

ICPP 2021

50th International Conference on Parallel Processing August 9-12, 2021 Chicago (Argonne National Lab), Illinois, USA

ASLDP: An Active Semi-supervised Learning method for Disk Failure Prediction

Yang Zhou, Fang Wang[†], Dan Feng <u>wangfang@mail.hust.edu.cn</u> ([†]Corresponding author)

Division of Optoelectronic Information Storage, Wuhan National Laboratory for Optoelectronics

Key Laboratory of Information Storage System, Ministry of Education

Huazhong University of Science and Technology

Wuhan, China

信息存储系统教育部重点实验室 Key Laboratory of Information Storage System Ministry of Education of China

- Disk failure has become a common event
 - About 80% of system breakdowns are caused by hard drive failures in the

data center [ToS' 18 Gunawi et al., DAC' 19 Sun et al.]

- > Almost All methods are limited to *offline supervised learning*
 - Need to prepare a larger amount of *labeled* data [FAST' 20 Lu *et al.*]
 - Need to be retrained to accommodate the new datasets [ATC' 20 Zhang et al.]
- ➤ A large number of *unlabeled* data may be available in reality
 - Need to be properly labeled [ICDCS' 20 Han *et al.*]
- ➢ Modern data center is a complex environment
 - Difficult to meet the needs of supervised learning [Google 16 Eric *et al.*]

Traditional machine learning methods

Neural network + Deep learning

International international

Disk Failure Prediction

\succ For datacenter

- Failure is an ordinary event rather than an accident
- Storage dive failure is the principal failure
- The advantages of failure prediction
 - More time for failure handling
 - Copy the existing data rather than recover the lost
 - •

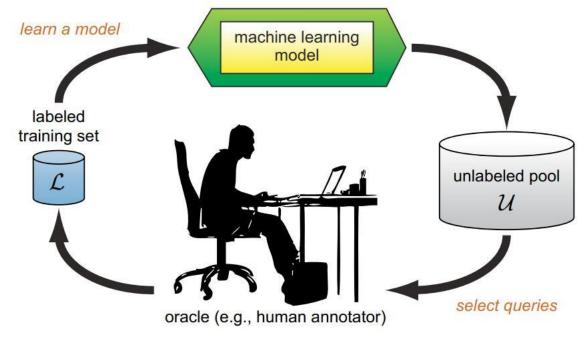
Active Learning

- The active learning algorithm selects the best samples by some strategies from the sample pool, and adds these samples to the training set of the model, so that the trained classifier can obtain strong generalization ability
- There are usually two selection strategies for its samples: stream-based and pool-based
- The key component of active learning is the design of an effective criterion for selecting the most "valuable" instance

to query, which is often referred to as *query strategy*

➢ In general, different strategies follow a greedy framework:

```
S^* = \operatorname*{argmax}_{s \in D_u} \min_{y \in \{0,1\}} f(s; y, D_l)
```



The *pool-based* active learning cycle

Settles, B. (2009). Active learning literature survey.

 \oplus

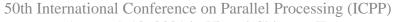
 \oplus

Semi-supervised Learning

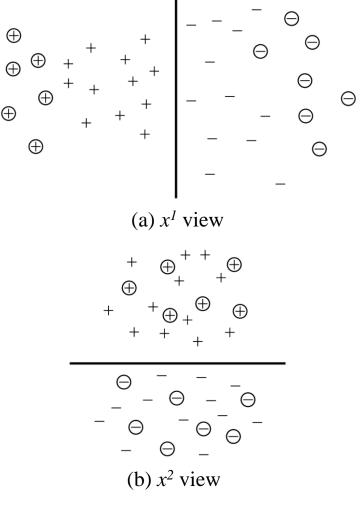
- \succ The key to semi-supervised learning is how to use a large amount of cheap unlabeled data to improve the performance of the classifier
- > The existing semi-supervised learning methods include *Generative* model, Graph-based, Support vector machines, and so on
- > Co-training assumes that features can be split into two sets; Each sub
 - feature set is sufficient to train a good classifier; The two sets are

conditionally independent given the class

Blum, A., & Mitchell, T. (1998, July). Combining labeled and unlabeled data with co-training. In Proceedings of the eleventh annual conference on Computational learning theory (pp. 92-100).



