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P 1 | Introduction

€)) PageRank

PRnew(v) - 1 - le |+ d XZuEEin(v)PRold(u) |Eout(u) |

d damping factor

V| the total number of vertices in a graph
u in-neighbors of v

|Eoe (1) | the number of outgoing edges of u

the workload of PageRank mainly depends
on the edges of the graph
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Introduction

Issue of graph processing on multicore systems

Pointer-based Data Structure
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P 1 | Introduction

(b) Issue of graph processing on multicore systems
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Skewed power-law degree distribution

Number of nodes with d links

>

Most nodes are
lowly linked

Few nodes are
highly linked

>
Number of links per node (d)
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2 | Design of HiPa

(x) Abstraction

Gather Scatter

" NUMA node0 NUMA node1

DRAM
Partition 0

DRAM
Partition n

Cache Cache Cache Cache
CPU1 CPU2
\ A N\ r
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P 2 | Design of HiPa

(a) | NUMA-aware Partitioning

Goal:
co-locate the computation and data within the same NUMA node.

Step 1 - Intuition:
Each NUMA node i is allocated with the same number of edges |E|/N.
|E|

|E;| = N
|E|

Vi = {0 € V|ZoerD(o) = 2}

Step 2 - Roundup:
 The number of vertices allocated to a NUMA node must be a multiple of L2-partitions;
* The size of a L2-partition P is fixed to | P|={L2 cache size} / {single vertex size}.

Vi A
il |P| = (| i

Pl 1P|
Eil = £, D(0)

|Vi] = ceil( +1) - |P| =n; - |P|
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P 2 | Design of HiPa
(

b) Cache-aware Partitioning

Goal:
promote high cache locality

Step 3 — Distribution of partitions

* These L-2 partitions are organized in groups G and then distributed to cores C.
Each group G of Core j (1 < j < C) contains (roughly) the same no. of edges

C
Gjl =mj - |P|

~

|Ei]
?l — ZUEGJ'D(U)

Why partitioning by L2 cache?

Cache-able disjoint partitions of a graph, limits the vertex access within
L2 cache for high cache locality

The optimal partition size is to be discussed later.
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Design of HiPa

Partitioning Result

=

Graph po|P1|P2|P3]P4]P5]PE
numa Pariioning | Po[P1]P2[P3]P4| [P5]PE
Cache Partitioning | PO | P1| P2 P3| P4 P5 P6
Partition Pining @ @
A\ | / AN | 4
NUMA Node 0 NUMA Node 1

The boxes represent cache-able partitions of the graph data.

PO-2 hold 10 edges, P3-4 hold 15 edges, and P5-6 hold 30 edges.

The processor cores are allocated with unequal numbers of partitions but
equal number of edges.
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P 2 | Design of HiPa
(

d) Thread Management

YuAng Chen

Algorithm 2: Numa-aware scatter-gather model

Input: numa_Partitions — numa-ly allocated partitions
Input: numa_Threads — numa-ly bound threads
1 Function Th_Func(numa_part)

2 for i < 0 toiter do

3 scatter(numa_part);

4 synchronize with other threads;
5 gather(numa_part);

6 for th € numa_Threads do in parallel > parallel region
7 match th with p € numa_Partitions;

8 th calls Th_Func(p);

o Graph « concatenate (numa_Partitions)
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P 3 | Evaluation

(x) | Experiment Setup

Intel Xeon Silver 4210 processors 2

Physical, Virtual Cores 20, 40

L1, L2, LLC Caches 64KB, 1MB, 13.75MB.

P-PR Hand-optimized code, partition-centric
V-PR Hand-optimized code, vertex-centric
GPOP Framework, partition-centric

Polymer Framework, vertex-centric, NUMA-aware
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Evaluation

Execution Time

Execution time (in seconds) of 20-iteration
PageRank with various implementations.

HiPa p-PR v-PR GPOP Polymer

journal 0.31 041 054 1.14 1.72
pld 243 3.37 8.44 418 22.27
wiki 1.74 1.80 1.96 3.90 4.63
kron 7.20 10.06 3282 11.29 76.62

twitter  8.43 983 12.09 1491 41.06
mpi 13.93 1754 2441 33.90 64.00

HiPa > others
Hand-coded (HiPa, p-PR, v-PR) > framework-based (GPOP, Polyer)
Partition-centric (p-PR, GPOP) > vertex-centric (v-PR, Polymer)
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P 3 | Evaluation
(

b) Memory Accesses

]
o
|
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Memory accesses per edge (Bytes)
o =)
| 1

journal pld wiki kron twitter mpi

HiPa B2 p-PR GPOP v-PR Polymer

The total bar is the total memory accesses: remote + local memory accesses.
The lower, shadowed bar segment: the remote memory accesses.

HiPa achieves the least remote memory access, which is the key reason for the
performance gain
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Evaluation

Scalability

—=— HiPa
—e—p-PR

1 v-PR
4 4 —v— GPOP
—— Polymer

Normalized execution time

1 1
2 4 8 16 20 24 30 32 36 40
Number of threads

The lowest point means the best performance
* p-PRand GPOP @ 20 threads, and then decay as the #thread grows
* HiPa, v-PR and Polymer @ 40 threads exhibits higher scalability

* Thread-data pinning of HiPa: thread contention |, scalability T
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3 | Evaluation

(d) Sensitivity
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Partition Size (Byte)

The optimal partition size = ¥4 * L2 cache size on Skylake = 256KB

=% * L2 cache size on Haswell = 128KB
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P 4 | Conclusion

(@) | Key Features
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P 4 | Conclusion

(c) Main Achievement

Reduced
remote
memory
access

Execution
Speedup
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High
Scalability

Performance
Gain

22






