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DBSCAN

T

 DBSCAN is a powerful clustering areas

 E.g., text clustering, astronomy, geography, image - -

processmg

* Advantage:

* No need to specify the # of clusters to be found ﬁ.@wm oy
& %
* Can detect cluster with any shape { = ¥ %
« g
* But: high computational complexity .2""-., g ::3
e distance between every two points %‘,...M
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AT Chips

* Driven by DL, many Al chips are proposed

* Nvidia GPU, Huawei Ascend, Alibaba
Hanguang, Google TPU

* Their marquee feature is TCUs (Tensor
Core Units): dedicated matrix
multiplication hardware units

* Provide very efficient MM algorithm
e RTX3090: 71 vs 35.6 TFLOPS

 However, other components, such as
vector units and scalar units are usually

* |ess powerful
* highly specialized for Al apps
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Motivation

e Distance metric for DBSCAN:
e cosine similarity, dot product, Euclidean distance

* Cosine similarity:

o = P P, Yim p; [k]P;[k] [2 normalized> ZZ,-_,? P k1P, k]
| T AT T : : dr; 1 = —%= =P; - P;
IR [y dim p iz, [ndim k2 ] Ix1 j
 Distance matrix:
dig0] 0 diF,n] Pg,
: . - | = : x|pf - P}
d[g_‘m,o] T d[fma n] PTm
 Natural to use TCUs to accelerate distance calculation
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Challenge: Identify e-neighbors on AI chips

* However, identify and count e-neighbors on Al chips is challenging
* involve compare-and-select (CMPSEL) operation
* weakly supported by many Al chips

isNeighbor[j] = REDUCE(]|, adj[0:i][j], isCore[i])
return isNeighbor[0:j]
end procedure

* Some Al chips do have dedicated RelLU units
e y=x>07x:1

* BUT, not allow an arbitrary value for the positive input
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Challenge: Device Memory is Limited

* GPUs and other Al chips’ device memory: 10x GBs
* The size of the datasets can be 100x GBs, exceeding the capacity
* Space complexity

e Dataset: O(DN)

* Adjacency matrix: O(MN)

* N is the # of points in the dataset
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Identify e-neighbors on AI chips

* The essence of e-neighbor identification is to find a mapping function so that
» # of e-neighbors <- REDUCE (op1, MAP(f, distance[i][0: j]))
* whether jis an e-neighbors <- REDUCE (op,, MAP(f,distance|0:i][j]))

* We can then generalize the e-neighbors identification kernel as

procedure IDENTIFY_NEIGHBORS(dis_matrix)

adj[i][j] = dis_matrix[i][j] <€?1:0
numNeighbors[i] = REDUCE(+, adj[i][0:]])

isCore[i] = numNeighbors[i] > minPts ? true : false
isNeighbor[j] = REDUCE(]|, adj[0:i][j], isCorel[i])
return isNeighbor[0:j]

=)
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indicators[i][j] = f(distance[i][j], ¢€)

internalNum([i] = REDUCE(op1, indicators[i][0:j])

isCore[i] = CHECK_CORE_POINT(internalNum[i], minPts)
isNeighbor[j] = REDUCE(op2, indicators[0:i][j], isCore[i])
return isNeighbor[0:j]
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Mapping Function for AL Chips

* The key of the mapping function is to

 differentiate the behaviors of e-neighbors and non-g-neighbors
during reduction

* unify the behavior of the points within the same category
* For example, the unit step function maps

* e-neighborsto 1

* non-ge-neighborsto 0

* satisfies the two requirement
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Mapping Function f_; /40,0

* f—2.0/+0.0 = ((distance — €) & 0x8000 | 0x3c00) - 1.0

* In the form of instructions:

