
Mingzhen Li, Yi Liu, Hailong Yang, Yongmin Hu, Qingxiao Sun, Bangduo Chen,
Xin You, Xiaoyan Liu, Zhongzhi Luan and Depei Qian

Beihang University, Beijing, China

 Background & Motivation
 Stencil Computation & Optimizations
 Emerging Many-core Processors
 Motivation

 Methodology & Implementation
 Domain Specific Language
 Compilation Optimizations
 Communication Library

 Evaluation
 Experiment Setup
 Performance Analysis

 Conclusion

 A stencil defines a particular computation
pattern on the structural grid.
 (Spatial) It updates each element based

on certain neighboring elements.
 (Temporal) It updates the values of

current timestep based on previous
timesteps.

CFD Climate Modeling

Seismic Processing Electromagnetism

1) PDE equations 3) Stencil computations2) Discretization
Real-world
problems

𝑢𝑢𝑖𝑖,𝑗𝑗𝑡𝑡+1 = 𝑐𝑐0 𝑢𝑢𝑖𝑖,𝑗𝑗𝑡𝑡−1 + 𝑐𝑐1 𝑢𝑢𝑖𝑖,𝑗𝑗𝑡𝑡

+𝑐𝑐2 (𝑢𝑢𝑖𝑖+1,𝑗𝑗
𝑡𝑡 + 𝑢𝑢𝑖𝑖−1,𝑗𝑗

𝑡𝑡)
+𝑐𝑐3 (𝑢𝑢𝑖𝑖,𝑗𝑗+1𝑡𝑡 + 𝑢𝑢𝑖𝑖,𝑗𝑗−1𝑡𝑡)

 Diverse stencil patterns
 Grid dimensions (e.g., 2D, 3D)
 Shapes (e.g., box, star)
 Number of neighbors (e.g., 7-point, 27-point)
 Number of timesteps

 Performance optimizations
 Tiling: overlapped[Zhou et. al, CGO12] , trapezoid

[Frigo et. al, SC05], diamond [Bertolacci et. al, SC15] …
 Streaming [Nguyen et.al, SC10]

 Vectorization [Henretty et.al, ICS13] …

Manual Optimizations are
tedious and error-prone

 Stencil DSLs & compilers
 (INPUT) the stencil definitions described by

domain specific languages
 (OUPUT) the optimized codes (or binaries)

on target hardware
 Code transformations (optimizations)

 tiling, streaming, vectorization
 Representative stencil DSLs

 Halide [Ragan et.al, PLDI13] [Denniston, et.al, PPoPP16]

 Physis [Maruyama,, et.al, SC11]

• Lacking support for large-scale execution
• Lacking support for stencils with multiple

time dependencies

Sunway SW26010 processor
= Core Group * 4

= (MPE*1 + CPE*64) * 4
 64KB SPM, manually controlled
 Direct Memory Access (DMA)
 Programming model: Athread

Heterogeneous
architecture

Homogeneous
architecture

Matrix MT2000+ processor
= SuperNode (32 cores) * 4

 SN = panel (8 cores) * 4
 Each panel contains 8 cache-coherent

compute cores.
 Programming model: OpenMP

 Posing new challenges for stencil DSLs with diverse architecture designs

In general, existing stencil DSLs
 Lack support for emerging manycore

processors (Sunway and Matrix)
 Focus on expressing and optimizing

stencils on the spatial dimension
 Few (except YASK [Yount et.al, WOLFHPC16], Physis

[Maruyama et.al, SC11], and STELLA [Gysi et.al, SC15])
can optimize stencils at large scale

We propose a new stencil DSL, MSC
 decouple the stencil expression,

computation optimization and code
generation

 address the multiple time dependencies
by separating Kernels and Stencils

 a pluggable communication library to
work in synergy with our stencil DSL

adapt optimization passes tailored for
many-core processors with support of
multiple time dependency

optimized to support the halo exchange
for large-scale stencil computation

 Background & Motivation
 Stencil Computation & Optimizations
 Emerging Many-core Processors
 Motivation

 Methodology & Implementation
 Domain Specific Language
 Compilation Optimizations
 Communication Library

 Evaluation
 Experiment Setup
 Performance Analysis

 Conclusion

Our design principle – Separating stencil expression from optimization

 Frontend
 Stencil pattern, time iteration
 Optimization primitives

 Backend
 Ahead-Of-Time (AOT) compilation
 Generate standard C codes

 Intermediate Representation (IR)
 Lower expression to

implementation
 Communication library

 Enabling large-scale execution with
flexibility and extensibility

 A single level IR embedded in the
abstract syntax tree.

