Distributed Game-Theoretical Route Navigation for Vehicular Crowdsensing

En Wang1, Dongming Luan1, Yongjian Yang1, Zihe Wang2, Pengmin Dong1, Dawei Li3, Wenbin Liu1, and Jie Wu4

1Jinlin University, 2Renmin University of China, 3Montclair State University, 4Temple University
Outline

I. Motivation and Problem

II. Challenges

III. Contributions

IV. System Model

V. Strategy

VI. Theoretical Analysis

VII. Performance Evaluation
Motivation

Mobile Crowdsensing (MCS)

- Vehicular crowdsensing
- The existing task allocation strategies:
 - A heavy computation complexity
 - Fail to satisfy the preferences of users and the system.

Mobile Crowdsensing

Traffic monitoring

Noise monitoring

Distributed task allocation with the route navigation
Problem

How to find an equilibrium state?

<table>
<thead>
<tr>
<th>Approach</th>
<th>Solution</th>
<th>Profit</th>
<th>Equilibrium</th>
</tr>
</thead>
</table>
| Maximum profit | $u_1: r_1$
| | $u_2: r_3$
| | $u_3: r_4$
| | $u_1: 6/3=2$
| | $u_2: 6/3=2$
| | $u_3: 6/3=2$
| | 6 | No |
| Distributed equilibrium| $u_1: r_1$
| | $u_2: r_3$
| | $u_3: r_4$
| | $u_1: 5$
| | $u_2: 6/2=3$
| | $u_3: 6/2=3$
| | 11 | Yes |
| Centralized optimal | $u_1: r_1$
| | $u_2: r_3$
| | $u_3: r_5$
| | $u_1: 5$
| | $u_2: 6$
| | $u_3: 1$ | 12 | No |

u_3 can select r_4 to get more profit.
Challenges

▪ How to construct a distributed model to achieve the equilibrium while guaranteeing the profit performance?

▪ How to design a unified distributed algorithm such that it could take the requirements of both the platform and users into consideration?

▪ How to guarantee a lower performance bound with respect to the centralized optimal solution?
System model

Profit of user i under strategy profile s: $s = (s_i, s_{-i})$

$$P_i(s) = \alpha_i \cdot \sum_{k \in L_{s_i}} \frac{w_k(n_k(s))}{n_k(s)} - \beta_i \cdot d(s_i) - \gamma_i \cdot b(s_i)$$

- the cost incurred by traveling the detour distance
- the cost incurred by the congestion

User parameters: $\alpha_i, \beta_i, \gamma_i$

System parameters: φ, θ

An illustrative example of the influence of φ and θ

User parameters:
- α_i (user's preference)
- β_i (relative cost of detour)
- γ_i (relative cost of congestion)

System parameters:
- φ (relative cost of detour)
- θ (relative cost of congestion)

Profit function for u_i: $P_i(r_j) = \frac{w(r_j)}{n(r_i)} + \varphi \cdot h(r_j) + \theta \cdot c(r_j)$

<table>
<thead>
<tr>
<th>$h(r_i)$</th>
<th>$c(r_i)$</th>
<th>r_1</th>
<th>r_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Achieve different purposes by adjusting the values of φ and θ.

<table>
<thead>
<tr>
<th>φ</th>
<th>θ</th>
<th>Solution</th>
<th>Task #</th>
<th>Detour</th>
<th>Congestion</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>0.1</td>
<td>$u_1: r_1$ $u_2: r_2$</td>
<td>2</td>
<td>0+2=2</td>
<td>3+1=4</td>
</tr>
<tr>
<td>1</td>
<td>0.1</td>
<td>$u_1: r_1$ $u_2: r_1$</td>
<td>1</td>
<td>0+0=0</td>
<td>3+3=6</td>
</tr>
<tr>
<td>0.1</td>
<td>1</td>
<td>$u_1: r_2$ $u_2: r_2$</td>
<td>1</td>
<td>2+2=4</td>
<td>1+1=2</td>
</tr>
</tbody>
</table>

Maximize task # | Minimize detour | Minimize congestion
Theoretical Analysis

- NP-hardness of The Centralized Problem

Theorem 1. The problem of finding the solution with the maximum total profit in a centralized manner is NP-hard.

- Nash equilibrium

 No user can improve the profit by altering the strategy unilaterally in a Nash equilibrium.

