
“Accurate Matrix Multiplication on Binary128 Format
Accelerated by Ozaki Scheme”1)

Daichi Mukunoki 1 Katsuhisa Ozaki 2 Takeshi Ogita 3 Toshiyuki Imamura 1

1RIKEN Center for Computational Science
daichi.mukunoki@riken.jp

2Shibaura Institute of Technology

3Tokyo Woman’s Christian University

Aug 12, 2021, ICPP 2021

1)This research was supported by the Japan Society for the Promotion of Science (JSPS) KAKENHI Grant
#19K20286. This research used computational resources of the Cygnus supercomputer provided by
Multidisciplinary Cooperative Research Program in Center for Computational Sciences, University of Tsukuba.

1 / 17

Introduction (1/3)

IEEE 754-2008 binary128 (15-bit exponent + 113-bit significand)

• Software implementations (emulations) are available (GCC, ICC, Berkeley
SoftFloat2)), but extremely slow

• Hardware implementation is still rare (IBM Power9, FPGA)

• High-precision is needed in some apps and also to suppress the increasing
rounding error in large-scale computations

Linear algebra library supporting binary128

• MPLAPACK3): multi-precision BLAS & LAPACK using GCC’s binary128 and
high-precision arithmetic libraries (GMP, MPFR, QD)

2)J. Hauser, http://www.jhauser.us/arithmetic/SoftFloat.html.
3)M. Nakata, MPLAPACK, https://github.com/nakatamaho/mplapack

2 / 17

Introduction (2/3)

Double-double (DD) arithmetic4) – a fast substitute for quadruple precision

• Double-word arithmetic built upon binary64 arithmetic; incompatible with
binary128 (11-bit exponent + 106-bit significand) but faster

• QD5) (DD & quad-double (QD)) is known as an implementation on x86

• ≈ 20x slower vs. binary64 on GEMM if well-optimized – hand-SIMDization is
necessary on CPUs6)

4)T. J. Dekker, A Floating-Point Technique for Extending the Available Precision, Numer. Math. 18, 1971.
5)Y. Hida, X.S. Li, D.H. Bailey, Quad-Double Arithmetic: Algorithms, Implementation, and Application,

Lawrence Berkeley National Laboratory Technical Report, LBNL-46996, 2000.
6)K. Tomonori, Acceleration of multiple precision matrix multiplication based on multi-component

floating-point arithmetic using AVX2, arXiv:2101.06584, 2021.
3 / 17

Introduction (3/3)

Our proposal

• Fast & accurate implementation of matrix multiplication on binary128 matrices on
x86 CPUs – faster than MPLAPACK’s binary128- & DD-GEMM

Contributions

• An extension of DGEMM using Tensor Cores7) to binary128-GEMM using DGEMM
– high-prec. GEMM is computed using low-prec. GEMM by Ozaki scheme8)

• Specific optimizations for binary128 with binary64

• More extensions: GPU acceleration, SGEMM-based implementation,
reduced-precision performance, mat-vec, & distributed parallel implementation

7)D. Mukunoki, K. Ozaki, T. Ogita, T. Imamura, DGEMM using Tensor Cores, and Its Accurate and
Reproducible Versions. ISC 2020.

8)K. Ozaki, T. Ogita, S. Oishi, S. M. Rump, Error-free transformations of matrix multiplication by using fast
routines of matrix multiplication and its applications. Numer. Algorithms 59, 1, 2012

4 / 17

Ozaki scheme (1/2)

For inner product of x,y ∈ Fb128
n (Fb128: the set of binary128 numbers)

(1) Splitting

Input vectors are split into several split-vectors,
resp. (element-wise, from higher to lower bits)

x =

sx∑
p=1

2cx
(p)

x(p),y =

sy∑
q=1

2cy
(q)

y(q)

• cx
(p) and x(p) correspond to the exponent

and significand of x, resp. (same for y)

• Splitting is performed so that x(p)Ty(q) at
(2) is error-free in binary64

• Num. of splits increases depending on the
absolute range of input elements & dimension

(2) All-to-all product,
and (3) Summation

xTy =

sx∑
p=1

sy∑
q=1

2cx
(p)+cy(q)

x(p)Ty(q)

• sxsy inner-products are computed – they
can be computed in binary64 (i.e.,
DDOT)

• To obtain binary128-level accuracy, the
summation can be computed in
binary128 (infinite-prec. is achieved if
summed in infinite-prec.)