1. differentiate the behaviors of &-

Algorithm 3 Mapping function f_5 ¢/+0.0 neighbors and non-g-neighbors during
1: v1 = distance - € > ¢ - similarity, if measured as similarity reduction
2: vy = reinterpret vy as a 16-bits binary 2. unify the behavior of the points within
3: v3 =vp & 0x8000 > ¢-neighbors = 0x8000, others = 0x0000 the same category
4: v4 = v3 | 0x3c00 > e-neighbors = 0xbc00, others = 0x3c00
5: vs = reinterpret vy as a float16 1. +0.0 and - r behaviors
6: indicator = vs - 1.0 for addition a ction
2. 0.0is speci and division
€-neighbor: € - 2.0 -2.0 : 0xC000 0x8000 (-0.0)
TR0 e O
non-g-neighbor: € + 2.0 2.0 0x4000 0x0000 (0.0)
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Mapping Function f_; /40,0

* f—2.0/+0.0 = ((distance — €) & 0x8000 | 0x3c00) - 1.0

* In the form of instructions:

Algorithm 3 Mapping function f_; /49,0

1: vy = distance - ¢ > ¢ - similarity, if measured as similarity
2: vy = reinterpret vy as a 16-bits binary
3: v3 = vy & 0x8000 > e-neighbors = 0x8000, others = 0x0000
4: v4 = v3 | 0x3c00 > e-neighbors = 0xbc00, others = 0x3c00
5. U5 = reinterpret v4 as a ﬂoat16
6: indicator = vs - 1.0
€-neighbor: € -2.0 -2.0 reinterpret 0xC000 0x8000 (-0.0) Oxbc00 (-1.0) -2.0
—€ 25 16-bit bin & 0x8000 | 0x3c00 -1.0
non-g-neighbor: € + 2.0 2.0 0x4000 0x0000 (0.0) 0x3c00 (1.0) 0.0
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Mapping Function f_;,g/0

* f_128/0 = (distance — ) & 0x8000
* Same with the first three steps of f_3 o/+0.0

* In f_2.0/+0.0
e +0.0 and -0.0 have similar behaviors for addition and subtraction

* 0.0is special for multiply and division
 How about we interpret it as int8

e-neighbor: € - 2.0 —2.0 (einterpret 0xC000 0x8000 (-0.0) reinterpret (-128,0)
¢ as 16-bFi)t bin & 0x8000 as 2 intFE)B
non-g-neighbor: € + 2.0 2.0 0x4000 0x0000 (0.0) (0, 0)
/ INTERNATIONAL /\
/ C/Oﬁ:gﬁfll_vgf ON/ / acm) In-Co?peration
PROCESSING | - SlghpC




Mapping Function f_;,g/0

* Easy to determine whether a point is a e-neighbor
* i.e,op, =||
 However, cannot count e-neighbors by integer addition
The value "-128" is the maximum negative value for int8
Vector units usually need the inputs and the outputs to have the same data type
* Overflow almost always occurs
Two intuitive method
e Convert the data type to int32
* e.g., static_cast
e Casting is costly, reducing int32 is expensive than reducing int16
* Reduce the magnitude by vector operation
e e.g., right shift, integer division, or exponential function

* weakly supported or costly than f_; ¢/+0.0
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Mapping Function f_;,g/0

* Mixed-precision MMA
* One of the most novel features of TCUs

* Input matrices in low-precision data types

* Accumulates the result in high-precision data types

*E.g.,
* Nvidia TCUs support FP16 - FP32 and INT4/8 = INT32
 Huawei TCUs support FP16 - FP32 and INT8 - INT32

* Thus, we use TCUs to accumulate the mapped values
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Mini Batch DBSCAN

* DBSCAN can process the data in a mini-batch manner

* much like the deep neural network training

* but high data transfer overhead

1
2
3
4
5;
6
7
8
9
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. for batch_i in # of mini-batches do
ataset[batch_i] to device mem
calculate the distance matrix disMat[batch_i]
identify e-neighbors adjMat[batch_i]
accumulate the # of e-neighbors of adjMat[batch_i]

deat[batch_i] to host mem

. determine corePoints with # of e-neighbors
. for batch i in # of mini-batches do

deat[batch_i] to device mem

merge e-neighbors of corePoints to isNeighbor[batch_i]

sNeighbor[batch_i] to host mem
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Mini Batch DBSCAN: Ping Pong Buffer

* Ping-Pong buffers can overlap- ping computation and data transfer
* time should be comparable

* otherwise, overlap is negligible.

