
Mingzhen Li, Yi Liu, Hailong Yang, Yongmin Hu, Qingxiao Sun, Bangduo Chen, 
Xin You, Xiaoyan Liu, Zhongzhi Luan and Depei Qian

Beihang University, Beijing, China



 Background & Motivation
 Stencil Computation & Optimizations
 Emerging Many-core Processors
 Motivation

 Methodology & Implementation
 Domain Specific Language
 Compilation Optimizations
 Communication Library

 Evaluation
 Experiment Setup
 Performance Analysis

 Conclusion



 A stencil defines a particular computation 
pattern on the structural grid. 
 (Spatial) It updates each element based

on certain neighboring elements. 
 (Temporal) It updates the values of 

current timestep based on previous 
timesteps.

CFD Climate Modeling

Seismic Processing Electromagnetism

1) PDE equations 3) Stencil computations2) Discretization
Real-world
problems

𝑢𝑢𝑖𝑖,𝑗𝑗𝑡𝑡+1 = 𝑐𝑐0 𝑢𝑢𝑖𝑖,𝑗𝑗𝑡𝑡−1 + 𝑐𝑐1 𝑢𝑢𝑖𝑖,𝑗𝑗𝑡𝑡

+𝑐𝑐2 (𝑢𝑢𝑖𝑖+1,𝑗𝑗
𝑡𝑡 + 𝑢𝑢𝑖𝑖−1,𝑗𝑗

𝑡𝑡 )
+𝑐𝑐3 (𝑢𝑢𝑖𝑖,𝑗𝑗+1𝑡𝑡 + 𝑢𝑢𝑖𝑖,𝑗𝑗−1𝑡𝑡 )



 Diverse stencil patterns
 Grid dimensions (e.g., 2D, 3D)
 Shapes (e.g., box, star)
 Number of neighbors (e.g., 7-point, 27-point)
 Number of timesteps

 Performance optimizations
 Tiling: overlapped[Zhou et. al, CGO12] , trapezoid

[Frigo et. al, SC05], diamond [Bertolacci et. al, SC15] …
 Streaming [Nguyen et.al, SC10]

 Vectorization [Henretty et.al, ICS13] …

Manual Optimizations are
tedious and error-prone

 Stencil DSLs & compilers
 (INPUT) the stencil definitions described by 

domain specific languages 
 (OUPUT) the optimized codes (or binaries) 

on target hardware
 Code transformations (optimizations)

 tiling, streaming, vectorization
 Representative stencil DSLs

 Halide [Ragan et.al, PLDI13] [Denniston, et.al, PPoPP16]

 Physis [Maruyama,, et.al, SC11]

• Lacking support for large-scale execution
• Lacking support for stencils with multiple 

time dependencies



Sunway SW26010 processor
= Core Group * 4

= (MPE*1 + CPE*64) * 4
 64KB SPM, manually controlled
 Direct Memory Access (DMA)
 Programming  model:  Athread

Heterogeneous
architecture

Homogeneous
architecture

Matrix MT2000+ processor
= SuperNode (32 cores) * 4

 SN = panel (8 cores) * 4
 Each panel contains 8 cache-coherent 

compute cores.
 Programming model: OpenMP

 Posing new challenges for stencil DSLs with diverse architecture designs



In general, existing stencil DSLs
 Lack support for emerging manycore 

processors (Sunway and Matrix)
 Focus on expressing and optimizing 

stencils on the spatial dimension
 Few (except YASK [Yount et.al, WOLFHPC16], Physis

[Maruyama et.al, SC11], and STELLA [Gysi et.al, SC15] ) 
can optimize stencils at large scale

We propose a new stencil DSL, MSC
 decouple the stencil expression, 

computation optimization and code 
generation

 address the multiple time dependencies
by separating Kernels and Stencils

 a pluggable communication library to
work in synergy with our stencil DSL

adapt optimization passes tailored for 
many-core processors with support of
multiple time dependency

optimized to support the halo exchange 
for large-scale stencil computation 



 Background & Motivation
 Stencil Computation & Optimizations
 Emerging Many-core Processors
 Motivation

 Methodology & Implementation
 Domain Specific Language
 Compilation Optimizations
 Communication Library

 Evaluation
 Experiment Setup
 Performance Analysis

 Conclusion



Our design principle – Separating stencil expression from optimization

 Frontend
 Stencil pattern, time iteration
 Optimization primitives

 Backend
 Ahead-Of-Time (AOT) compilation
 Generate standard C codes

 Intermediate Representation (IR)
 Lower expression to

implementation
 Communication library

 Enabling large-scale execution with
flexibility and extensibility



 A single level IR embedded in the 
abstract syntax tree. 

