
Accelerating DBSCAN Algorithm with AI
Chips for Large Datasets

Zhuoran Ji and Cho-Li Wang

Department of Computer Science

The University of Hong Kong

August 11, 2021

INTERNATIONAL
CONFERENCE ON

PARALLEL
PROCESSING

DBSCAN

• DBSCAN is a powerful clustering areas
• E.g., text clustering, astronomy, geography, image

processing

• Advantage:
• No need to specify the # of clusters to be found

• Can detect cluster with any shape

• But: high computational complexity
• distance between every two points

images from google

INTERNATIONAL
CONFERENCE ON

PARALLEL
PROCESSING

AI Chips

• Driven by DL, many AI chips are proposed
• Nvidia GPU, Huawei Ascend, Alibaba

Hanguang, Google TPU
• Their marquee feature is TCUs (Tensor

Core Units): dedicated matrix
multiplication hardware units
• Provide very efficient MM algorithm

• RTX3090: 71 vs 35.6 TFLOPS
• However, other components, such as

vector units and scalar units are usually
• less powerful
• highly specialized for AI apps TPU

INTERNATIONAL
CONFERENCE ON

PARALLEL
PROCESSING

Motivation

• Distance metric for DBSCAN:
• cosine similarity, dot product, Euclidean distance

• Cosine similarity:

• Distance matrix:

• Natural to use TCUs to accelerate distance calculation

𝑙2 normalized

INTERNATIONAL
CONFERENCE ON

PARALLEL
PROCESSING

Challenge: Identify ε-neighbors on AI chips

• However, identify and count ε-neighbors on AI chips is challenging
• involve compare-and-select (CMPSEL) operation
• weakly supported by many AI chips

• Some AI chips do have dedicated ReLU units
• y = x > 0 ? x : 1
• BUT, not allow an arbitrary value for the positive input

INTERNATIONAL
CONFERENCE ON

PARALLEL
PROCESSING

Challenge: Device Memory is Limited

• GPUs and other AI chips’ device memory: 10x GBs
• The size of the datasets can be 100x GBs, exceeding the capacity
• Space complexity
• Dataset: O(DN)
• Adjacency matrix: O(MN)
• N is the # of points in the dataset

INTERNATIONAL
CONFERENCE ON

PARALLEL
PROCESSING

Identify ε-neighbors on AI chips

• The essence of ε-neighbor identification is to find a mapping function so that
• # of ε-neighbors <- 𝑅𝐸𝐷𝑈𝐶𝐸 𝑜𝑝#, 𝑀𝐴𝑃 𝑓, 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑖 0: 𝑗
• whether j is an ε-neighbors <- 𝑅𝐸𝐷𝑈𝐶𝐸(𝑜𝑝$, 𝑀𝐴𝑃(𝑓, 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒[0: 𝑖][𝑗]))

• We can then generalize the ε-neighbors identification kernel as

INTERNATIONAL
CONFERENCE ON

PARALLEL
PROCESSING

Mapping Function for AI Chips

• The key of the mapping function is to
• differentiate the behaviors of ε-neighbors and non-ε-neighbors

during reduction
• unify the behavior of the points within the same category

• For example, the unit step function maps
• ε-neighbors to 1
• non-ε-neighbors to 0
• satisfies the two requirement

INTERNATIONAL
CONFERENCE ON

PARALLEL
PROCESSING

Mapping Function 𝑓!".$/±$.$

• 𝑓!".$/±$.$ = ((distance − ε) & 0x8000 | 0x3c00) – 1.0
• In the form of instructions:

ε-neighbor: ε – 2.0

non-ε-neighbor: ε + 2.0
–ε

– 2.0

2.0
& 0x8000

0x8000 (-0.0)

0x0000 (0.0)

0xC000

0x4000

reinterpret
as 16-bit bin

1. differentiate the behaviors of ε-
neighbors and non-ε-neighbors during
reduction

2. unify the behavior of the points within
the same category

1. +0.0 and −0.0 have similar behaviors
for addition and subtraction

2. 0.0 is special for multiply and division

INTERNATIONAL
CONFERENCE ON

PARALLEL
PROCESSING

Mapping Function 𝑓!".$/±$.$

• 𝑓!".$/±$.$ = ((distance − ε) & 0x8000 | 0x3c00) – 1.0
• In the form of instructions:

ε-neighbor: ε – 2.0

non-ε-neighbor: ε + 2.0
–ε

– 2.0

2.0
& 0x8000

0x8000 (-0.0)

0x0000 (0.0)

0xC000

0x4000

reinterpret
as 16-bit bin | 0x3c00

0xbc00 (-1.0)

