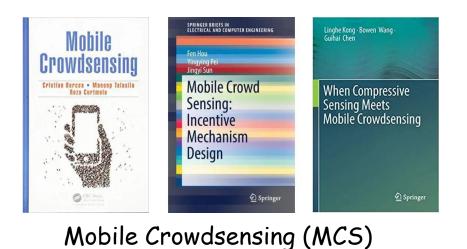

Distributed Game-Theoretical Route Navigation for Vehicular Crowdsensing

En Wang¹, Dongming Luan¹, Yongjian Yang¹, Zihe Wang², Pengmin Dong¹, Dawei Li³, Wenbin Liu¹, and Jie Wu⁴

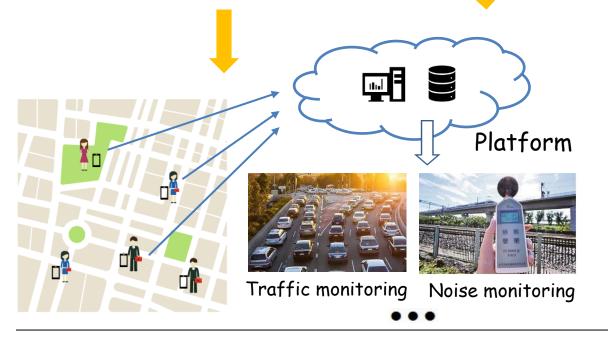
¹Jinlin University, ²Renmin University of China ³Montclair State University, ⁴Temple University

Outline


I. Motivation and Problem

- II. Challenges
- **III**.Contributions
- IV. System Model
- V. Strategy
- VI. Theoretical Analysis

VII.Performance Evaluation


Motivation

Vehicular crowdsensing

- The existing task allocation strategies:
- > A heavy computation complexity
- Fail to satisfy the preferences of users and the system.

Distributed task allocation with the route navigation

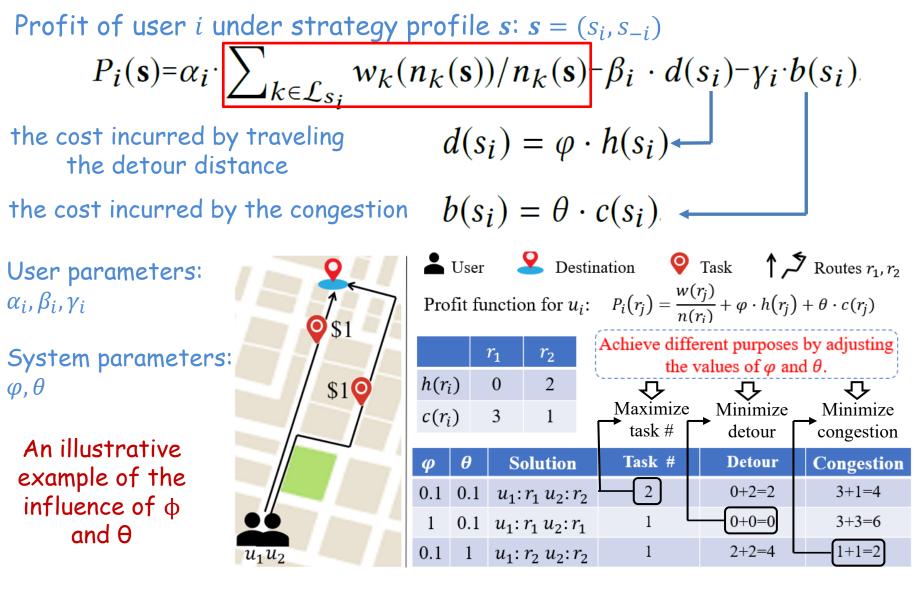
Problem

$\begin{array}{ccc} & & & & & \\ &$				$\left[\begin{array}{c} \uparrow \\ r_4 \\ r_5 \end{array}\right]$
	Approach	Solution	Profit	Equilibrium
	Maximum profit	$u_1: r_2 \ u_2: r_3 \ u_3: r_4$	$ \begin{array}{c} u_1: 6/3=2 \\ u_2: 6/3=2 \\ u_3: 6/3=2 \end{array} \right] 6 $	No
	Distributed equilibrium	$u_1: r_1 \ u_2: r_3 \ u_3: r_4$	$ \begin{array}{c} u_1:5\\ u_2:6/2=3\\ u_3:6/2=3 \end{array} \right] 11 $	Yes
	Centralized optimal	$u_1:r_1\ u_2:r_3\ u_3:r_5$	$\begin{bmatrix} u_1:5\\ u_2:6\\ u_3:1 \end{bmatrix}$ -12	No
How to find an equi	↓ lihrium			\checkmark

How to find an equilibrium <u>state?</u>

 u_3 can select r_4 to get more profit.

Challenges


How to construct a distributed model to achieve the equilibrium while guaranteeing the profit performance?

 How to design a unified distributed algorithm such that it could take the requirements of both the platform and users into consideration?

 How to guarantee a lower performance bound with respect to the centralized optimal solution?

System model

Theoretical Analysis

> NP-hardness of The Centralized Problem

Theorem 1. The problem of finding the solution with the maximum total profit in a centralized manner is NP-hard.

> Nash equilibrium

No user can improve the profit by altering the strategy unilaterally in a Nash equilibrium

Potential game

- ✓ Nash equilibrium existence
- ✓ Finite improvement property

Potential game proof

Theorem 2. The multi-user route navigation game is a weighted potential game and has a Nash equilibrium and finite improvement property.