- Potential game

 ✓ Nash equilibrium existence ✓ Finite improvement property

- Potential game proof

Theorem 2. The multi-user route navigation game is a weighted potential game and has a Nash equilibrium and finite improvement property.
Strategies

For user

Initialization Phase

1. Input $\alpha_i, \beta_i, \lambda_i$, the initial location and the destination.
2. Receive the recommended routes R_i.
3. Initialize $s_i(0) = r$ by randomly selecting a route $r \in R_i$.
4. Send $s_i(0)$ to the platform.
5. Receive n_k for each task k that is covered by $s_i(0)$.
6. Calculate the profit P_i.
7. Receive $d(r)$ and $b(r)$ for each route r in R_i.
8. **repeat** for each decision slot t
 - Obtain n_k for each task k that is covered by R_i.
 - Compute the best route set $\Delta_i(t)$.
 - **if** $\Delta_i(t) \neq \emptyset$ **then**
 - Send the request to contend the opportunity for updating decision.
 - **if** Win the opportunity **then**
 - Update the route selection decision $s_i(t)$ by selecting a route $r \in \Delta_i(t)$.
 - Report $s_i(t)$ to the platform.
 - **else**
 - Choose the original decision $s_i(t) = s_i(t - 1)$.
 - **until** The termination message is received.
9. **repeat** for each decision slot t
10. Obtain n_k for each task k that is covered by R_i.
11. Compute the best route set $\Delta_i(t)$.
12. **if** $\Delta_i(t) \neq \emptyset$ **then**
13. Send the request to contend the opportunity for updating decision.
14. **if** Win the opportunity **then**
15. Update the route selection decision $s_i(t)$ by selecting a route $r \in \Delta_i(t)$.
16. Report $s_i(t)$ to the platform.
17. **else**
18. Choose the original decision $s_i(t) = s_i(t - 1)$.

For platform

Algorithm 2 Information Update Algorithm for the platform.

1. Send the recommended route set R_i to the user $i \in U$.
2. Receive $s_i(0)$ from each user $i \in U$.
3. Calculate n_k for each task $k \in L$.
4. Send $n_k, d(r)$ and $b(r)$ to the corresponding user.
5. **repeat**
6. Receive the request from the users and let U' denote the set of users that send the request.
7. **if** $U' \neq \emptyset$ **then**
8. Select a set of users μ by SUU or PUU algorithm.
9. Inform the users in μ to update the decisions.
10. Receive $s_i(t)$ from user $i \in \mu$ and update n_k for each task $k \in L$.
11. **until** No request is received from the user.
12. Send the termination message to all users.
Performance Evaluation

- Convergence for Nash equilibrium

![Graphs showing profit vs. decision slot for Shanghai, Roma, and Epfl.](image)

Figure 3: User profit vs. decision slot.

![Graphs showing potential function value and total profit vs. decision slot for Shanghai, Roma, and Epfl.](image)

Figure 6: Potential function and total profit vs. decision slot.
Performance Evaluation

- **Coverage and reward**

![Bar charts showing coverage and reward for different user numbers in Shanghai, Roma, and Epfl.](chart)

Figure 8: Coverage vs. user number.

![Bar charts showing average reward for different task numbers in Shanghai, Roma, and Epfl.](chart)

Figure 9: Average reward vs. task number.
Performance Evaluation

- The influence of user and system parameters

![Graphs showing the influence of system parameters](image)

Figure 12: The influence of system parameters.

Table 5: The influence of the user parameters.

<table>
<thead>
<tr>
<th>α_i</th>
<th>reward</th>
<th>β_i</th>
<th>detour</th>
<th>γ_i</th>
<th>congestion</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>7.74</td>
<td>0.1</td>
<td>12.24</td>
<td>0.1</td>
<td>12.03</td>
</tr>
<tr>
<td>0.2</td>
<td>7.85</td>
<td>0.2</td>
<td>10.97</td>
<td>0.2</td>
<td>10.48</td>
</tr>
<tr>
<td>0.3</td>
<td>7.94</td>
<td>0.3</td>
<td>9.88</td>
<td>0.3</td>
<td>9.52</td>
</tr>
<tr>
<td>0.4</td>
<td>7.96</td>
<td>0.4</td>
<td>9.38</td>
<td>0.4</td>
<td>8.75</td>
</tr>
<tr>
<td>0.5</td>
<td>7.98</td>
<td>0.5</td>
<td>8.84</td>
<td>0.5</td>
<td>8.48</td>
</tr>
<tr>
<td>0.6</td>
<td>8.08</td>
<td>0.6</td>
<td>8.38</td>
<td>0.6</td>
<td>8.20</td>
</tr>
<tr>
<td>0.7</td>
<td>8.10</td>
<td>0.7</td>
<td>8.07</td>
<td>0.7</td>
<td>8.05</td>
</tr>
<tr>
<td>0.8</td>
<td>8.16</td>
<td>0.8</td>
<td>7.99</td>
<td>0.8</td>
<td>7.97</td>
</tr>
</tbody>
</table>
Thanks for listening