August 9-12, 2021 in Virtual Chicago, IL



Co-training: Conditional independent assumption on feature split

Totals 54 months from 2016 - 2020, which is the largest and most recent data currently used in Backblaze [1]

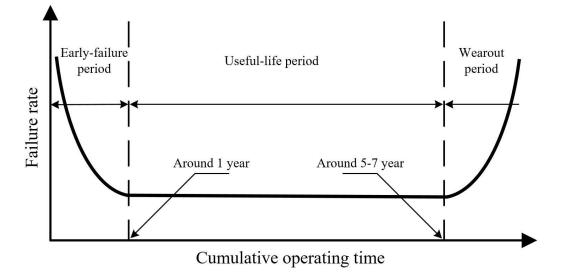
Baidu [2] dataset is only used as a supplement to the experiment

Datase	et	Model	Healthy	Failed	Interval	
	D1	ST12000NM0007	12000138625024	36990	1702	1 day
Backblaze	D2	ST4000DM000	4000787030016	33054	3104	1 day
	D3	ST8000NM0055	8001563222016	14470	521	1 day
Baidu	D4	-	-	22962	433	1 hour

1. https://www.backblaze.com/b2/hard-drive-test-data.html

2. http://pan.baidu.com/share/link?shareid=189977&uk=4278294944

 \succ the disk failure rate follows the bathtub curve



Field failure rate pattern of HDD

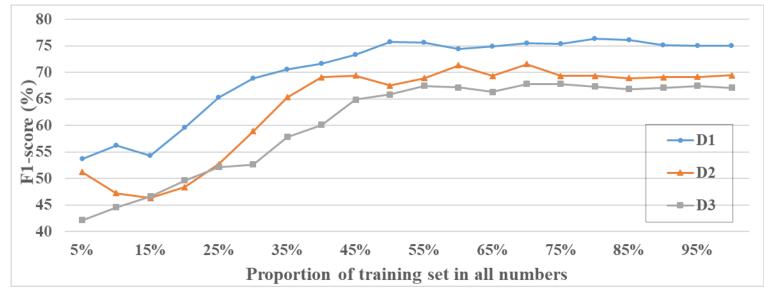
Yang, J., & Sun, F. B. (1999, January). A comprehensive review of hard-disk drive reliability. In *Annual Reliability and Maintainability. Symposium. 1999 Proceedings* (*Cat. No. 99CH36283*) (pp. 403-409). IEEE.

- under-sampling [ICPP' 19 Zhang et al.]
 - relatively simple
 - lose some useful samples
- clustering [SIGKDD' 16 Botezatu et al.]
 - take a lot of time to complete

➢ All the methods are completed in the data preprocessing stage without the join of the

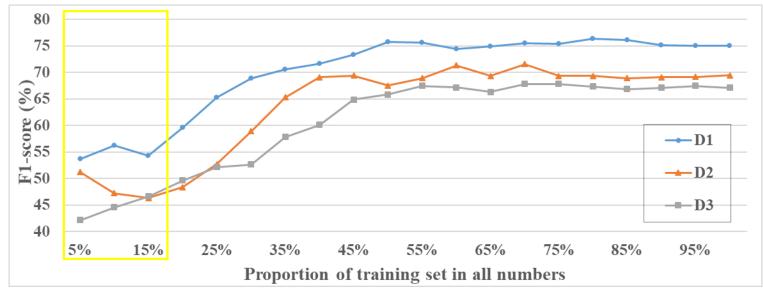
classifier

50th International Conference on Parallel Processing (ICPP) August 9-12, 2021 in Virtual Chicago, IL