1: for batch_i in # of mini-batches do

2 transfer dataset[batch_i] to device memO(DN)

3 calculate the distance matrix disMat[batch_i] O( MD N)
4 identify e-neighbors adjMat[batch_i]

5: accumulate the # of e-neighbors of adjMat[batch_i]

6

7

8

9

e Distance matrix calculation
* computation & data transferring time is

compara b I e transfer adjMat[batch_i] to host mem O (N M)
. . : determine corePoints with # of e-neighbors
* BUT, for merging e-neighbors . for batch_i in # of mini-batches do
. L. : transfer adjMat[batch_i] to device mem O( M N)
* ove rI d p IS nNe gl |g| b I e 10: merge e-neighbors of corePoints to isNeighbor[batc@(N |\/|)
11: transfer isNeighbor[batch_i] to host mem
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Speculative Execution

* The control flow depends on # of neighbors: calculated with a
loop over mini-batches

for batch_i in # of mini-batches do
transfer dataset[batch_i] to device mem
calculate the distance matrix disMat[batch_i]

1:
2
3:
4 identify e-neighbors adiMat[batch i]
5:
6

<__accumulate the # of e-neighbors of adjMat[batch_i
: transfer adjMat[batch 1] to host mem
7

<determine corePoints with # of e-neighbors > <= Control Dependency
8: for batch_i 1n # of mini-batches do
9: trans 1 — i
10: Qge e-neighbors of corePoints to isNeighbor[batch_i}=
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Speculative Execution

* The control flow depends on # of neighbors: calculated with a
loop over mini-batches

 kernels are executed in two loops, even if deal with the same
piece of data

. for batch_i in # of mini-batches do
transfer dataset[batch_i] to device mem
calculate the distance matrix disMat[batch_i]
identify e-neighbors adjMat[batch_i]

1

2

3:

4:

5: iMat[batch_i]
6: C_ transfer adjMat[batch_i] to host mem D

7

8

9

. determine corePoints with # ot e-neighbors
. for batchiin-H-efrmimbe
: transfer adjMat[batch_i] to device mem

: Potnts to isNeighbor[batch_i]

10:
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Speculative Execution o

* The neighborhood relation is usually symmetric

* a point has many €-neighbors, its e-neighbors usually also
have many e-neighbors

* Based on this, we propose a speculative merging strategy

* Aggressively assumes all processed frontiers are core points

-> speculatively merges their e-neighbors in the first loop

1: for batch_i in # of mini-batches do

2:
3:
4:
5:
10:
11:
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transfer dataset[batch_i] to device mem

calculate the distance matrix disMat[batch_i]

identify e-neighbors adjMat[batch_i]

accumulate the # of e-neighbors of adjMat[batch_i]
merge e-neighbors of frontiers :o isNeighbor[batch_i]
transfer isNeighbor[batch_i] to host mem
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* The neighborhood relation is usually symmetric

* a point has many €-neighbors, its e-neighbors usually also
have many e-neighbors

* Based on this, we propose a speculative merging strategy
* Aggressively assumes all processed frontiers are core points
-> speculatively merges their e-neighbors in the first loop
* A correct one: avoids transferring the adjacency matrix
* Anincorrect one: incurs (M — 1)XN bitwise operation
 arithmetic is much cheaper than PCle data transferring
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Speculative Execution

* Another bottleneck is initializing clusters

 Computes the distance vector between the potential seed (a
single point) and the whole dataset

 transfer the whole dataset to device mem
* use TCU to compute matrix-vector multiplication
* APIls impose limitation, at least 16 X16X16
* Low arithmetic intensity, low TCU utilization

* Thus, speculatively explore the initial points when constructing
new cluster(s)
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Speculative Execution

* Speculatively explores many unvisited points rather than one
* Acallto explore points isreduced if

* one of these points is not a core point

* any two belong to different clusters
* More formally

* X hon-core points and y different clusters reducex + y — 1 times
calls to explore points

