% 48.65%

InceptionV3 0.05% 48.64%

MNASNet0.5 0.00% 48.60%

MNASNet1.0 8.07% 48.98%

MobileNetV2 0.01% 48.67%

ShuffleNetV2_x0_5 0.00% 48.36%

ShuffleNetV2_x1_0 1.53% 48.63%

SqueezeNet1_0 0.05% 48.64%

SqueezeNet1_1 0.02% 48.64%

Weight sparsity : the values below 10−5 over the 

total parameter size

Bit sparsity : total bit 0s over the total “bit count” 

of  the mantissas

Significantly 
abundant

Very limited 
headroom
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Motivation

Trivial bits

200
150

layers

100
50

DenseNet201

0

bit slices

20

40

150

100

50

ResNet152

0

20

40

80
60

40

InceptionV3

200

20

40

25
20

15
10

MobileNet

50

20

40

fr
a

c
ti

o
n

 o
f
 1

s
fr

a
c

ti
o

n
 o

f 
1

s

fr
a

c
ti

o
n

 o
f
 1

s
fr

a
c

ti
o

n
 o

f 
1

s

bit slices

bit slices

bit slices

layers

layers

layers

Distribution analysis of  bit 1s

X-axis : the bit slice of  the binary represented weight (in fp32)

Y-axis : the fraction of  bit ‘1’

All the evaluated DNNs exhibit an “arched” shape.

The central bit slices own most of the 

bit 1s (~ 40%). While all these bits are 

tiny. Taking bit significance 2-21 ~ 2-30

as the representative, the equivalent 

decimals are in range: 0.000000477 

(~10-8) to 0.000000000931 (~10-11)
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Problem tackled in this work

The impact of  a single bit to the whole network is not that

easy to be determined -- How to tackle this problem? -_-!

Zero-skipping mechanism to avoid the ineffectual computations 

caused by the zero bits -- Easy to implement ^_^ 

We intend to solve the two issues in BitX!

Goal : pinpoint the essential bits and prune away the useless bits

Genetic 0 bits

Trivial 1 bits
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Legend:

(a) original weight matrix (b) exponents alignment
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Methodology – core concept

Weights represented in floating-point 32 mode. 
Different colors indicate the bit significance from 2-1 to 2-9 after the binary point
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Methodology – bit pruning

• Given an m×n matrix A and an n × p 
matrix B,

• The product AB, is equivalent to the sum 
of  n rank-one matrices

• 𝐴𝐵 = σ𝑖=1
𝑛 𝐴 𝑖 ( 𝐵(𝑖) )

➢ A(i)the i-th column of  A

➢ B(i) the i-th row of  B

➢ Each term in the summation is a rank-one 
matrix

Approximating Matrix Multiplication

𝑝𝑖 =
|𝐴 𝑖 ||𝑊 𝑖 |

σ
𝑖′=1
𝑙 𝐴 𝑖′ 𝑊 𝑖′

=

|𝐴 𝑖 | × σ𝑗=1
𝑛 2𝐸𝑖

𝑗

× 𝑣𝑗
2

σ𝑖′=1
𝑙 |𝐴(𝑖

′)| × σ 𝑗=1
𝑛 2

𝐸
𝑖′
𝑗

× 𝑣 𝑗

2

=
(2𝐸𝑖)2 × 𝐵𝑖𝑡𝐶𝑛𝑡 𝑖

σ𝑖′=1
𝑙 2𝐸𝑖′

2
× 𝐵𝑖𝑡𝐶𝑛𝑡 𝑖′

Metric of selecting rank-one matrices

Row vector of  

bit weight matrix

Column vector

A1, A2…Aj… An
T

of activation matrix 

j-th bit of  the i-th

row vector in 𝑊

Exponent at position j of  i-th row

A constant

Two determining factors:
𝑬i and 𝐵𝑖𝑡𝐶𝑛𝑡(𝑖)
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Methodology – BitX accelerator

Perform bit pruning algorithm

Data shifter Zero-padding

Bypassed for 

fixed-point DNN

Sort the shifted 

BitCnt i and select

the top n largest rows
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Methodology – computing units 
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Evaluation

• Accuracy & Sparsity

1. less than 0.5% average accuracy loss at N = 10, 8, 6.

2. Accuracy improvement on some models.

Parameter to control the 

granularity of  pruning

• Speedup

BitX exhibits promising  speedup of ~2.6x at 𝑁 = 
10, and ~4.8x at 𝑁 = 6.



INTERNATIONAL

CONFERENCE ON
PARALLEL

PROCESSING

50th International Conference on Parallel Processing 

(ICPP) August 9-12, 2021 in Virtual Chicago, IL 

Evaluation

• Design Space Exploration

Two BitX instances:

BitX-mild (𝑁=10, 𝑀=8)

BitX-wild (𝑁=6, 𝑀=8)

1. M barely influences the over all accuracy scaling from 8~512 for all 4 DNNs.

2. Accuracy improvement in some models.

M:number of input 
weights that the 
accelerator could 
simultaneously 
prune
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Evaluation

• Performance of  the Fixed-point DNN

Accuracy Speedup

BitX-mild and BitX-wild both exhibit higher 
accuracy than most of non-pruned models.

1. ~2x speedup in BitX-wild.

2. ~10% but abundant speedup in BitX-mild.
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Considerable speedup 

than genetic model

Higher speedup than 

software based pruning

Evaluation

• Working with Software-based Pruning
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BitX is orthogonal to any software-based pruning schemes
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Evaluation

• Comparison with SOTA Accelerators

1. The speedup shows better result over other SOTA 
accelerator both in BitX-wild and BitX-mild. 

2. The floating-point results are higher than the 
fixed-point results.

Energy efficiency of BitX also outperforms other 
accelerators.
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Evaluation

• Energy breakdown • Area and Power breakdown

Memory accesses 
dominates

CU dominates 1. Area : only 0.039 mm2

2. 36.41 mW : high speedup, high power consumption 

3. 68.62 mW : low speedup, low power consumption 
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Recap

The contribution of  this work

 Propose a novel hardware runtime pruning method -- BitX, to empower versatile DNN 

inference

No retraining!  No fine-tuning!➢ Software effortless

➢ Orthogonal to the existing software pruning methodologies

➢ Multi-precision support

obtain additional speedup

floating point & fixed point DNNs

 Propose a deep learning accelerator capable of unprecedented hardware runtime pruning to 

mine the maximum potential of BitX.

Applications, and what’s more?
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Questions?

Thanks for listening!
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