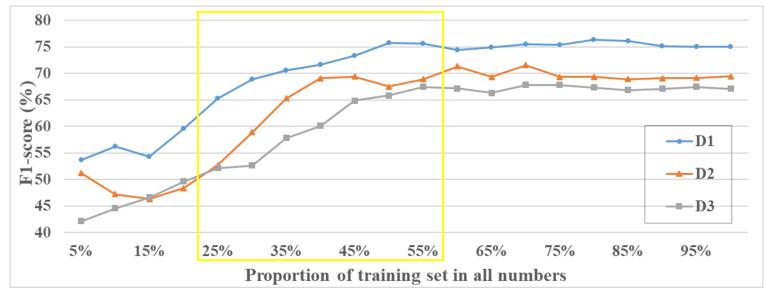
- > There are more redundant samples in the Backblaze dataset
- > Active learning can achieve similar results with fewer samples when the training set is limited
- SMART data on disk is not only redundant, but sometimes has a negative effect on prediction

		-	1								acm In-Cooperation
Motivation	CONFERENCE ON										sîghpc
	PROCESSING		; P P /	2 (021	/ (н	I C	AGO	USA	AUGUST 9-12, 2021



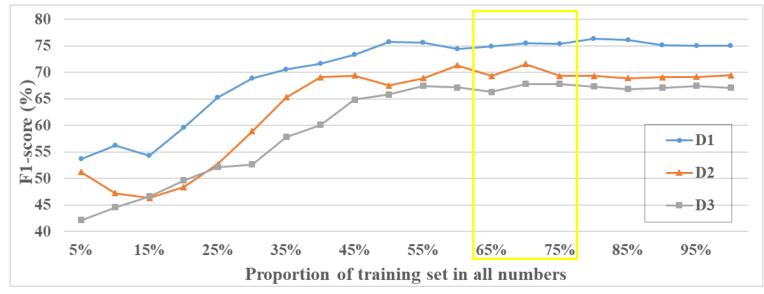
- > There are more redundant samples in the Backblaze dataset
- > Active learning can achieve similar results with fewer samples when the training set is limited
- SMART data on disk is not only redundant, but sometimes has a negative effect on prediction

		-	1								acm In-Cooperation
Motivation	CONFERENCE ON										sîghpc
	PROCESSING		; P P /	2 (021	/ (н	I C	AGO	USA	AUGUST 9-12, 2021



- > There are more redundant samples in the Backblaze dataset
- > Active learning can achieve similar results with fewer samples when the training set is limited
- SMART data on disk is not only redundant, but sometimes has a negative effect on prediction

Motivation	CONFERENCE ON										sîghpc
	PROCESSING	C	PP/	20	21	/ C	HI	C	AGO	USA	AUGUST 9-12, 2021

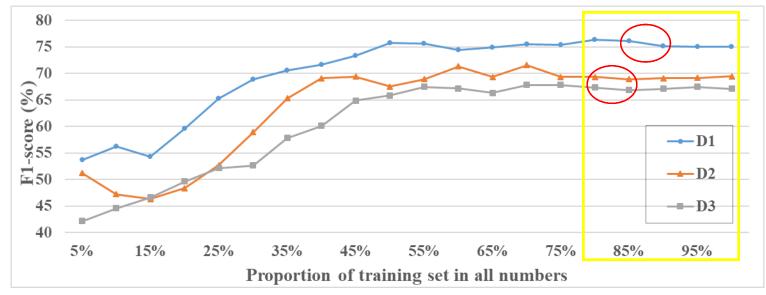


Effects of training sets of different scales on prediction results

- > There are more redundant samples in the Backblaze dataset
- > Active learning can achieve similar results with fewer samples when the training set is limited

SMART data on disk is not only redundant, but sometimes has a negative effect on prediction

Motivation	CONFERENCE ON										sîghpc
	PROCESSING	C	PP/	20	21	/ C	HI	C	AGO	USA	AUGUST 9-12, 2021



- > There are more redundant samples in the Backblaze dataset
- > Active learning can achieve similar results with fewer samples when the training set is limited
- SMART data on disk is not only redundant, but sometimes has a negative effect on prediction

