Accelerating DBSCAN Algorithm with AI Chips for Large Datasets

Zhuoran Ji and Cho-Li Wang
Department of Computer Science
The University of Hong Kong
August 11, 2021
DBSCAN

- DBSCAN is a powerful clustering areas
 - E.g., text clustering, astronomy, geography, image processing

- Advantage:
 - No need to specify the # of clusters to be found
 - Can detect cluster with any shape

- But: high computational complexity
 - distance between every two points
AI Chips

- Driven by DL, many AI chips are proposed
 - Nvidia GPU, Huawei Ascend, Alibaba Hanguang, Google TPU
- Their marquee feature is TCUs (Tensor Core Units): dedicated matrix multiplication hardware units
- Provide very efficient MM algorithm
 - RTX3090: 71 vs 35.6 TFLOPS
- However, other components, such as vector units and scalar units are usually
 - less powerful
 - highly specialized for AI apps
Motivation

• Distance metric for DBSCAN:
 • cosine similarity, dot product, Euclidean distance

• Cosine similarity:

\[
d_{i,j} = \frac{P_i \cdot P_j}{\|P_i\| \|P_j\|} = \frac{\sum_{k=1}^{dim} P_i[k]P_j[k]}{\sqrt{\sum_{k=1}^{dim} P_i[k]^2} \sqrt{\sum_{k=1}^{dim} P_j[k]^2}}
\]

\(l2 \) normalized

\[
d_{i,j} = \frac{\sum_{k=1}^{dim} P_i[k]P_j[k]}{1 \times 1} = P_i \cdot P_j
\]

• Distance matrix:

\[
\begin{bmatrix}
 d_{[F_0,0]} & \cdots & d_{[F_0,n]} \\
 \vdots & \ddots & \vdots \\
 d_{[F_m,0]} & \cdots & d_{[F_m,n]}
\end{bmatrix} =
\begin{bmatrix}
P_{F_0} \\
\vdots \\
P_{F_m}
\end{bmatrix} \times
\begin{bmatrix}
P_0^T \\
\vdots \\
P_n^T
\end{bmatrix}
\]

• Natural to use TCUs to accelerate distance calculation
Challenge: Identify ϵ-neighbors on AI chips

- However, identify and count ϵ-neighbors on AI chips is challenging
 - involve compare-and-select (CMPSEL) operation
 - weakly supported by many AI chips

- Some AI chips do have dedicated ReLU units
 - $y = x > 0 \ ? \ x : 1$
 - BUT, not allow an arbitrary value for the positive input

procedure IDENTIFY_NEIGHBORS(dis_matrix)

```
adj[i][j] = dis_matrix[i][j] ≤ \epsilon \ ? \ 1 : 0
numNeighbors[i] = REDUCE(+, adj[i][0:j])
isCore[i] = numNeighbors[i] ≥ minPts ? true : false
isNeighbor[j] = REDUCE(||, adj[0:i][j], isCore[i])
return isNeighbor[0:j]
```
end procedure
Challenge: Device Memory is Limited

- GPUs and other AI chips’ device memory: 10x GBs
- The size of the datasets can be 100x GBs, exceeding the capacity
- Space complexity
 - Dataset: $O(DN)$
 - Adjacency matrix: $O(MN)$
- N is the # of points in the dataset
Identify ϵ-neighbors on AI chips

- The essence of ϵ-neighbor identification is to find a mapping function so that
 - $\#$ of ϵ-neighbors $\leq \text{REDUCE}(\text{op}_1, \text{MAP}(f, \text{distance}[i][0:j]))$
 - whether j is an ϵ-neighbors $\leq \text{REDUCE}(\text{op}_2, \text{MAP}(f, \text{distance}[0:i][j]))$