 Kernel:
 Composed of Tensor, Nested loop,

and Expression IR

 Stencil:
 Composed of Kernel, Tensor, Nested

loop, and Expression IR

 Primitive:
 Rewrite the Nested loop and

Expression IR in Kernel

 Two kinds of tensors in MSC
 SpNode

 Explicitly defined by users
 With extra memory space to store the

halo regions and the intermediate data
within the time window.

 TeNode
 Implicitly used by the MSC compiler

and is transparent to users
 As a temporary buffer, without halo

 Separation of Kernels and Stencils
 Kernel (within single timestep)

 Element (k, j, i) is updated using its
neighboring elements. E.g., 3d7pt.

 MSC provides various optimization primitives
 Stencil (with multiple timesteps)

 Stencil aggregates the output of the kernels
at different timesteps.

A Stencil can consist multiple different
Kernels from different timesteps.

Line 2: the dimension (2563) of input/output grid
Line 3-4: halo region width, time window size
Line 5: subscripts of the elements in the grid
Line 6: the input 3D tensor B

Line 7: 3d7pt stencil kernel, element (k, j, i) is
updated using six neighboring elements
Line 8-9: various optimization primitives
Line 12: stencil computation along the time
dimension, which aggregates the output at
timestep (t − 1) and (t − 2)

Line 13: MPI grid for large-scale execution
Line 14-15: input data, time iterations
Line 16: optimize, compile, and codegen

 Tile: loop fission in all dimensions
 Reorder: reorder the nested loops
 Parallel: map the loops to cores
 Caching related primitives

 CacheRead and CacheWrite
 cache_read and cache_write
 compute_at

Architecture independent

Architecture dependent

 Tile ① + Reorder ②

• Together, they split the stencil computation into a
sequence of computation tasks on tiles.

• The tiles are assigned with overlapped halo
regions to avoid computation dependencies.

 + Parallel ③

• The tasks can be mapped to the massive cores of
the many-core processors conveniently.

• (CPEs of Sunway processor, and compute cores of
Matrix processor)

①

②

③

Explicit control the data access to utilize the fast
local memory on cache-less processors.

• Control the allocation of local memory (e.g., SPM on Sunway) for better data reuse.
• Manage the DMA transfer between local memory and main memory automatically.

 cache_read and cache_write
 Bind the input/output tensor to the

read/write buffer.
 compute_at

 Dictate the DMA data transfer:
 1) the data to be transferred
 2) the code position to invoke DMA

 CacheRead and CacheWrite
 Allocate read/write buffers in local memory.

 Caching primitives

Enable iterating over a large number of
timesteps
 Restrict the size of intermediate tensors to

the window size (e.g., 3)
 By preempting the buffer of the oldest

tensor, and assigning it to the new tensor

 Domain decomposition
 One sub-tensor for one MPI process
 Outer halo (orange color) / Inner halo (green

color) / Inner (grey color)
 Halo exchange

 Allocate the memory for the send buffer and
the receive buffer

 Then pack the data of the inner halo region in
the send buffer

 Then call MPI_isend to send the packed data
to the neighboring MPI process

 Call MPI_irecv and then unpack
 Notably, all MPI processes are exchanging the

halo region simultaneously
 Autotuning

 Select the optimal sub-tensor size

 Seamlessly integrated:
 MSC can insert the function calls in

the generated codes automatically.
 Pluggable:

 It works as a plugin to MSC.
 Users can easily plug in their own

halo-exchanging libraries following
the same api.

 Extensible:
 Various communication optimizations

can be further implemented without
modifying MSC.