Why we use Semi-supervised Learning

- > In the real-world scenarios, it is difficult to obtain accurately labeled values for every moment on the disk
- Research has shown that a soon-to-fail disk has actually shown failure symptoms, and therefore all of the samples before the failure are labeled as failure samples [ICPP' 18 Xiao *et al.*, ICPP' 19 Zhang *et al.*, ICDCS' 20 Han *et al.*]

smart_1_normalized -	0. 95	0	0	0. 15	0	0	0. 32	smart_1_normalized -	0. 98	0	0	0. 12	0	0	0. 41	smart_1_normalized -	0. 97	0	0	0. 052	0	0	0. 25	
smart_1_raw -	0. 91	0	0	0	0	0	0. 19	smart_1_raw -	0. 98	0	0	0	0	0	0. 23	smart_1_raw -	0. 97	0	0	0	0	0	0. 15	
smart_3_normalized -	0. 13	0	0	0. 99	0. 96	0.96	0. 13	smart_3_normalized -	0. 36	0	0	0. 98	0. 97	0. 97	0. 36	smart_3_normalized -	0. 25	0	0	0	0	0	0. 25	
smart_4_raw -	0. 1	0	0. 99	0. 11	0. 06	0. 074	0. 1	smart_4_raw -	0. 17	0	0	0. 18	0. 13	0. 14	0. 17	smart_4_raw -	0. 24	0	0	0. 25	0. 18	0. 2	0. 23	- 0. 8
smart_5_normalized -	0. 94	0	0	0	0	0	0. 9	smart_5_normalized -	0. 98	0	0	0	0	0	0. 98	smart 5 normalized -	0.96	0	0	0	0	0	0.94	
smart_5_raw -	0. 64	0. 39	0, 99	0, 34	0.3	0. 31	0.56	smart_7_normalized -	0. 043	0	0	0. 052	0. 01	0.016	0. 023	sman_5_normalized -	0.70	Ŭ	U	Ű	Ű	0	0. 74	
	_	0	0	0. 99	0.00	0.99	0.011	smart_7_raw -	0	0	0	0	0	0	0.008	smart_5_raw -	0.57	0.44	0	0. 43	0. 41	0. 41	0. 52	
smart_9_normalized -		U	U		0. 99	A CENT		smart_9_normalized -	0. 023	0	0	0. 99	0. 99	0. 99	0.008	smart_12_raw -	0. 24	0	0	0. 25	0. 18	0. 2	0. 24	- 0. 6
smart_12_raw -	0. 22	0	0	0. 22	0. 15	0. 17	0. 21	smart 9 raw -	0	0	0	0	0	0	0.008	smart_187_normalized -	0. 83	0	0	0	0.97	0.97	0. 78	
smart_187_normalized -	0. 85	0	0	0. 99	0. 98	0. 98	0. 79	smart 12 raw -	0.17	0.99	1	0. 18	0.13	0.14	0.17	1	0.97	0	0	0.96	0. 96	0.96	0.98	
Smart_187_raw -	0. 83	0. 49	0. 96	0. 71	0.49	0. 57	0. 77	RI		0.77				_		Smart_188_raw -	100000	U	0	0, 98	0.98	0.98	0.98	
S smart_188_raw -	0.94	0	0	0.87	0.87	0.87	0.94	smart_187_normalized -	SHOW SHE R	0	0	0. 98	0.96	0. 95	0. 77	smart_189_normalized -	0. 3	0	0	0. 37	0. 33	0.36	0. 29	- 0. 4
smart 189 normalized -		0	0	0. 79	0. 22	0. 28	0	smart_188_normalized -	0. 99	0	0	0	1	1	0.99	smart_189_raw -	0. 3	0. 29	0	0. 28	0. 28	0. 28	0. 29	
		Ū	U				Ű	smart_189_normalized -	0. 65	0	0	0.82	0.8	0. 81	0, 64	smart 191 normalized -	0.03	0	0	0.36	0.3	0.29	0.017	
smart_189_raw -	0.93	0	0	0. 91	0. 24	0. 53	0	smart_189_raw -		0. 77	0.99	0.64	0. 63	0. 63	0. 64				0.07				0.007	
smart_191_raw -	0. 24	0	0	0. 21	0.14	0. 14	0	smart_197_normalized -	0	0	0	0	0	0	0. 99	smart_191_raw -	0	0	0. 97	0	U	0	0.006	- 0. 2
smart_197_raw -	0. 9	0. 77	0	0. 81	0. 76	0. 77	0. 88	smart_197_raw -	0. 76	0. 47	0	0. 54	0.45	0. 47	0. 72	smart_197_raw -	0.86	0. 7	0	0. 77	0.7	0. 73	0. 83	
smart_198_normalized -	0. 14	0	0	0. 21	0. 21	0. 21	0. 18	smart_198_normalized -	0. 78	0	0	0. 77	0. 77	0. 77	0. 78	smart_198_normalized -	0. 3	0	0	0. 28	0. 28	0. 28	0. 29	
smart_198_raw -	0.89	0. 78	0	0. 82	0. 77	0. 78	0.88	smart 198 raw -	0. 76	0.48	0	0. 55	0.46	0. 48	0. 72	smart_198_raw -	0.85	0. 7	0	0. 77	0.7	0. 73	0. 82	
	ADWIN	DDM	EDDM	PageHinkley	HDDM A	HDDM W	KSWIN		ADWIN	DDM	EDDM	PageHinkley	HDDM A	HDDM W	kswin		ADWIN	DDM	EDDM	PageHinkley	HDDM A	HDDM W	KSWIN	- 0. 0
				or Concept Dri								r Concept Dri								r Concept Dri				