- We can then generalize the ϵ-neighbors identification kernel as

```
procedure IDENTIFY_NEIGHBORS(dis_matrix)
  adj[i][j] = dis_matrix[i][j] \leq \epsilon \? 1 : 0
  numNeighbors[i] = REDUCE(+, adj[i][0:j])
  isCore[i] = numNeighbors[i] \geq \text{minPts} \? \text{true} : \text{false}
  isNeighbor[j] = REDUCE(||, adj[0:i][j], isCore[i])
return isNeighbor[0:j]
```

```plaintext
indicators[i][j] = f(distance[i][j], \epsilon)
internalNum[i] = \text{REDUCE}(\text{op}_1, indicators[i][0:j])
isCore[i] = \text{CHECK_CORE_POINT}(internalNum[i], \text{minPts})
isNeighbor[j] = \text{REDUCE}(\text{op}_2, indicators[0:i][j], isCore[i])
return isNeighbor[0:j]
```
The key of the mapping function is to
- differentiate the behaviors of ε-neighbors and non-ε-neighbors during reduction
- unify the behavior of the points within the same category
- For example, the unit step function maps
 - ε-neighbors to 1
 - non-ε-neighbors to 0
 - satisfies the two requirement
Mapping Function $f_{-2.0/\pm0.0}$

- $f_{-2.0/\pm0.0} = ((\text{distance} - \varepsilon) \& 0x8000 | 0x3c00) - 1.0$

- In the form of instructions:

Algorithm 3 Mapping function $f_{-2.0/\pm0.0}$

1. $v_1 = \text{distance} - \varepsilon$ \(\triangleright\) ε - similarity, if measured as similarity
2. $v_2 = \text{reinterpret } v_1 \text{ as a 16-bits binary}$
3. $v_3 = v_2 \& 0x8000$ \(\triangleright\) ε-neighbors = $0x8000$, others = $0x0000$
4. $v_4 = v_3 \text{ | } 0x3c00$ \(\triangleright\) ε-neighbors = $0xbc00$, others = $0x3c00$
5. $v_5 = \text{reinterpret } v_4 \text{ as a float16}$
6. $\text{indicator} = v_5 - 1.0$

IEEE Numbers

- ε-neighbor: $\varepsilon - 2.0$
- non-ε-neighbor: $\varepsilon + 2.0$

1. Differentiate the behaviors of ε-neighbors and non-ε-neighbors during reduction
2. Unify the behavior of the points within the same category

Special Cases

- $+0.0$ and -0.0: Non-similar behaviors for addition and subtraction
- 0.0: Special case for multiply and division

Mapping Function $f_{-2.0/\pm0.0}$

- $f_{-2.0/\pm0.0} = ((\text{distance} - \varepsilon) \& 0x8000 | 0x3c00) - 1.0$
- In the form of instructions:

```plaintext
Algorithm 3 Mapping function $f_{-2.0/\pm0.0}$

1: $v_1 = \text{distance} - \varepsilon$  \hspace{1em} $\triangleright \varepsilon$ - similarity, if measured as similarity
2: $v_2 = \text{reinterpret } v_1 \text{ as a 16-bits binary}$
3: $v_3 = v_2 \& 0x8000$  \hspace{1em} $\triangleright \varepsilon$-neighbors = 0x8000, others = 0x0000
4: $v_4 = v_3 \mid 0x3c00$  \hspace{1em} $\triangleright \varepsilon$-neighbors = 0xbc00, others = 0x3c00
5: $v_5 = \text{reinterpret } v_4 \text{ as a float16}$
6: $\text{indicator} = v_5 - 1.0$
```

ε-neighbor: $\pm\varepsilon - 2.0$

| $0xC000$ & $0x8000$ & $0xbc00$ & -2.0 |
| 0x4000 & 0x0000 & 0x$3c00$ & 0.0 |

non-ε-neighbor: $\varepsilon + 2.0$

| $0xC000$ & $0x8000$ & $0xbc00$ & -2.0 |
| 0x4000 & 0x0000 & 0x$3c00$ & 0.0 |
Mapping Function $f_{-128/0}$