 Background & Motivation
 Stencil Computation & Optimizations
 Emerging Many-core Processors
 Motivation

 Methodology & Implementation
 Domain Specific Language
 Compilation Optimizations
 Communication Library

 Evaluation
 Experiment Setup
 Performance Analysis

 Conclusion

Hardware & software configuration.

Stencil benchmarks used in the evaluation.

 Performance of MSC on a single
many-core processor.
 Baseline: serial version.
 Comparison: OpenACC (on Sunway),

OpenMP (on Matrix). Both adopt the
same optimizations as MSC for a fair
comparison.

 Weak and strong scalability.
 Performance comparison with

SOTA DSLs on x86 CPU
 Comparison: Halide, Patus, Physis

Sunway Matrix

 MSC outperforms OpenACC in all cases, with the
average speedup of 24.4× (fp64) and 20.7× (fp32).

 MSC can generate optimized codes exploiting the
architectural features such as SPM and DMA for
superior performance.

 The performance of MSC generated stencil codes is
close to the manually optimized OpenMP codes.

 Average speedup of 1.05× (fp64) and 1.03× (fp32).
But MSC has less LoC.

 Matrix adopts homogeneous design, which is easier
to optimize codes manually.

 Strong: when scaling to the maximum number of cores
(8x over the minimum) , the average speedup achieved
by MSC is 6.74× and 5.85× on Sunway and Tianhe-3
platforms, respectively.

 Weak: almost linear, with 7.85× and 7.38× speedup on
Sunway and Tianhe-3 platform, respectively.

Comparison with Halide (Baseline -- Halide-JIT):
Halide-AOT 2.92x
MSC 3.33x
 Halide-JIT: JIT overhead
 Halide-AOT: redundant subscript expressions

Comparison with Patus (Baseline -- Patus):
MSC 5.94×
 Patus: aggressive SIMD vectorization with

SSE intrinsic

Comparison with Physis (Baseline -- Physis):
MSC 9.88×
 Physis: centralized RPC coordinator

 Three categories: 1) 2d9pt_star, 2d9pt_box, 3d7pt_star, 3d13pt_star, 2)
3d25pt_star, 3d31pt_star, and 3) 2d121pt_box, 2d169pt_box

 Category 3): high operational intensity better performance
 Category 2): 3D star shape discrete (input grid) and redundant (halo region)

data accesses lower performance

For more results, please refer to our paper.

 Stencil: 3d7pt_star
 Input grid: 8192*128*128
 Stop after 13,460,000 (around 13 minutes) and 19,670,000 (around 16 minutes)

iterations
 3.28x performance improvement

For more results, please refer to our paper.

Open-sourced at https://github.com/buaa-hipo/MSC-stencil-compiler

MSC -- a new stencil DSL that generates optimized stencil codes targeting
emerging many-core processors
 Support expressing stencil computation with multiple time dependencies
 Provide various optimization primitives to exploit the parallelism and data

locality across the computation and memory hierarchies
 Integrate a pluggable halo exchanging library in large-scale stencil codes

 MSC shows competitive performance
 24.4x over OpenACC on Sunway
 1.05x over OpenMP on Matrix, with less LoC
 1.14x over Halide, 5.49x over Patus, 9.88x over Physis on x86 CPU

https://github.com/buaa-hipo/MSC-stencil-compiler

Thanks! Q&A

	Automatic Code Generation and Optimization of �Large-scale Stencil Computation �on Many-core Processors
	Outline
	Stencil Computation
	Stencil Optimizations
	Emerging Many-core Processors
	Motivation
	Outline
	Design Overview
	Intermediate Representation of MSC
	Intermediate Representation of MSC
	Programming Language of MSC
	Compilation Optimizations – Overview
	Compilation Optimizations – Architecture independent
	Compilation Optimizations – Architecture dependent
	Compilation Optimizations – Sliding time window
	Communication Library
	Communication Library
	Outline
	Experiment Setup
	Performance on a single many-core processor
	Strong and weak scalability
	Performance comparison on x86 CPU
	More results – roofline analysis
	More results – autotuning
	Conclusion
	幻灯片编号 26