there is no obvious change in SMART data for many failure samples before the failure actually occurs

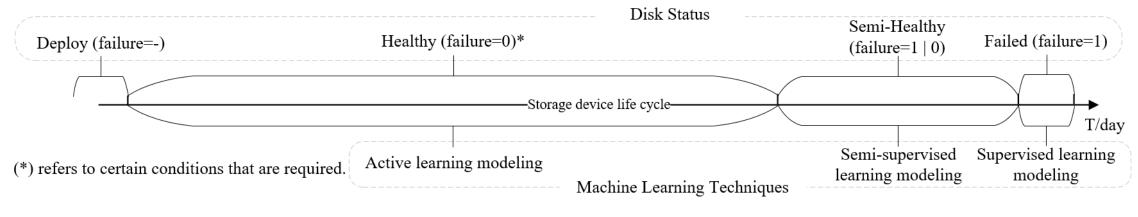
50th International Conference on Parallel Processing (ICPP)

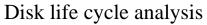
August 9-12, 2021 in Virtual Chicago, IL

Why we use it together

> By combining the Active Learning & Semi-supervised Learning in different periods, the learner can select the appropriate

samples and improve the classification ability

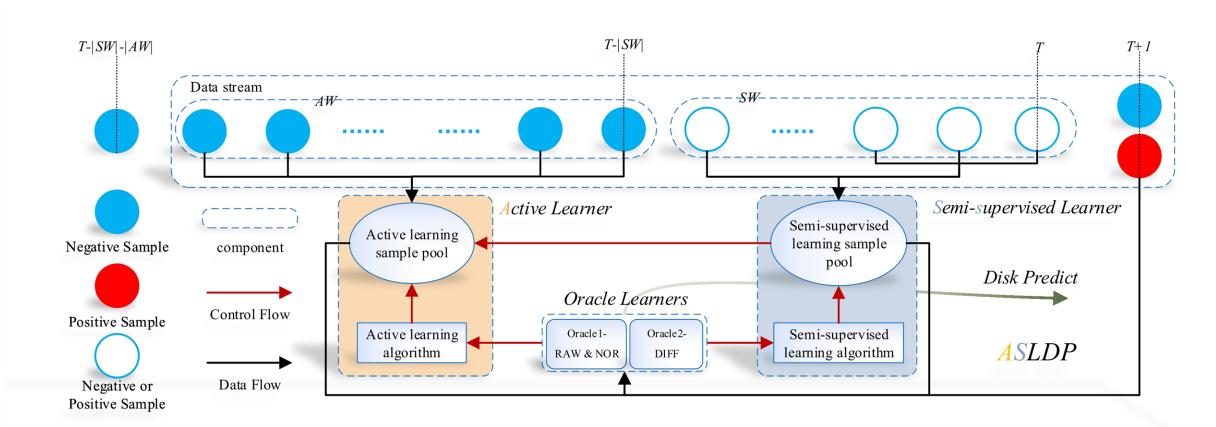




 \succ We do not emphasize that this combination is the best method.

➢ We just give an idea that can replace supervised learning in disk failure prediction.

Architectural Overview of ASLDP



ASLDP: Active Semi-supervised Learning Disk-failure Prediction model

 INTERNATIONAL
 INTERNATIONAL

 CONFERENCE ON
 Sighpc

 PROCESSING
 I C P P / 2 0 2 1 / C H I C A G O / U S A

How to use Active Learning

Algorithm 1 Active learning sample selection **Input:** Active learning sample pool: $D_{ALP} = \langle (\vec{x}_1, y_1 = 0), (\vec{x}_2, y_2 = 0), ..., (\vec{x}_{|AW|}, y_{|AW|} = 0) \rangle$ **Input:** Classifiers: *Ora*₁, *Ora*₂ **Input:** Number of samples: n_1 , n_2 **Input:** Probability threshold: α_{min} , α_{max} **Output:** Selected examples set: Sa_1 , Sa_2 1: $P_1 = Sorted(Ora_1(D_{ALP}), seq = desc)$ 2: for p_i in P_1 do /* *i* is an index of sample with value *p* in D_{ALP} */ 3:if $\alpha_{min} \leq p_i \&\& p_i \geq \alpha_{max} \&\& n_1 > 0$ then 4: $Sa_1.add((\vec{x}_i, y_i = 0))$ 5: $n_1 = n_1 - 1$ 6: end if 