5 / 17

Ozaki scheme (2/2)

On mat-mul

• All-to-all product of split matrices
are computed using DGEMM

• Exec. time is DGEMM dominant

• Exec. time increases with the
square of the num. of split matrices
– it increases depending on the
absolute range of input elements &
the inner-product dimension

Performance is input-dependent
A

A(1)
A(2)
A(3)

A(SA)

…

Step 1: Splitting

C(SA,1)

C(1,1)
C(1,2)

C(1,SB)

C

C(2,1)

…

C(2,2)
C(SA,SB)

Step 2: Computation

Step 3: Summation

C(SA,2) C(SA,3) C(SA,SB)

C(3,1) C(3,2) C(3,3) C(3,SB)

C(2,1) C(2,2) C(2,3) C(2,SB)

C(1,1) C(1,2) C(1,3) C(1,SB)

B(1) B(2) B(3) B(SB)

A(SA)

A(3)

A(2)

A(1)

B

B(1)
B(2)
B(3)

B(SB)

SB
sp

lit
 m

atr
ice

s

input

input

output

SASB
matrix
multiplications

C(i,j)=A(i)B(j)

…

…

…

…

…

… … …

…

…

……

SA
sp

lit
 m

atr
ice

s

…

…

6 / 17

Optimization (1/2)

Reducing binary128 operations (for improving performance)

• Binary128 operations used in splitting & summation can degrade performance

• Split3: input binary128 vector x is split into three binary64 vectors such that
x = x+ x2 + x3 with |xi| ≥ |x2i| ≥ |x3i| (113 bits → 53 + 53 + 7 bits). Then,
we use the splitting algorithm for binary64 in the original Ozaki scheme9)

• Sum3: accumulating binary64 values to a binary128 value using three binary64
bins (i.e., 159-bit precision) – an adaptation of VecSum10)

• Note: both can only be used when the input is in the exponent range of binary64

9)K. Ozaki et al., T. Ogita, S. Oishi, S. M. Rump, Error-free transformations of matrix multiplication by using
fast routines of matrix multiplication and its applications, Numer. Algorithms, 59, 1, 2012.

10)D. M. Priest, Algorithms for arbitrary precision floating point arithmetic, ARITH 1991, 1991.
7 / 17

Optimization (2/2)

Summation order (for preventing accuracy loss)

• In the Ozaki scheme (below), the smaller p and q are, the digits with larger
absolute values are held in x(p) and y(q), respectively

xTy =

sx∑
p=1

sy∑
q=1

2cx
(p)+cy(q)

x(p)Ty(q)

• Large accuracy loss may occur when a large cancellation occurs during the
summation; better to sum the data in decreasing order of p+ q

Blocking (for saving memory)

• Performing the entire procedure (i.e., split, comp, & sum) in a block manner by
dividing a matrix into a rectangle along with the inner product direction

8 / 17

Implementation

Implementation on x86

• Splitting & summation are parallelized using OpenMP (parallel for to the
outermost loop where memory accesses are discontinuous)

• DGEMM is computed using Intel MKL

Since the execution time is DGEMM-dominant, good performance can be expected by
utilizing highly-optimized BLAS without elaborate optimizations

9 / 17

Experimental setup (1/2)

Experimental setup

• Intel Xeon Gold 6126 (Skylake, 2.6–3.7 GHz, 12 cores) × 2 sockets with 192 GB
DDR4-2666 RAM (255.9 GB/s)

• Executed with 1 thread/core (24 threads in total) with “numactl
--localalloc”

• g++ 8.3.1 with -O3

• Intel MKL 19.1.3

• 64GB work memory (this can be reduced by blocking – blocking size is
automatically determined)

10 / 17

Experimental setup (2/2)

Comparison

• Oz-b128: Proposed implementation using Ozaki scheme with Split3 & Sum3

• MP-b128: MPLAPACK’s GEMM using binary128 (with GCC’s emulation)

• MP-dd: MPLAPACK’s GEMM using DD arithmetic (with QD v2.3.22)

– GEMMs of MPLAPACK (v0.9.3): based on the naive mat-mul algorithm with triple
loops parallelized using OpenMP (but not SIMDized)