Strategies

For user

Algorithm 1 Distributed Game-Theoretical Route Navigation Algorithm for user $i \in \mathcal{U}$.Algorithm 2 Information Update Algorithm for the plategorithm for user $i \in \mathcal{U}$.Initialization Phase1: Input $\alpha_i, \beta_i, \lambda_i$, the initial location and the destination.1: Send the recommended route set R_i to the user $i \in \mathcal{U}$.2: Receive $s_i(0)$ from each user $i \in \mathcal{U}$.3: Calculate n_k for each task $k \in \mathcal{L}$.	
1: Input $\alpha_i, \beta_i, \lambda_i$, the initial location and the destination. 2: Receive $s_i(0)$ from each user $i \in \mathcal{U}$. 3: Calculate n_i for each task $k \in \mathcal{L}$	ſ.
i: input $\alpha_i, \beta_i, \lambda_i$, the initial location and the destination. 3. Calculate n_i for each task $k \in f$	
 2: Receive the recommended routes R_i. 3: Initialize s_i(0) = r by randomly selecting a route r ∈ R_i. 4: Report s_i(0) to the platform. 5: Receive n_k for each task k that is covered by s_i(0). 6: Calculate the profit P_i. 5: Receive the request from the users and let U' dest of users that send the request. 7: if U' ≠ Ø then 	
7: Receive $d(r)$ and $b(r)$ for each route r in R_i . 8: Select a set of users μ by SUU or PUU algorith	ım.
8: repeat for each decision slot t 9: Inform the users in μ to update the decisions.	
 9: Obtain n_k for each task k that is covered by R_i. 10: Compute the best route set Δ_i(t). 10: Receive s_i(t) from user i ∈ μ and update n_k task k ∈ f. 11: until No request is received from the user. 	for each
11: if $\Delta_i(t) \neq \emptyset$ then 12: Send the termination message to all users.	
12: Send the request to contend the opportunity for updat- ing decision. Update strategy	
13:if Win the opportunity thenTerminate the algorithm14:Update the route selection decision $s_i(t)$ by selectingTerminate the algorithm	
a route $r \in \Delta_i(t)$.	
^{15:} Report $s_i(t)$ to the platform. Send the information to users	
16: else Sena me mormanon to users	
17: Choose the original decision $s_i(t) = s_i(t-1)$.	↓
18: until The termination message is received. Select a set of users to update strategy	the

For platform

Performance Evaluation

Convergence for Nash equilibrium

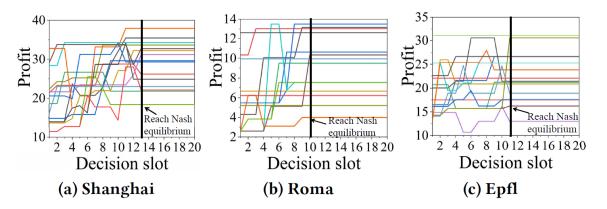


Figure 3: User profit vs. decision slot.

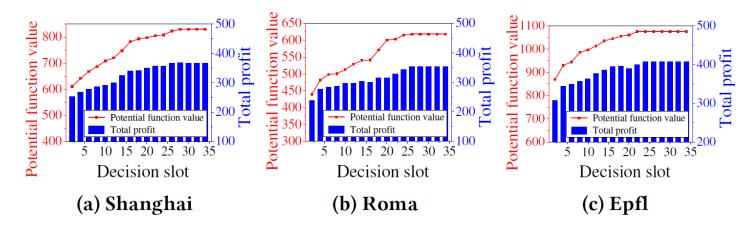


Figure 6: Potential function and total profit vs. decision slot.

Performance Evaluation

Coverage and reward

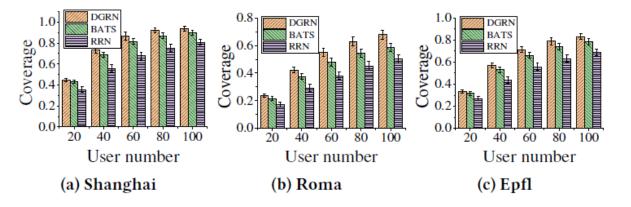


Figure 8: Coverage vs. user number.

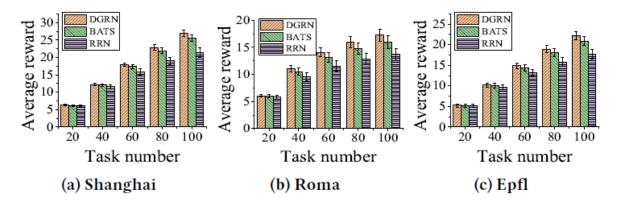


Figure 9: Average reward vs. task number.

Performance Evaluation

The influence of user and system parameters

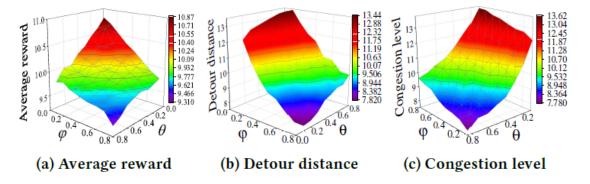


Figure 12: The influence of system parameters.

α_i	reward	β_i	detour	Yi	congestion
0.1	7.74	0.1	12.24	0.1	12.03
0.2	7.85	0.2	10.97	0.2	10.48
0.3	7.94	0.3	9.88	0.3	9.52
0.4	7.96	0.4	9.38	0.4	8.75
0.5	7.98	0.5	8.84	0.5	8.48
0.6	8.08	0.6	8.38	0.6	8.20
0.7	8.10	0.7	8.07	0.7	8.05
0.8	8.16	0.8	7.99	0.8	7.97

Thanks for listening

Q&A