* How many points are explored speculatively?
e explore 16 points incurs no extra cost, but poor tiling strategy
* thus, explore as many as possible until exhausting on-chip memory
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Evaluation

e Evaluate on both Nvidia GPUs and Huawei Ascend 310

Device

Architecture | TCU Size TCU throughput | Memory Type | Memory Size | Programming Language
Nvidia RTX 2080ti [34] | Turing 4X4X%X4 53.8 TFLOPS GDDR6 11 GB CUDA + WMMA
Nvidia RTX 3090 [35] Ampere 4X8X4 71.0 TFLOPS GDDR6X 24 GB CUDA + WMMA
Huawei Ascend 310 [23] | DaVinci 16 X 16 X 16 | 11.0 TFLOPS LPDDR4X 8 GB TIK&TBE DSL [16]

e Datasets are in 128-dimensional space
* # of points: 256K — 8M
* sizes range from 100MB to 10GB
* # of clusters: 0 to 4096
* 0Oindicates all points are noise points

 D-NORMAL: datasets with a reasonable number of clusters (i.e., 1 — 4096)
 D-NOISE: dataset without any cluster
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Evaluation: Mini Batch Framework

 Compared with CUML library
* NV-CUDA: use CUDA core to compute distance matrix
* NV-TCU: use TCU to compute distance matrix

16 16 . 81.7
o 1, ~e- CUML cum. % 122 © 15 —e- CUML CUML L 122
E_'® _, Nvcuba mm Nv-cuDA 1083 E 5 g —+ NV-CUDA  E=5 NV-CUDA o 7 1088
% 8 . NvTCU [I NVTCU . g 8% c 0 - NV-TCU MM NV-TCU .~ g 92
o 4 20 o, 4 7 Z9
R ' - 6 00 5 | e KT 6 0O
5 0 [ — PSS —eeeht U 3 = 0 - PP WSS, —ee > o 8
o= 453 0~ 4 >5
X 0 X o
B %vwﬂ %vvvw %wmm 28 B %ﬂm %Wmm %XX]]]]]] 28
D-256K D-512K D-1M D-2M D-4M D-8M 0 D-256K D-512K D-1M D-2M D-4M D-8M g
(a) Result on NVidia RTX 2080ti (b) Result on NVidia RTX 3090

* Small dataset: AC-DBSCAN is slightly slower than CUML
 Large dataset: AC-DBSCAN is much faster than CUML
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Evaluation: Mini Batch Framework

16 16 81.7
o 12 e CUML cwm. % |12 9 12 e CUML CUML o . 122
E_'* . Nvcupa == Nv-cuDA 1088 Es g =+ NV-CUDA B8 NV-CUDA - 7 1088
';§ 8 . NVTCU Ml NV-TCU .~ . g 82 c @ | —x- NVTCU M NV-TCU .~ 8 g&",
o = ° 4 B o
s Y e 6 0O 5% < 7 6 00
o2 o = — e i S o6 34 o - - g BT bR
§~ N % 433 g™ .8
w 2 0 w 2 0
sl KA
D-256K D-512K D-1M D-2M D-4M D-8M ° D-256K D-512K D-1M D-2M D-4M D-8M °
(a) Result on NVidia RTX 2080ti (b) Result on NVidia RTX 3090

* On D-8M: NV-TCU has 19.43x throughput of CUML on RTX 3090
* CUML use 11.1GB device memory, mem error on RTX 2080ti
* Tensor core vs CUDA core
e 2.6x speedup on RTX 3090
* Better scalability
* device memory usage can be controlled by the size of the mini-batch
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Evaluation: Mapping Functions

* HA-CPU: deploy e-neighbor identification to CPU
* HA-CMPSEL: CMPSEL func in TBE DSL

* HA-f_2.0/+0.0, HA-f_125/0: Proposed method

* “(SP)” suffix indicates speculative execution is enabled

9

Q

0]

S 182.1 1854.41 1775.67 1847.71

Z20.0 + = e H

()] u I g ]