Problem setting

• Input matrices are initialized with pseudo uniform random numbers [1, 10R) with
random sign and evaluated the performance at different R
– because the performance of Oz-b128 is input-dependent: num. of split matrices
increases depending on the absolute range of inputs

11 / 17

Evaluation – accuracy

Maximum relative error of Oz-b128,
MP-b128, & MP-dd vs. 2048-bit MPFR
on different input ranges (varied by R)

• All the Oz-b128 results overlap

• Oz-b128 achieves higher accuracy as
most computations are performed
with error-free (except summation) 10

-35

10
-34

10
-33

10
-32

10
-31

10
-30

10
-29

10
-28

10
-27

10
-26

 1000 10000 100000

M
a

x
im

u
m

 r
e

la
ti
v
e

 e
rr

o
r

Mat. dim. (k)

Accuracy comparison to MPFR 2048-bit (m=n=8)

Oz-b128,R=1
MP-b128,R=1

MP-dd,R=1
Oz-b128,R=4
MP-b128,R=4

MP-dd,R=4

Oz-b128,R=16
MP-b128,R=16

MP-dd,R=16
Oz-b128,R=64
MP-b128,R=64

MP-dd,R=64

12 / 17

Evaluation – throughput

Throughput of Oz-b128 on different
input ranges (varied by R), MP-b128,
and MP-dd on R=1

• “Flops (on QP)”: the value obtained
by 2n3/t, where t is execution time

• Oz-b128 can outperform MP-b128 &
MP-dd, while the performance is
input-dependent
– But MP-dd may have room for
performance improvement with SIMD
optimization

• Note: this environment can achieve
approx. 1600 GFlops on DGEMM
(Oz-b128 has 40x overhead at best)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 2000 4000 6000 8000 10000

G
F

lo
p
s
 (

o
n
 Q

P
)

Mat. dim. (m=n=k)

Throughput on Xeon Gold 6126 x2

Oz-b128,R=1
Oz-b128,R=4
Oz-b128,R=8

Oz-b128,R=16

Oz-b128,R=32
Oz-b128,R=64

MP-b128
MP-dd

13 / 17

Evaluation – performance analysis

Num. of split mat.

• Depends on the absolute range of the input
elements (varied by R) & inner product dimension
(k-dim)

Execution time breakdown (R=1)

• DGEMM dominant (the larger R, the more so)

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

 0 2000

 4000

 6000

 8000

 10000
Mat. dim. (m=n=k)

(a) Num. of Split Mat.

R=1
R=4
R=8

R=16
R=32
R=64

 0

 20

 40

 60

 80

 100

2000
4000

6000
8000

10000
Mat. dim. (m=n=k)

(b) Breakdown (R=1) (%)

SplitA
SplitB

DGEMM
Sum

Others

14 / 17

Evaluation – throughput w/o Split3 & Sum3

Throughput w/o Split3 & Sum3 (R=1)
(dotted line)

• Throughput was reduced to 83% (at
n = 10000) as the Split and Sum costs
increase 2.7x and 2.1x, resp.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 2000 4000 6000 8000 10000

Mat. dim. (m=n=k)

Throughput (R=1) (GFlops on QP)

Oz-b128,R=1

Oz-b128(w/o Split3,
w/o Sum3),R=1

15 / 17

Extensions

GPU acceleration

• Easy to accelerate by offloading DGEMMs

SGEMM-based implementation

• SGEMM can be used instead of DGEMM (but no performance merit on this CPU)

Performance on reduced-precision inputs

• Performance increases as num. of split mat. decreases

Memory-bound operation (mat-vec)

• Oz-b128 is faster than MM-b128 but slightly slower than MM-DD

Distributed parallel implementation

• Two ways (discussion only)

Details and demonstrations are available in the paper

16 / 17

Summary

Fast & accurate matrix multiplication on binary128 matrices using Ozaki scheme

• Faster than MPLAPACK’s binary128- and DD-GEMM
– but DD-GEMM has room for performance improvement with SIMD optimization

Advantages

• High-performance and low development cost (can be built upon DGEMM)
– also, easy to accelerate using GPUs

• Accurate – most computations are performed with error-free

Disadvantages

• Throughput is input dependent

• Large memory consumption (but can be relaxed by blocking)

Code is available as part of OzBLAS11)

11)https://www.r-ccs.riken.jp/labs/lpnctrt/projects/ozblas/
17 / 17

