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Background
Big data, Spark, distribured machine learning in Spark
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Big Data
• Big Data: large growing data sets that include heterogeneous

formats: structured, unstructured and semi-structured data[1].

[1] Oussous, Ahmed, et al. "Big Data technologies: A survey." Journal of King Saud University-Computer and Information 

Sciences 30.4 (2018): 431-448.
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Apache Spark

• Apache Spark is an important big data framework that unifies big data 
analytics.

• Libraries are built upon Spark’s core module using its RDD API.
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Distributed Machine Learning Training in Spark
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Resiliency against frequent failures in commodity clusters

Auto-scaling for better cluster utilization

Single-thread abstraction to ease programming
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Motivation
Despite training machine learning model in Spark has 

advantages, it has scalability issue.
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Experiment Configuration

• Platform BIC
• Intel Xeon E5-2680 v4

• 448-core in-house cluster

• Platform AWS
• Intel Xeon Platinum 8175M

• 960-core public cloud cluster

• AWS EC2 (m5d.24xlarge)

• Apache Spark: Spark 2.3.0

• MPI library: MPICH 3.2

• Datasets from libsvm
• avazu

• criteo

• kdd10

• kdd12

• Datasets from uci
• enron

• nytimes

• MLlib Applications
• Latent Dirichlet Allocation (LDA)

• Support Vector Machine (SVM)

• Logistic Regression (LR)
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Scalability Issue in MLlib

• Poor scalability: 1.25 × speedup on 8 machines w.r.t 1 machine
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Reduction is the Scalability Bottleneck

• Driver: computation not offloaded to executors

• Non-aggregation: stages unrelated to aggregation

• Aggregation: stages related to aggregation operation
• Compute: data-parallel computation
• Reduce: reduction

67.69%

Scalability Bottleneck

Strong scalability of LDA-N
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The Cause of Reduction Scalability
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M: message size  B: bandwidth  P: number of executors
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Challenges

• Challenge 1: Aggregation interface should include aggregator-splitting 
semantics.

• Challenge 2: Low-latency communication among executors is required.

• Challenge 3: Communication amount should be reduced.
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Splittable Aggregation Interface
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Challenge 1: Aggregation interface should include aggregator-splitting semantics.

The aggregator-splitting 

semantic is included in the 

splittable aggregation 

interface.
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Low-latency Inter-Executor Communication
Challenge 2: Low-latency communication among executors is required.

Figure: The latency of Block Manager is very high.
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Improvements on Scalable Communicator

Improvement 1: Parallel Directed Ring (PDR) to provide 

abundant CPU power to overcome Java serialization / 

deserialization overhead.

Improvement 2: Topology-awareness eliminates 

unnecessary inter-node communication by properly 

placing executors on the nodes.
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Worse case: 8𝑀 inter-node 

communication

Best case: 2𝑀 inter-node, 6M 

intra-node communication

machine executor inter-node intra-node
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Ring-based Reduction Algorithm

• Based on the splittable aggregation interface and the scalable 
communicator, we implement a ring-based reduction algorithm.
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In-Memory Merge
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Evaluation



Tsinghua University, University of California San Diego

INTERNATIONAL

CONFERENCE ON
PARALLEL

PROCESSING

50th International Conference on Parallel Processing 

(ICPP) August 9-12, 2021 in Virtual Chicago, IL 

Experiment Configuration

• Platform BIC
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• Platform AWS
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Evaluation
• Fig: communication latency vs message size

• Scalable communicator has near-MPI performance and has significantly lower latency than Spark Block 
Manager
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Evaluation
• Fig: communication throughput vs message size

• Unlike MPI, only with Parallel Directed Ring (PDR) can the scalable communicator fully utilize the network 
bandwidth. This is due to high CPU overhead from Java serialization and deserialization.
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Evaluation
• Fig: reduce-scatter time vs number of parallel PDR rings

• Parallel Directed Ring improves the reduce-scatter performance, and topology-awareness futher improves the 
reduce-scatter performance.
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Evaluation
• Fig: reduce-scatter time vs the number of executors

• The reduce-scatter performance of scalable communicator is as scalable as MPI (even goes beyond MPI)
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Evaluation
• Fig: comparing tree aggregation, tree aggregation with in-memory merge, and split aggregation with in-memory merge. 

• For large messages (256MB), in-memory merge improves the aggregation performance, and split aggregation further improves the 
performance.

• For small messages (1KB), their performance are similar.
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Evaluation
• Fig: speedup of end-to-end MLlib applications.

• Sparker (IMM + Split Aggregation) improves the end-to-end MLlib distributed machine learning training 
performance.
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Evaluation
• Fig: strong scalability of LDA-N on AWS

• Sparker (IMM + Split Aggregation) improves the end-to-end MLlib distributed machine learning training strong 
scalability due to improved reduction performance.
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• A aggregation interface for distributed datasets that supports scalable reduction.

• A low-latency and high-bandwidth communication layer integrated in Spark.

• Improve the end-to-end scalability of Spark’s distributed machine learning.