- $f_{-128/0} = (\text{distance} - \varepsilon) \& 0x8000$
- Same with the first three steps of $f_{-2.0/\pm 0.0}$
- In $f_{-2.0/\pm 0.0}$
 - $+0.0$ and -0.0 have similar behaviors for addition and subtraction
 - 0.0 is special for multiply and division
- How about we interpret it as int8

\[
\begin{align*}
\text{ε-neighbor: } & \varepsilon - 2.0 & \varepsilon - 2.0 & \text{reinterpret as 16-bit bin} & 0xC000 & 0x8000 (-0.0) & \text{reinterpret as 2 int8} & (-128, 0) \\
\text{non-ε-neighbor: } & \varepsilon + 2.0 & 2.0 & 0x4000 & 0x8000 (0.0) & 0x0000 (0.0) & (0, 0)
\end{align*}
\]
Mapping Function $f_{-128/0}$

- Easy to determine whether a point is a ε-neighbor
 - i.e., $op_2 = \|$
- However, cannot count ε-neighbors by integer addition
- The value "$-128" is the maximum negative value for int8
- Vector units usually need the inputs and the outputs to have the same data type
 - Overflow almost always occurs
- Two intuitive method
 - Convert the data type to int32
 - e.g., static_cast
 - Casting is costly, reducing int32 is expensive than reducing int16
 - Reduce the magnitude by vector operation
 - e.g., right shift, integer division, or exponential function
 - weakly supported or costly than $f_{-2.0/\pm0.0}$
• Mixed-precision MMA
 • One of the most novel features of TCUs
• Input matrices in low-precision data types
• Accumulates the result in high-precision data types
• E.g.,
 • Nvidia TCUs support FP16 → FP32 and INT4/8 → INT32
 • Huawei TCUs support FP16 → FP32 and INT8 → INT32
• Thus, we use TCUs to accumulate the mapped values
Mini Batch DBSCAN

- DBSCAN can process the data in a mini-batch manner
 - much like the deep neural network training
 - but high data transfer overhead

```plaintext
1: for batch_i in # of mini-batches do
2:   transfer dataset[batch_i] to device mem
3:   calculate the distance matrix disMat[batch_i]
4:   identify \( \varepsilon \)-neighbors adjMat[batch_i]
5:   accumulate the # of \( \varepsilon \)-neighbors of adjMat[batch_i]
6:   transfer adjMat[batch_i] to host mem
7: determine corePoints with # of \( \varepsilon \)-neighbors
8: for batch_i in # of mini-batches do
9:   transfer adjMat[batch_i] to device mem
10: merge \( \varepsilon \)-neighbors of corePoints to isNeighbor[batch_i]
11: transfer isNeighbor[batch_i] to host mem
```
Mini Batch DBSCAN: Ping Pong Buffer

- Ping-Pong buffers can overlap- ping computation and data transfer
 - time should be comparable
 - otherwise, overlap is negligible.

- Distance matrix calculation
 - computation & data transferring time is comparable
- BUT, for merging ε-neighbors
 - overlap is negligible

1. for batch_i in # of mini-batches do
2. transfer dataset[batch_i] to device mem O(DN)
3. calculate the distance matrix disMat[batch_i] O(MDN)
4. identify ε-neighbors adjMat[batch_i] O(NM)
5. accumulate the # of ε-neighbors of adjMat[batch_i]
6. transfer adjMat[batch_i] to host mem O(NM)
7. determine corePoints with # of ε-neighbors
8. for batch_i in # of mini-batches do
9. transfer adjMat[batch_i] to device mem O(MN)
10. merge ε-neighbors of corePoints to isNeighbor[batch_i]
11. transfer isNeighbor[batch_i] to host mem
Speculative Execution

