

FedCav: Contribution-aware Model Aggregation on Distributed Heterogeneous Data in Federated Learning

Hui Zeng¹, Tongqing Zhou¹, Yeting Guo¹, Zhiping Cai¹, Fang Liu²

¹ College of Computer, National University of Defense Technology

² School of Design, Hunan University

- Background
- Observation and Problem Statement
- Our Solution
- Experiments
- Conclusion

Two main problems in AI

data privacy

data island

Federated Learning

 Federated Learning (FL) allows multiple distributed devices to cooperatively train models in parallel while preserving data privacy

Data Heterogeneity Problem in FedAvg

- Data Heterogeneity
 - Global non-IID
 - Local class imbalanced

- Problem
 - Slow convergence
 - Low training performance Local training mobile device mobile device

Observations of FL with heterogeneous data

Setup -- Observation experiment

Dataset: MNIST

Training Model: LeNet-5

Table 1. Three different types of data distribution

Notations	Description
IID & balanced	Global IID and Local class balanced
non-IID & balanced	Global non-IID and Local class balanced
non-IID & imbalanced	Global non-IID and Local class imbalanced, the variance of each class is $\boldsymbol{\sigma}$

Observation Results

- Results
 - Slow convergence
 - balanced: 5~10
 - imbalanced: 20~35
 - Low training performance
 - balanced: ~95%
 - imbalanced: 80% ~ 93%

In-Cooperation

Problem Statement

Observation analysis
 Heterogeneous Data
 FedAvg
 Joata size = Contribution

Reality

Data size *≠* Contribution

Which is more valuable?

Our Solution

FedCav workflow

Contribution-aware model aggregation

| INTERNATIONAL | CONFERENCE ON | PARALLEL | PROCESSING

50th International Conference on Parallel Processing (ICPP) August 9-12, 2021 in Virtual Chicago, IL

SIC

hpc

Detection mechanism

Experiment

Setup -- Dataset & Models

Dataset	Samples	Training Model		
MNIST	ダロム	LeNet-5[1]		
FMNIST(Fashion-MNIST)		9-layers CNN		
CIFAR-10	Co Da M	Resnet18[2]		

[1]Yann Lecun, Leon Bottou, Y. Bengio, and Patrick Haffner. 1998. Gradient-Based Learning Applied to Document Recognition. Proc. IEEE (1998), 2278 – 2324.

[2]He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770-778).

Results -- Classification performance

Table 4: Average classification accuracy under different levels of data heterogeneity (varying σ) on three datasets. Here we list the accuracy performance of different methods after the learning process gets convergence.

	$\sigma = 300$			$\sigma = 600$			$\sigma = 900$		
	FedAvg	FedProx	FedCav	FedAvg	FedProx	FedCav	FedAvg	FedProx	FedCav
MNIST	0.9333	0.9391	0.9365	0.9175	0.9200	0.9200	0.8467	0.8498	0.8623
FMNIST	0.8447	0.8459	0.8621	0.8111	0.8236	0.8349	0.7397	0.7716	0.7913
CIFAR-10	0.4612	0.4644	0.4686	0.4239	0.4254	0.4287	0.4003	0.424	0.4387

FedProx: Tian Li, Anit Kumar Sahu, Manzil Zaheer, et al. 2018. Federated optimization in heterogeneous networks. arXiv preprint arXiv:1812.06127 (2018).

Figure 4: Classification accuracy with dynamic data distribution adjustment controlled by factor α on three dataset. Results on different datasets are painted, wherein FedCav shows a generally stable and superior performance.

Results -- Impact of Clip strategy

Figure 5: Training process with four different algorithms on three datasets. Comparing the difference of whether it is necessar to use the Clip strategy. The curve shows that FedCav without Clip occurs great up-and-down oscillation.

Results -- Impact of model replacement attack

Figure 6: Part of training process of FedCav without detection and FedAvg after the model replacement attack on three datasets.

Results -- Reverse to cached one

Conclusion

- Problem: Address the data heterogeneous problem in FL
- Observation: Heterogeneous data cause the slow convergent and low training accuracy.
- Key idea: Contribution-aware model aggregation. Aggregate with the contribution not the data size. Also consider malicious attack.
- Evalution: Higher classification accuracy (~2.4%) than baselines on average, fewer communication rounds (~34%) to achieve convergence

Thank you!

Hui Zeng¹, Tongqing Zhou¹, Yeting Guo¹, Zhiping Cai¹, Fang Liu²

¹ College of Computer, National University of Defense Technology

² School of Design, Hunan University

Email: zenghui116@nudt.edu.cn