

Accelerating DBSCAN Algorithm with AI Chips for Large Datasets

Zhuoran Ji and Cho-Li Wang

Department of Computer Science

The University of Hong Kong

August 11, 2021

- DBSCAN
- DBSCAN is a powerful clustering areas
 - E.g., text clustering, astronomy, geography, image processing
- Advantage:
 - No need to specify the # of clusters to be found
 - Can detect cluster with any shape
- But: high computational complexity
 - distance between every two points

images from google

INTERNATIONAL

CONFERENCE ON <u>PARALLEL</u> PROCESSING

AI Chips

- Driven by DL, many AI chips are proposed
 - Nvidia GPU, Huawei Ascend, Alibaba Hanguang, Google TPU
- Their marquee feature is TCUs (Tensor Core Units): dedicated matrix multiplication hardware units
- Provide very efficient MM algorithm
 - RTX3090: 71 vs 35.6 TFLOPS
- However, other components, such as vector units and scalar units are usually
 - less powerful
 - highly specialized for AI apps

Motivation

- Distance metric for DBSCAN:
 - cosine similarity, dot product, Euclidean distance
- Cosine similarity:

$$d_{[i,j]} = \frac{\mathbf{P}_i \cdot \mathbf{P}_j}{\|\mathbf{P}_i\| \|\mathbf{P}_j\|} = \frac{\sum_{k=1}^{dim} \mathbf{P}_i[k] \mathbf{P}_j[k]}{\sqrt{\sum_{k=1}^{dim} \mathbf{P}_i[k]^2} \sqrt{\sum_{k=1}^{dim} \mathbf{P}_j[k]^2}} \qquad \underbrace{l2 \text{ normalized}}_{d_{[i,j]}} = \frac{\sum_{k=1}^{dim} \mathbf{P}_i[k] \mathbf{P}_j[k]}{1 \times 1} = \mathbf{P}_i \cdot \mathbf{P}_j$$

• Distance matrix:

$$\begin{vmatrix} d_{[\mathcal{F}_0,0]} & \cdots & d_{[\mathcal{F}_0,n]} \\ \vdots & \ddots & \vdots \\ d_{[\mathcal{F}_m,0]} & \cdots & d_{[\mathcal{F}_m,n]} \end{vmatrix} = \begin{vmatrix} P_{\mathcal{F}_0} \\ \vdots \\ P_{\mathcal{F}_m} \end{vmatrix} \times \begin{vmatrix} P_0^T & \cdots & P_n^T \end{vmatrix}$$

• Natural to use TCUs to accelerate distance calculation

INTERNATIONAL

CONFERENCE ON

PROCESSING

Challenge: Identify ϵ -neighbors on AI chips

- However, identify and count ε-neighbors on AI chips is challenging
 - involve compare-and-select (CMPSEL) operation
 - weakly supported by many AI chips

```
procedure IDENTIFY_NEICUBORS(dis matrix)

adj[i][j] = dis_matrix[i][j] \le \varepsilon ? 1 : 0

numNeighbors[i] = REDOCE(+, adj[i][0:j])

isCore[i] = numNeighbors[i] \ge minPts ? true : false

isNeighbor[j] = REDUCE(||, adj[0:i][j], isCore[i])

return isNeighbor[0:j]

end procedure
```

- Some AI chips do have dedicated ReLU units
 - y = x > 0 ? x : 1
 - BUT, not allow an arbitrary value for the positive input

Challenge: Device Memory is Limited

- GPUs and other AI chips' device memory: 10x GBs
- The size of the datasets can be 100x GBs, exceeding the capacity
- Space complexity
 - Dataset: O(DN)
 - Adjacency matrix: O(MN)
 - N is the # of points in the dataset

Identify ε -neighbors on AI chips

- The essence of ϵ -neighbor identification is to find a mapping function so that
 - # of ε-neighbors <- *REDUCE*(*op*₁, *MAP*(*f*, *distance*[*i*][0: *j*]))
 - whether j is an ε-neighbors <- REDUCE(op₂, MAP(f, distance[0: i][j]))
- We can then generalize the ϵ -neighbors identification kernel as

```
procedure IDENTIFY_NEIGHBORS(dis\_matrix)

adj[i][j] = dis\_matrix[i][j] \le \varepsilon ? 1 : 0

numNeighbors[i] = REDUCE(+, adj[i][0:j])

isCore[i] = numNeighbors[i] \ge minPts ? true : false

isNeighbor[j] = REDUCE(||, adj[0:i][j], isCore[i])

return isNeighbor[0:j]
```


indicators[i][j] = f(distance[i][j], ε) internalNum[i] = REDUCE(op₁, indicators[i][0:j]) isCore[i] = CHECK_CORE_POINT(internalNum[i], minPts) isNeighbor[j] = REDUCE(op₂, indicators[0:i][j], isCore[i]) return isNeighbor[0:j]