 Kernel:
 Composed of Tensor, Nested loop, 

and Expression IR

 Stencil:
 Composed of Kernel, Tensor, Nested 

loop, and Expression IR

 Primitive:
 Rewrite the Nested loop and 

Expression IR in Kernel



 Two kinds of tensors in MSC
 SpNode

 Explicitly defined by users 
 With extra memory space to store the 

halo regions and the intermediate data 
within the time window.

 TeNode
 Implicitly used by the MSC compiler 

and is transparent to users
 As a temporary buffer, without halo

 Separation of Kernels and Stencils
 Kernel (within single timestep)

 Element (k, j, i) is updated using its 
neighboring elements. E.g., 3d7pt. 

 MSC provides various optimization primitives  
 Stencil (with multiple timesteps)

 Stencil aggregates the output of the kernels 
at different timesteps.

A Stencil can consist multiple different 
Kernels from different timesteps. 



Line 2: the dimension (2563) of input/output grid
Line 3-4:  halo region width, time window size
Line 5: subscripts of the elements in the grid
Line 6: the input 3D tensor B

Line 7: 3d7pt stencil kernel, element (k, j, i) is 
updated using six neighboring elements
Line 8-9: various optimization primitives
Line 12: stencil computation along the time 
dimension, which aggregates the output at 
timestep (t − 1) and (t − 2)

Line 13: MPI grid for large-scale execution
Line 14-15: input data, time iterations
Line 16: optimize, compile, and codegen



 Tile: loop fission in all dimensions
 Reorder: reorder the nested loops
 Parallel: map the loops to cores
 Caching related primitives 

 CacheRead and CacheWrite
 cache_read and cache_write
 compute_at

Architecture independent

Architecture dependent



 Tile ① + Reorder ②

• Together, they split the stencil computation into a 
sequence of computation tasks on tiles. 

• The tiles are assigned with overlapped halo 
regions to avoid computation dependencies.

 + Parallel ③

• The tasks can be mapped to the massive cores of 
the many-core processors conveniently.

• (CPEs of Sunway processor, and compute cores of 
Matrix processor)

①

②

③



Explicit control the data access to utilize the fast 
local memory on cache-less processors. 

• Control the allocation of local memory (e.g., SPM on Sunway) for better data reuse. 
• Manage the DMA transfer between local memory and main memory automatically.

 cache_read and cache_write
 Bind the input/output tensor to the 

read/write buffer.
 compute_at

 Dictate the DMA data transfer:
 1) the data to be transferred
 2) the code position to invoke DMA

 CacheRead and CacheWrite
 Allocate read/write buffers in local memory.

 Caching primitives 



Enable iterating over a large number of 
timesteps 
 Restrict the size of intermediate tensors to 

the window size (e.g., 3)
 By preempting the buffer of the oldest 

tensor, and assigning it to the new tensor



 Domain decomposition
 One sub-tensor for one MPI process 
 Outer halo (orange color) / Inner halo (green 

color) / Inner (grey color)
 Halo exchange

 Allocate the memory for the send buffer and 
the receive buffer

 Then pack the data of the inner halo region in 
the send buffer

 Then call MPI_isend to send the packed data 
to the neighboring MPI process

 Call MPI_irecv and then unpack
 Notably, all MPI processes are exchanging the 

halo region simultaneously
 Autotuning

 Select the optimal sub-tensor size



 Seamlessly integrated: 
 MSC can insert the function calls in 

the generated codes automatically.
 Pluggable: 

 It works as a plugin to MSC.
 Users can easily plug in their own 

halo-exchanging libraries following 
the same api.

 Extensible:
 Various communication optimizations 

can be further implemented without 
modifying MSC.



