

Sparker: Efficient Reduction for More Scalable Machine Learning with Spark

Bowen Yu, Huanqi Cao, Tianyi Shan[†], Haojie Wang, Xiongchao Tang, Wenguang Chen

Tsinghua University [†] University of California San Diego

Big data, Spark, distribured machine learning in Spark

• Big Data: **large growing** data sets that include **heterogeneous** formats: structured, unstructured and semi-structured data[1].

[1] Oussous, Ahmed, et al. "Big Data technologies: A survey." Journal of King Saud University-Computer and Information Sciences 30.4 (2018): 431-448.

50th International Conference on Parallel Processing (ICPP) August 9-12, 2021 in Virtual Chicago, IL

Variety

Apache Spark

- Apache Spark is an important big data framework that unifies big data analytics.
- Libraries are built upon Spark's core module using its RDD API.

Distributed Machine Learning Training in Spark

Motivation

Despite training machine learning model in Spark has advantages, it has scalability issue.

Experiment Configuration

- Datasets from libsvm
 - avazu
 - criteo
 - kdd10
 - kdd12
- Datasets from uci
 - enron
 - nytimes
- MLlib Applications
 - Latent Dirichlet Allocation (LDA)
 - Support Vector Machine (SVM)
 - Logistic Regression (LR)

- Platform BIC
 - Intel Xeon E5-2680 v4
 - 448-core in-house cluster
- Platform AWS

INTERNATIONAL

CONFERENCE ON

PARALLEL

PROCESSING

- Intel Xeon Platinum 8175M
- 960-core public cloud cluster
- AWS EC2 (m5d.24xlarge)
- Apache Spark: Spark 2.3.0
- MPI library: MPICH 3.2

Scalability Issue in MLlib

• Poor scalability: 1.25 × speedup on 8 machines w.r.t 1 machine

Reduction is the Scalability Bottleneck

- Driver: computation not offloaded to executors
- Non-aggregation: stages unrelated to aggregation
- Aggregation: stages related to aggregation operation
 - Compute: data-parallel computation
 - Reduce: reduction

The Cause of Reduction Scalability


```
abstract class RDD[T] {
      def aggregate[U](zeroValue: U)(
       seqOp: (\mathbf{U}, \mathbf{T}) \Rightarrow \mathbf{U}
       reduceOp: (\mathbf{U}, \mathbf{U}) \Rightarrow \mathbf{U}: U
      def treeAggregate[U] (zeroValue: U) (
6
        seqOp: (\mathbf{U}, \mathbf{T}) \Rightarrow \mathbf{U},
       reduceOp: (U, U) \implies U_1
       depth: Int = 2): U
10 }
```

2

3

5

7

8

9

No way to split aggregators

Sparker

Challenges

- Challenge 1: Aggregation interface should include aggregator-splitting semantics.
- Challenge 2: Low-latency communication among executors is required.
- Challenge 3: Communication amount should be reduced.

Splittable Aggregation Interface

Challenge 1: Aggregation interface should include aggregator-splitting semantics.

(ICPP) August 9-12, 2021 in Virtual Chicago, IL

The aggregator-splitting semantic is included in the splittable aggregation interface.

| INTERNATIONAL | CONFERENCE ON | | PARALLEL | PROCESSING |

Low-latency Inter-Executor Communication

Challenge 2: Low-latency communication among executors is required.

Improvements on Scalable Communicator

Improvement 1: Parallel Directed Ring (PDR) to provide abundant CPU power to overcome Java serialization / deserialization overhead.

Improvement 2: Topology-awareness eliminates unnecessary inter-node communication by properly placing executors on the nodes.

Ring-based Reduction Algorithm

• Based on the splittable aggregation interface and the scalable communicator, we implement a ring-based reduction algorithm.

In-Memory Merge

Challenge 3: Communication amount should be reduced.

In-Cooperation

IDC

Experiment Configuration

- Datasets from libsvm
 - avazu
 - criteo
 - kdd10
 - kdd12
- Datasets from uci
 - enron
 - nytimes
- MLlib Applications
 - Latent Dirichlet Allocation (LDA)
 - Support Vector Machine (SVM)
 - Logistic Regression (LR)

- Platform BIC
 - Intel Xeon E5-2680 v4
 - 448-core in-house cluster
- Platform AWS

INTERNATIONAL

CONFERENCE ON

PARALLEL

PROCESSING

- Intel Xeon Platinum 8175M
- 960-core public cloud cluster
- AWS EC2 (m5d.24xlarge)
- Apache Spark: Spark 2.3.0
- MPI library: MPICH 3.2

- Fig: communication latency vs message size
- Scalable communicator has near-MPI performance and has significantly lower latency than Spark Block Manager

PROCESSING

- Fig: communication throughput vs message size
- Unlike MPI, only with Parallel Directed Ring (PDR) can the scalable communicator fully utilize the network • bandwidth. This is due to high CPU overhead from Java serialization and deserialization.

- Fig: reduce-scatter time vs number of parallel PDR rings
- Parallel Directed Ring improves the reduce-scatter performance, and topology-awareness futher improves the reduce-scatter performance.

- Fig: reduce-scatter time vs the number of executors
- The reduce-scatter performance of scalable communicator is as scalable as MPI (even goes beyond MPI)

INTERNATIONAL

CONFERENCE ON

PARALLEL

PROCESSING

- Fig: comparing tree aggregation, tree aggregation with in-memory merge, and split aggregation with in-memory merge.
- For large messages (256MB), in-memory merge improves the aggregation performance, and split aggregation further improves the performance.
- For small messages (1KB), their performance are similar.

- Fig: speedup of end-to-end MLlib applications.
- Sparker (IMM + Split Aggregation) improves the end-to-end MLlib distributed machine learning training performance.

- Fig: strong scalability of LDA-N on AWS
- Sparker (IMM + Split Aggregation) improves the end-to-end MLlib distributed machine learning training strong scalability due to improved reduction performance.

- A aggregation interface for distributed datasets that supports scalable reduction.
- A low-latency and high-bandwidth communication layer integrated in Spark.
- Improve the end-to-end scalability of Spark's distributed machine learning.

Bowen Yu, Huanqi Cao, Tianyi Shan, Haojie Wang, Xiongchao Tang, Wenguang Chen Tsinghua University, University of California San Diego

yubw15@mails.tsinghua.edu.cn, caohq18@mails.tsinghua.edu.cn, tshan@eng.ucsd.edu, wanghaojie@tsinghua.edu.cn, txc13@tsinghua.org.cn, cwg@tsinghua.edu.cn