Mapping Function for AI Chips

- The key of the mapping function is to
 - differentiate the behaviors of ε-neighbors and non-ε-neighbors during reduction
 - unify the behavior of the points within the same category
- For example, the unit step function maps
 - ε-neighbors to 1
 - non-ε-neighbors to 0
 - satisfies the two requirement

Mapping Function $f_{-2.0/\pm0.0}$

- $f_{-2.0/\pm0.0} = ((\text{distance} \varepsilon) \& 0x8000 | 0x3c00) 1.0$
- In the form of instructions:

Algorithm 3 Mapping function $f_{-2.0/\pm0.0}$

 $\triangleright \varepsilon$ - *similarity*, if measured as similarity 1: $v_1 = distance - \varepsilon$ 2: v_2 = reinterpret v_1 as a 16-bits binary 3: $v_3 = v_2 \& 0x8000$ $\triangleright \varepsilon$ -neighbors = 0x8000, others = 0x0000 \triangleright ε -neighbors = 0xbc00, others = 0x3c00 4: $v_4 = v_3 | 0x3c00$ 5: v_5 = reinterpret v_4 as a *float16* 6: *indicator* = $v_5 - 1.0$

reinterpret

- 1. differentiate the behaviors of ε neighbors and non-*\varepsilon*-neighbors during reduction
- 2. unify the behavior of the points within the same category

 ϵ -neighbor: ϵ – 2.0 non- ε -neighbor: ε + 2.0

INTERNATIONAL

CONFERENCE ON PARALLEI PROCESSING

-8

- 2.0 2.0

0xC000 as 16-bit bin 0x4000

0x8000 (-0.0) & 0x8000 0x0000 (0.0)

Mapping Function $f_{-2.0/\pm0.0}$

- $f_{-2.0/\pm0.0} = ((\text{distance} \varepsilon) \& 0x8000 | 0x3c00) 1.0$
- In the form of instructions:

Algorithm 3 Mapping function $f_{-2.0/\pm0.0}$

1: $v_1 = distance - \varepsilon$ $\triangleright \varepsilon - similarity$, if measured as similarity

2: v_2 = reinterpret v_1 as a 16-bits binary

- 3: $v_3 = v_2 \& 0x8000 \Rightarrow \varepsilon$ -neighbors = 0x8000, others = 0x0000
- 4: $v_4 = v_3 \mid 0x3c00 \quad \triangleright \epsilon$ -neighbors = 0xbc00, others = 0x3c00
- 5: v_5 = reinterpret v_4 as a *float16*

6: *indicator* = $v_5 - 1.0$

Mapping Function $f_{-128/0}$

- $f_{-128/0} = (\text{distance} \varepsilon) \& 0 \times 8000$
- Same with the first three steps of $f_{-2.0/\pm0.0}$
- $\ln f_{-2.0/\pm 0.0}$
 - +0.0 and -0.0 have similar behaviors for addition and subtraction
 - 0.0 is special for multiply and division
- How about we interpret it as int8

 ϵ -neighbor: ϵ – 2.0 0xC000 0x8000 (-0.0) (-128, 0)- 2.0 reinterpret reinterpret -8 & 0x8000 as 16-bit bin as 2 int8 2.0 0x0000 (0.0) non- ε -neighbor: ε + 2.0 0x4000 (0, 0)

Mapping Function $f_{-128/0}$

- Easy to determine whether a point is a ϵ -neighbor
 - i.e., $op_2 = ||$
- However, cannot count ϵ -neighbors by integer addition
- The value "-128" is the maximum negative value for int8
- Vector units usually need the inputs and the outputs to have the same data type
 - Overflow almost always occurs
- Two intuitive method
 - Convert the data type to int32
 - e.g., static_cast
 - Casting is costly, reducing int32 is expensive than reducing int16
 - Reduce the magnitude by vector operation
 - e.g., right shift, integer division, or exponential function
 - weakly supported or costly than $f_{-2.0/\pm0.0}$

Mapping Function $f_{-128/0}$

- Mixed-precision MMA
 - One of the most novel features of TCUs
- Input matrices in low-precision data types
- Accumulates the result in high-precision data types
- E.g.,
 - Nvidia TCUs support FP16 \rightarrow FP32 and INT4/8 \rightarrow INT32
 - Huawei TCUs support FP16 \rightarrow FP32 and INT8 \rightarrow INT32
- Thus, we use TCUs to accumulate the mapped values

CONFERENCE ON

PROCESSING

Mini Batch DBSCAN

11:

- DBSCAN can process the data in a mini-batch manner
 - much like the deep neural network training
 - but high data transfer overhead
 - 1: for *batch_i* in # of mini-batches do
 - 2: transfer dataset[batch_i] to device mem
 - 3: calculate the distance matrix *disMat*[*batch_i*]
 - 4: identify ε-neighbors adjMat[batch_i]
 - 5: accumulate the # of *ε*-neighbors of *adjMat*[*batch_i*]
 - 6: transfer udjMat[batch_i] to host mem
 - 7: determine *corePoints* with # of ε -neighbors
 - 8: for batch_i in # of mini-batches do
 - 9: transfer *adjMat[batch_i]* to device mem
 - 10: merge ε-neighbors of corePoints to isNeighbor[batch_i]
 - transfer is Neighbor [batch_i] to host mem

INTERNATIONAL

| CONFERENCE ON | PARALLEL PROCESSING

Mini Batch DBSCAN: Ping Pong Buffer

- Ping-Pong buffers can overlap- ping computation and data transfer
 - time should be comparable
 - otherwise, overlap is negligible.

- Distance matrix calculation
 - computation & data transferring time is comparable
- BUT, for merging ε-neighbors
 - overlap is negligible

- 1: **for** *batch_i* **in** # of mini-batches **do**
- 2: transfer $dataset[batch_i]$ to device memO(DN)
- 3: calculate the distance matrix *disMat*[*batch_i*] O(MDN)
- 4: identify *ε*-neighbors *adjMat*[*batch_i*]
- 5: accumulate the # of ε -neighbors of $adjMat[batch_i]$
- 6: transfer $adjMat[batch_i]$ to host mem O(NM)
- 7: determine *corePoints* with # of ε -neighbors
- 8: **for** *batch_i* **in** # of mini-batches **do**
- 9: transfer *adjMat*[*batch_i*] to device mem O(MN)
- 10: merge ε -neighbors of corePoints to isNeighbor[batch] (NM)
- 11: transfer *isNeighbor*[*batch_i*] to host mem

 The control flow depends on # of neighbors: calculated with a loop over mini-batches

- 1: **for** *batch_i* **in** # of mini-batches **do**
- 2: transfer *dataset*[*batch_i*] to device mem
- 3: calculate the distance matrix *disMat*[*batch_i*]
- 4: identify *ε*-neighbors *adjMat*[*batch_i*]
- 5: **Constant** accumulate the # of ε -neighbors of $adjMat[batch_i]$
- 6: transfer *adjMat*[*batch* 1] to host mem
- 7. determine *corePoints* with # of ε -neighbors
- 8: for *batch_i* in # of mini-batches do
- 9: transfer *adjMat[batch_i]* to device mem_
- 10: merge ε -neighbors of corePoints to isNeighbor[batch_i]
- 11: transfer *isNeighbor*[*batch_i*] to host mem

Control Dependency

- The control flow depends on # of neighbors: calculated with a loop over mini-batches
- kernels are executed in two loops, even if deal with the same piece of data
 - 1: **for** *batch_i* **in** # of mini-batches **do**
 - 2: transfer *dataset*[*batch_i*] to device mem
 - 3: calculate the distance matrix *disMat*[*batch_i*]
 - 4: identify ε-neighbors adjMat[batch_i]
 - 5: accumulate the # of *e*-neighbors of *adjMat*[*batch_i*]
 - 6: transfer *adjMat[batch_i*] to host mem
 - 7: determine *corePoints* with # of ε -neighbors
 - 8: for batch_i in # of mini-batches do
 - 9: transfer *adjMat[batch_i*] to device mem
 - 10: merge ε-neighbors of corePoints to isNeighbor[batch_i]
 - 11: transfer *isNeighbor*[*batch_i*] to host mem

- The neighborhood relation is usually symmetric
 - a point has many ε-neighbors, its ε-neighbors usually also have many ε-neighbors
- Based on this, we propose a speculative merging strategy
- Aggressively assumes all processed frontiers are core points
 - -> speculatively merges their ϵ -neighbors in the first loop
 - 1: for *batch_i* in # of mini-batches do
 - 2: transfer *dataset*[*batch_i*] to device mem
 - 3: calculate the distance matrix *disMat*[*batch_i*]
 - 4: identify ε-neighbors adjMat[batch_i]
 - 5: accumulate the # of ε -neighbors of $adjMat[batch_i]$
 - 10: merge ε -neighbors of frontiers to isNeighbor[batch_i]
 - 11: transfer *isNeighbor*[*batch_i*] to host mem

- The neighborhood relation is usually symmetric
 - a point has many ε-neighbors, its ε-neighbors usually also have many ε-neighbors
- Based on this, we propose a speculative merging strategy
- Aggressively assumes all processed frontiers are core points
 -> speculatively merges their ε-neighbors in the first loop
- A correct one: avoids transferring the adjacency matrix
- An incorrect one: incurs $(M 1) \times N$ bitwise operation
 - arithmetic is much cheaper than PCIe data transferring