E >0 N i i : :
~10.0 g H S : =
c ] T ] N T %::: Hssim 7@:2
o 5.0 = i §:z %LZ =i - .
o N Inm mEN Inm Tl u .
: L I L1 1 - L -
o 0.0 HA-CPU HA-CMPSEL HA-f_0/:00 HA-f_1250 HA-CMPSEL HA-fo0/200 HA-F_12800
X (10* sec) (SP) (SP) (SP)

[ INTERNATIONAL /

CONFERENCE ON /

/ | PARALLEL
PROCESSING |

=y 1 cluster

mm 16 clusters
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Evaluation: Mapping Functions

* Portability:
* Our mapping functions are supported by almost all Al chips
* No need to deploy computation to CPU
* Avoid transferring distance matrix to host mem
 much larger than adjacency matrix
* Vectorized bitwise op is usually faster than CMPSEL on CPUs
* 16.51x and 17.88x throughput

103 sec)

182.1 1854.41 1775.67 1847.71 1 cluster

mm 16 clusters

20.0

(

e

;_é 1:3 i g: o I8 i 256 clusters
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CONFERENCE ON/ 5 0.0 HH H HH ina H K3t e 0 cluster cm) In-Cooperation
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Evaluation: Mapping Functions

* Performance Portability:
* The performance is also portable
* i.e., have notional performance on different Al chips.
* The hardware implementations of bitwise AND/OR are about the same.
* In contrast, the CMPSEL operation can be implemented in various ways.
* No need to fine-tune the performance
e 23.1% and 29.0% higher throughput of HA-CMPSEL

182.1 1854.41 1775.67 1847.71 s 1 cluster
20.0 HH a8 HH HHH mm 16 clusters
15.0 it
HH ine 7z 256 clusters
10.0
oo
=ai

| INTERNATIONAL 4096 clusters N\
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< B BB B
0.0 0 | (XK1

HA-CPU  HA-CMPSEL HA-f20/:00 HA-f-1280 HA-CMPSEL HA-f-.0/+0.0
(104 sec) (SP) (SP)
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Evaluation: Speculative Execution

* Speculative merging speedup
* NV-TCU by 16.4% on D-NORMAL
* HA-f_128/0 by 15.8% on D-NORMAL
* Speculative initialization avoid very long execution time caused by abnormal datasets (e.g., D-NOISE)
* reduces 93.9% on Nvidia GPUs
* reduces 99.3% on Ascend 310

o)

Q

()]

3 182.1 1854.41 1775.67 1847.71 = 1 cluster

Tiso i i = i mm 16 clusters

E 10.0 i B i inE H _ ik 7z 256 clusters

£ oo a S g i Es i R == 4096 clusters

g oo it H B H i H + &= O cluster

g HA-CPU  HA-CMPSEL HA-f_0/:00 HA-f.1280 HA-CMPSEL HA-f-20/:00  HA-f_1280

X (104 sec) (SP) (SP) (SP)

v

Q

(1]

""3 69.77 82.97 76.61 79.11 sy 1 cluster

;6'0 . i H o - o _ mm 16 clusters

§4'5 i & i 2 : i & 256 clusters

£ i E : i - - H  =e 4096 clusters
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Future Work

e Extend AC-DBSCAN to multiple Al chips and distributed system
* the mini-batch manner -> good scalability
* rethink the bottleneck
* large capacity SSD is common
* GPUDirect can transfer SSD -> GPU directly

* save the whole dataset in each machine’s SSD and assign works based on
computation?

* Integrating AC-DBSCAN with
e accelerating index structures
* approximation algorithms
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Conclusion

* This paper presented AC-DBSCAN , a DBSCAN algorithm designed for Al
chips.

e 2.61x throughput by deploying distance calculation to Ampere TCUs

* With high portability, our e-neighbor identification kernels can be
executed on almost all Al chips

* 16.20x higher throughput than deploying e-neighbor
identification to CPUs.

* HA-f_125/0 reduces the execution time by 29.0% compared with HA-
CMPSEL.

* The speculative execution further reduces the execution time by
15.1% on D-NORMAL and 99.0% on D-NOISE.
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