 Background & Motivation
 Stencil Computation & Optimizations
 Emerging Many-core Processors
 Motivation

 Methodology & Implementation
 Domain Specific Language
 Compilation Optimizations
 Communication Library

 Evaluation
 Experiment Setup
 Performance Analysis

 Conclusion



Hardware & software configuration.

Stencil benchmarks used in the evaluation.

 Performance of MSC on a single 
many-core processor.
 Baseline: serial version.
 Comparison: OpenACC (on Sunway), 

OpenMP (on Matrix). Both adopt the 
same optimizations as MSC for a fair 
comparison. 

 Weak and strong scalability.
 Performance comparison with 

SOTA DSLs on x86 CPU
 Comparison: Halide, Patus, Physis



Sunway Matrix

 MSC outperforms OpenACC in all cases, with the 
average speedup of 24.4× (fp64) and 20.7× (fp32).

 MSC can generate optimized codes exploiting the 
architectural features such as SPM and DMA for 
superior performance.

 The performance of MSC generated stencil codes is 
close to the manually optimized OpenMP codes. 

 Average speedup of 1.05× (fp64) and 1.03× (fp32). 
But MSC has less LoC.

 Matrix adopts homogeneous design, which is easier 
to optimize codes manually.



 Strong: when scaling to the maximum number of cores 
(8x over the minimum) , the average speedup achieved 
by MSC is 6.74× and 5.85× on Sunway and Tianhe-3 
platforms, respectively.

 Weak: almost linear, with 7.85× and 7.38× speedup on 
Sunway and Tianhe-3 platform, respectively.



Comparison with Halide (Baseline -- Halide-JIT):
Halide-AOT  2.92x
MSC  3.33x
 Halide-JIT: JIT overhead
 Halide-AOT: redundant subscript expressions

Comparison with Patus (Baseline -- Patus):
MSC  5.94×
 Patus: aggressive SIMD vectorization with 

SSE intrinsic

Comparison with Physis (Baseline -- Physis):
MSC  9.88×
 Physis: centralized RPC coordinator



 Three categories: 1) 2d9pt_star, 2d9pt_box, 3d7pt_star, 3d13pt_star, 2)
3d25pt_star, 3d31pt_star, and 3) 2d121pt_box, 2d169pt_box

 Category 3): high operational intensity  better performance
 Category 2): 3D star shape  discrete (input grid) and redundant (halo region) 

data accesses  lower performance

For more results, please refer to our paper.



 Stencil: 3d7pt_star
 Input grid: 8192*128*128
 Stop after 13,460,000 (around 13 minutes) and 19,670,000 (around 16 minutes) 

iterations
 3.28x performance improvement

For more results, please refer to our paper.



Open-sourced at https://github.com/buaa-hipo/MSC-stencil-compiler

MSC -- a new stencil DSL that generates optimized stencil codes targeting 
emerging many-core processors
 Support expressing stencil computation with multiple time dependencies
 Provide various optimization primitives to exploit the parallelism and data 

locality across the computation and memory hierarchies
 Integrate a pluggable halo exchanging library in large-scale stencil codes

 MSC shows competitive performance
 24.4x over OpenACC on Sunway
 1.05x over OpenMP on Matrix, with less LoC
 1.14x over Halide, 5.49x over Patus, 9.88x over Physis on x86 CPU

https://github.com/buaa-hipo/MSC-stencil-compiler


Thanks! Q&A


	Automatic Code Generation and Optimization of �Large-scale Stencil Computation �on Many-core Processors
	Outline
	Stencil Computation
	Stencil Optimizations
	Emerging Many-core Processors
	Motivation
	Outline
	Design Overview
	Intermediate Representation of MSC
	Intermediate Representation of MSC
	Programming Language of MSC
	Compilation Optimizations – Overview
	Compilation Optimizations – Architecture independent
	Compilation Optimizations – Architecture dependent
	Compilation Optimizations – Sliding time window
	Communication Library
	Communication Library
	Outline
	Experiment Setup
	Performance on a single many-core processor
	Strong and weak scalability
	Performance comparison on x86 CPU
	More results – roofline analysis
	More results – autotuning 
	Conclusion
	幻灯片编号 26