0x3c00 (1.0)
-1.0

-2.0

0.0

INTERNATIONAL
CONFERENCE ON

PARALLEL
PROCESSING

Mapping Function 𝑓!'"(/$

• 𝑓,#$-// = (distance − ε) & 0x8000
• Same with the first three steps of 𝑓,$.//±/./
• In 𝑓,$.//±/./

• +0.0 and −0.0 have similar behaviors for addition and subtraction
• 0.0 is special for multiply and division

• How about we interpret it as int8

ε-neighbor: ε – 2.0

non-ε-neighbor: ε + 2.0
–ε

– 2.0

2.0
& 0x8000

0x8000 (-0.0)

0x0000 (0.0)

0xC000

0x4000

reinterpret
as 16-bit bin

reinterpret
as 2 int8

(-128, 0)

(0, 0)

INTERNATIONAL
CONFERENCE ON

PARALLEL
PROCESSING

Mapping Function 𝑓!'"(/$

• Easy to determine whether a point is a ε-neighbor
• i.e., 𝑜𝑝! = ||

• However, cannot count ε-neighbors by integer addition
• The value "−128" is the maximum negative value for int8
• Vector units usually need the inputs and the outputs to have the same data type

• Overflow almost always occurs
• Two intuitive method

• Convert the data type to int32
• e.g., static_cast
• Casting is costly, reducing int32 is expensive than reducing int16

• Reduce the magnitude by vector operation
• e.g., right shift, integer division, or exponential function
• weakly supported or costly than 𝑓!".$/±$.$

INTERNATIONAL
CONFERENCE ON

PARALLEL
PROCESSING

Mapping Function 𝑓!'"(/$

• Mixed-precision MMA
• One of the most novel features of TCUs

• Input matrices in low-precision data types
• Accumulates the result in high-precision data types
• E.g.,
• Nvidia TCUs support FP16 → FP32 and INT4/8 → INT32
• Huawei TCUs support FP16 → FP32 and INT8 → INT32

• Thus, we use TCUs to accumulate the mapped values

INTERNATIONAL
CONFERENCE ON

PARALLEL
PROCESSING

Mini Batch DBSCAN

• DBSCAN can process the data in a mini-batch manner
• much like the deep neural network training
• but high data transfer overhead

INTERNATIONAL
CONFERENCE ON

PARALLEL
PROCESSING

Mini Batch DBSCAN: Ping Pong Buffer

• Ping-Pong buffers can overlap- ping computation and data transfer
• time should be comparable
• otherwise, overlap is negligible.

O(MDN)
O(DN)

O(NM)

• Distance matrix calculation
• computation & data transferring time is

comparable
• BUT, for merging ε-neighbors

• overlap is negligible O(MN)
O(NM)

INTERNATIONAL
CONFERENCE ON

PARALLEL
PROCESSING

Speculative Execution

• The control flow depends on # of neighbors: calculated with a
loop over mini-batches

Control Dependency

INTERNATIONAL
CONFERENCE ON

PARALLEL
PROCESSING

Speculative Execution

• The control flow depends on # of neighbors: calculated with a
loop over mini-batches
• kernels are executed in two loops, even if deal with the same

piece of data

INTERNATIONAL
CONFERENCE ON

PARALLEL
PROCESSING

Speculative Execution

• The neighborhood relation is usually symmetric
• a point has many ε-neighbors, its ε-neighbors usually also

have many ε-neighbors
• Based on this, we propose a speculative merging strategy
• Aggressively assumes all processed frontiers are core points

-> speculatively merges their ε-neighbors in the first loop

frontiers

INTERNATIONAL
CONFERENCE ON

PARALLEL
PROCESSING

Speculative Execution

• The neighborhood relation is usually symmetric
• a point has many ε-neighbors, its ε-neighbors usually also

have many ε-neighbors
• Based on this, we propose a speculative merging strategy
• Aggressively assumes all processed frontiers are core points

-> speculatively merges their ε-neighbors in the first loop
• A correct one: avoids transferring the adjacency matrix
• An incorrect one: incurs (𝑀 − 1)×𝑁 bitwise operation
• arithmetic is much cheaper than PCIe data transferring

INTERNATIONAL
CONFERENCE ON

PARALLEL
PROCESSING

Speculative Execution

• Another bottleneck is initializing clusters
• Computes the distance vector between the potential seed (a

single point) and the whole dataset
• transfer the whole dataset to device mem
• use TCU to compute matrix-vector multiplication
• APIs impose limitation, at least 16×16×16

• Low arithmetic intensity, low TCU utilization
• Thus, speculatively explore the initial points when constructing

new cluster(s)

INTERNATIONAL
CONFERENCE ON

PARALLEL
PROCESSING

Speculative Execution

• Speculatively explores many unvisited points rather than one
• A call to explore_points is reduced if
• one of these points is not a core point
• any two belong to different clusters