- The control flow depends on # of neighbors: calculated with a loop over mini-batches

```python
1: for batch_i in # of mini-batches do
2:    transfer dataset[batch_i] to device mem
3:    calculate the distance matrix disMat[batch_i]
4:    identify ϵ-neighbors adjMat[batch_i]
5:   accumulate the # of ϵ-neighbors of adjMat[batch_i]
6:    transfer adjMat[batch_i] to host mem
7: determine corePoints with # of ϵ-neighbors
8: for batch_i in # of mini-batches do
9:    transfer adjMat[batch_i] to device mem
10:   merge ϵ-neighbors of corePoints to isNeighbor[batch_i]
11:    transfer isNeighbor[batch_i] to host mem
```

Control Dependency
Speculative Execution

• The control flow depends on # of neighbors: calculated with a loop over mini-batches
• kernels are executed in two loops, even if deal with the same piece of data

1. for batch_i in # of mini-batches do
2. transfer dataset[batch_i] to device mem
3. calculate the distance matrix disMat[batch_i]
4. identify ε-neighbors adjMat[batch_i]
5. accumulate the # of ε-neighbors of adjMat[batch_i]
6. transfer adjMat[batch_i] to host mem
7. determine corePoints with # of ε-neighbors
8. for batch_j in # of mini-batches do
9. transfer adjMat[batch_i] to device mem
10. merge ε-neighbors of corePoints to isNeighbor[batch_i]
11. transfer isNeighbor[batch_i] to host mem
Speculative Execution

- The neighborhood relation is usually symmetric
 - a point has many ε-neighbors, its ε-neighbors usually also have many ε-neighbors
- Based on this, we propose a speculative merging strategy
- Aggressively assumes all processed frontiers are core points
 - speculatively merges their ε-neighbors in the first loop

1: for batch_i in # of mini-batches do
2: transfer dataset[batch_i] to device mem
3: calculate the distance matrix disMat[batch_i]
4: identify ε-neighbors adjMat[batch_i]
5: accumulate the # of ε-neighbors of adjMat[batch_i]
10: merge ε-neighbors of frontiers :: isNeighbor[batch_i]
11: transfer isNeighbor[batch_i] to host mem
Speculative Execution

- The neighborhood relation is usually symmetric
 - A point has many \(\varepsilon \)-neighbors, its \(\varepsilon \)-neighbors usually also have many \(\varepsilon \)-neighbors
- Based on this, we propose a speculative merging strategy
 - Aggressively assumes all processed frontiers are core points
 - Speculatively merges their \(\varepsilon \)-neighbors in the first loop
- A correct one: avoids transferring the adjacency matrix
- An incorrect one: incurs \((M - 1) \times N\) bitwise operation
 - Arithmetic is much cheaper than PCIe data transferring
Speculative Execution

- Another bottleneck is initializing clusters
- Computes the distance vector between the potential seed (a single point) and the whole dataset
 - transfer the whole dataset to device mem
 - use TCU to compute matrix-vector multiplication
 - APIs impose limitation, at least $16 \times 16 \times 16$
 - Low arithmetic intensity, low TCU utilization
- Thus, speculatively explore the initial points when constructing new cluster(s)
Speculative Execution

• Speculatively explores many unvisited points rather than one
• A call to `explore_points` is reduced if
 • one of these points is not a core point
 • any two belong to different clusters
• More formally
 • x non-core points and y different clusters reduce $x + y - 1$ times calls to `explore_points`
• How many points are explored speculatively?
 • explore 16 points incurs no extra cost, but poor tiling strategy
 • thus, explore as many as possible until exhausting on-chip memory
Evaluation

- Evaluate on both Nvidia GPUs and Huawei Ascend 310

<table>
<thead>
<tr>
<th>Device</th>
<th>Architecture</th>
<th>TCU Size</th>
<th>TCU throughput</th>
<th>Memory Type</th>
<th>Memory Size</th>
<th>Programming Language</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nvidia RTX 2080ti</td>
<td>Turing</td>
<td>4 x 4 x 4</td>
<td>53.8 TFLOPS</td>
<td>GDDR6</td>
<td>11 GB</td>
<td>CUDA + WMMA</td>
</tr>
<tr>
<td>Nvidia RTX 3090</td>
<td>Ampere</td>
<td>4 x 8 x 4</td>
<td>71.0 TFLOPS</td>
<td>GDDR6X</td>
<td>24 GB</td>
<td>CUDA + WMMA</td>
</tr>
<tr>
<td>Huawei Ascend 310</td>
<td>DaVinci</td>
<td>16 x 16 x 16</td>
<td>11.0 TFLOPS</td>
<td>LPDDR4X</td>
<td>8 GB</td>
<td>TIK&TBE DSL [16]</td>
</tr>
</tbody>
</table>