- Another bottleneck is initializing clusters
- Computes the distance vector between the potential seed (a single point) and the whole dataset
 - transfer the whole dataset to device mem
 - use TCU to compute matrix-vector multiplication
 - APIs impose limitation, at least 16×16×16
- Low arithmetic intensity, low TCU utilization
- Thus, speculatively explore the initial points when constructing new cluster(s)

- Speculatively explores many unvisited points rather than one
- A call to explore_points is reduced if
 - one of these points is not a core point
 - any two belong to different clusters
- More formally
 - x non-core points and y different clusters reduce x + y 1 times calls to explore_points
- How many points are explored speculatively?
 - explore 16 points incurs no extra cost, but poor tiling strategy
 - thus, explore as many as possible until exhausting on-chip memory

Evaluation

Evaluate on both Nvidia GPUs and Huawei Ascend 310

Device	Architecture	TCU Size	TCU throughput	Memory Type	Memory Size	Programming Language
Nvidia RTX 2080ti [34]	Turing	$4 \times 4 \times 4$	53.8 TFLOPS	GDDR6	11 GB	CUDA + WMMA
Nvidia RTX 3090 [35]	Ampere	$4 \times 8 \times 4$	71.0 TFLOPS	GDDR6X	24 GB	CUDA + WMMA
Huawei Ascend 310 [23]	DaVinci	$16 \times 16 \times 16$	11.0 TFLOPS	LPDDR4X	8 GB	TIK&TBE DSL [16]

- Datasets are in 128-dimensional space
 - # of points: 256K 8M
 - sizes range from 100MB to 10GB
 - # of clusters: 0 to 4096
 - 0 indicates all points are noise points
 - D-NORMAL: datasets with a reasonable number of clusters (i.e., 1 4096)
 - D-NOISE: dataset without any cluster •

Evaluation: Mini Batch Framework

- Compared with CUML library
- NV-CUDA: use CUDA core to compute distance matrix
- NV-TCU: use TCU to compute distance matrix

- Small dataset: AC-DBSCAN is slightly slower than CUML
- Large dataset: AC-DBSCAN is much faster than CUML

Evaluation: Mini Batch Framework

- On D-8M: NV-TCU has 19.43x throughput of CUML on RTX 3090
 - CUML use 11.1GB device memory, mem error on RTX 2080ti
- Tensor core vs CUDA core
 - 2.6x speedup on RTX 3090
- Better scalability
 - device memory usage can be controlled by the size of the mini-batch

Evaluation: Mapping Functions

- HA-CPU: deploy ϵ -neighbor identification to CPU
- HA-CMPSEL: CMPSEL func in TBE DSL
- HA- $f_{-2.0/\pm0.0}$, HA- $f_{-128/0}$: proposed method
- "(SP)" suffix indicates speculative execution is enabled

Evaluation: Mapping Functions

- Portability:
 - Our mapping functions are supported by almost all AI chips
 - No need to deploy computation to CPU
 - Avoid transferring distance matrix to host mem
 - much larger than adjacency matrix
 - Vectorized bitwise op is usually faster than CMPSEL on CPUs
 - 16.51x and 17.88x throughput

Evaluation: Mapping Functions

- Performance Portability:
 - The performance is also portable
 - i.e., have notional performance on different AI chips.
 - The hardware implementations of bitwise AND/OR are about the same.
 - In contrast, the CMPSEL operation can be implemented in various ways.
 - No need to fine-tune the performance
 - 23.1% and 29.0% higher throughput of HA-CMPSEL

Evaluation: Speculative Execution

- Speculative merging speedup
 - NV-TCU by 16.4% on D-NORMAL
 - HA- $f_{-128/0}$ by 15.8% on D-NORMAL
- Speculative initialization avoid very long execution time caused by abnormal datasets (e.g., D-NOISE)

acm In-Cooperation

- reduces 93.9% on Nvidia GPUs
- reduces 99.3% on Ascend 310

Future Work

- Extend AC-DBSCAN to multiple AI chips and distributed system
 - the mini-batch manner -> good scalability
 - rethink the bottleneck
 - large capacity SSD is common
 - GPUDirect can transfer SSD -> GPU directly
 - save the whole dataset in each machine's SSD and assign works based on computation?
- Integrating AC-DBSCAN with
 - accelerating index structures
 - approximation algorithms

Conclusion

- This paper presented AC-DBSCAN , a DBSCAN algorithm designed for AI chips.
 - 2.61× throughput by deploying distance calculation to Ampere TCUs
 - With high portability, our ϵ -neighbor identification kernels can be executed on almost all AI chips
 - 16.20× higher throughput than deploying ε-neighbor identification to CPUs.
 - HA- $f_{-128/0}$ reduces the execution time by 29.0% compared with HA-CMPSEL.
 - The speculative execution further reduces the execution time by 15.1% on D-NORMAL and 99.0% on D-NOISE.