• More formally
• 𝑥 non-core points and 𝑦 different clusters reduce 𝑥 + 𝑦 − 1 times

calls to explore_points
• How many points are explored speculatively?
• explore 16 points incurs no extra cost, but poor tiling strategy
• thus, explore as many as possible until exhausting on-chip memory

INTERNATIONAL
CONFERENCE ON

PARALLEL
PROCESSING

Evaluation

• Evaluate on both Nvidia GPUs and Huawei Ascend 310

• Datasets are in 128-dimensional space
• # of points: 256K – 8M
• sizes range from 100MB to 10GB

• # of clusters: 0 to 4096
• 0 indicates all points are noise points
• D-NORMAL: datasets with a reasonable number of clusters (i.e., 1 − 4096)
• D-NOISE: dataset without any cluster

INTERNATIONAL
CONFERENCE ON

PARALLEL
PROCESSING

Evaluation: Mini Batch Framework

• Compared with CUML library
• NV-CUDA: use CUDA core to compute distance matrix
• NV-TCU: use TCU to compute distance matrix

• Small dataset: AC-DBSCAN is slightly slower than CUML
• Large dataset: AC-DBSCAN is much faster than CUML

INTERNATIONAL
CONFERENCE ON

PARALLEL
PROCESSING

Evaluation: Mini Batch Framework

• On D-8M: NV-TCU has 19.43x throughput of CUML on RTX 3090
• CUML use 11.1GB device memory, mem error on RTX 2080ti

• Tensor core vs CUDA core
• 2.6x speedup on RTX 3090

• Better scalability
• device memory usage can be controlled by the size of the mini-batch

INTERNATIONAL
CONFERENCE ON

PARALLEL
PROCESSING

Evaluation: Mapping Functions

• HA-CPU: deploy ε-neighbor identification to CPU
• HA-CMPSEL: CMPSEL func in TBE DSL
• HA-𝑓!".$/±$.$, HA-𝑓!'"(/$: proposed method
• “(SP)” suffix indicates speculative execution is enabled

INTERNATIONAL
CONFERENCE ON

PARALLEL
PROCESSING

Evaluation: Mapping Functions

• Portability:
• Our mapping functions are supported by almost all AI chips
• No need to deploy computation to CPU
• Avoid transferring distance matrix to host mem
• much larger than adjacency matrix

• Vectorized bitwise op is usually faster than CMPSEL on CPUs
• 16.51x and 17.88x throughput

INTERNATIONAL
CONFERENCE ON

PARALLEL
PROCESSING

Evaluation: Mapping Functions

• Performance Portability:
• The performance is also portable
• i.e., have notional performance on different AI chips.
• The hardware implementations of bitwise AND/OR are about the same.
• In contrast, the CMPSEL operation can be implemented in various ways.

• No need to fine-tune the performance
• 23.1% and 29.0% higher throughput of HA-CMPSEL

INTERNATIONAL
CONFERENCE ON

PARALLEL
PROCESSING

Evaluation: Speculative Execution

• Speculative merging speedup
• NV-TCU by 16.4% on D-NORMAL
• HA-𝑓!"#$/& by 15.8% on D-NORMAL

• Speculative initialization avoid very long execution time caused by abnormal datasets (e.g., D-NOISE)
• reduces 93.9% on Nvidia GPUs
• reduces 99.3% on Ascend 310

INTERNATIONAL
CONFERENCE ON

PARALLEL
PROCESSING

Future Work

• Extend AC-DBSCAN to multiple AI chips and distributed system
• the mini-batch manner -> good scalability
• rethink the bottleneck
• large capacity SSD is common
• GPUDirect can transfer SSD -> GPU directly

• save the whole dataset in each machine’s SSD and assign works based on
computation?

• Integrating AC-DBSCAN with
• accelerating index structures
• approximation algorithms

INTERNATIONAL
CONFERENCE ON

PARALLEL
PROCESSING

Conclusion

• This paper presented AC-DBSCAN , a DBSCAN algorithm designed for AI
chips.
• 2.61× throughput by deploying distance calculation to Ampere TCUs
• With high portability, our ε-neighbor identification kernels can be

executed on almost all AI chips
• 16.20× higher throughput than deploying ε-neighbor

identification to CPUs.
• HA-𝑓!'"(/$ reduces the execution time by 29.0% compared with HA-

CMPSEL.
• The speculative execution further reduces the execution time by

15.1% on D-NORMAL and 99.0% on D-NOISE.

INTERNATIONAL
CONFERENCE ON

PARALLEL
PROCESSING

THANK YOU

Q & A