- Datasets are in 128-dimensional space
 - # of points: 256K – 8M
 - sizes range from 100MB to 10GB
 - # of clusters: 0 to 4096
 - 0 indicates all points are noise points
 - D-NORMAL: datasets with a reasonable number of clusters (i.e., 1 – 4096)
 - D-NOISE: dataset without any cluster
Evaluation: Mini Batch Framework

- Compared with CUML library
- NV-CUDA: use CUDA core to compute distance matrix
- NV-TCU: use TCU to compute distance matrix

- Small dataset: AC-DBSCAN is slightly slower than CUML
- Large dataset: AC-DBSCAN is much faster than CUML
On D-8M: NV-TCU has 19.43x throughput of CUML on RTX 3090
 - CUML use 11.1GB device memory, mem error on RTX 2080ti
 - Tensor core vs CUDA core
 - 2.6x speedup on RTX 3090
 - Better scalability
 - device memory usage can be controlled by the size of the mini-batch
Evaluation: Mapping Functions

- HA-CPU: deploy ε-neighbor identification to CPU
- HA-CMPSEL: CMPSEL func in TBE DSL
- HA-$f_2.0/\pm 0.0$, HA-$f_{128}/0$: proposed method
- "(SP)" suffix indicates speculative execution is enabled

![Graph showing execution time in 10^3 sec for different scenarios.](image)
Evaluation: Mapping Functions

- Portability:
 - Our mapping functions are supported by almost all AI chips
 - No need to deploy computation to CPU
 - Avoid transferring distance matrix to host mem
 - much larger than adjacency matrix
 - Vectorized bitwise op is usually faster than CMPSEL on CPUs
 - 16.51x and 17.88x throughput
• Performance Portability:
 • The performance is also portable
 • i.e., have notional performance on different AI chips.
 • The hardware implementations of bitwise AND/OR are about the same.
 • In contrast, the CMPSEL operation can be implemented in various ways.
• No need to fine-tune the performance
• 23.1% and 29.0% higher throughput of HA-CMPSEL
Evaluation: Speculative Execution

- Speculative merging speedup
 - NV-TCU by 16.4% on D-NORMAL
 - HA-f\textsubscript{-128/0} by 15.8% on D-NORMAL
- Speculative initialization avoid very long execution time caused by abnormal datasets (e.g., D-NOISE)
 - reduces 93.9% on Nvidia GPUs
 - reduces 99.3% on Ascend 310
Future Work

• Extend AC-DBSCAN to multiple AI chips and distributed system
 • the mini-batch manner -> good scalability
 • rethink the bottleneck
 • large capacity SSD is common
 • GPUDirect can transfer SSD -> GPU directly
 • save the whole dataset in each machine’s SSD and assign works based on computation?

• Integrating AC-DBSCAN with
 • accelerating index structures
 • approximation algorithms
Conclusion

- This paper presented AC-DBSCAN, a DBSCAN algorithm designed for AI chips.
 - 2.61× throughput by deploying distance calculation to Ampere TCUs
 - With high portability, our ε-neighbor identification kernels can be executed on almost all AI chips
 - 16.20× higher throughput than deploying ε-neighbor identification to CPUs.
 - HA-\(f_{-128/0}\) reduces the execution time by 29.0% compared with HA-CMPSEL.
 - The speculative execution further reduces the execution time by 15.1% on D-NORMAL and 99.0% on D-NOISE.
THANK YOU
Q & A