7: 8: end for 9: $P_2 = Sorted(Ora_2(D_{ALP}), seq = desc)$ 10: for p_i in P_2 do if $\alpha_{min} \leq p_i \&\& p_i \geq \alpha_{max} \&\& n_2 > 0$ then 11: $Sa_2.add((\vec{x}_i, y_i = 0))$ 12: $n_2 = n_2 - 1$ 13:end if 14:15: **end for**

- Active learning algorithms here will involve two learners (Ora₁, Ora₂) who provide predictive services in the future
- The number of active learning to select samples
 (n₁, n₂) is mainly determined by semi-supervised learning
- Active learning query strategy in pseudo-code chooses a *probability-based* heuristic method that picks up the negative samples (Lines 4 & 11) with the greatest uncertainty

Design

How to use Semi-supervised Learning

> The conditional value CV(x) for the samples under the

two views

$$CV_1(x) = H_1(x) \cdot Ds_1(x) \cdot (1 - H_2(x))$$
$$CV_2(x) = H_2(x) \cdot Ds_2(x) \cdot (1 - H_1(x))$$

➤ H(x) represents the entropy value of sample x, The greater the entropy, the greater the uncertainty of the classification

$$H(x) = -\sum_{y \in \{1,0\}} P(y|x) \cdot \log P(y|x)$$

> Ds(x) represents the regional density of sample x. The smaller distance from other samples, the greater the regional density and the more representative the sample is $Ds(x) = e^{-\frac{1}{|D|}\sum_{\vec{x}_i \in D} distance(x, \vec{x}_i)}$

Algorithm 2 Semi-supervised learning sample selection **Input:** Semi-supervised sample pool: $D_{SLP} = \langle (\vec{x}_1, y_1), (\vec{x}_2, y_2), ..., (\vec{x}_{|SW|}, y_{|SW|}) \rangle$ **Input:** Classifiers: *Ora*₁, *Ora*₂ **Input:** Number of samples: m_1, m_2 **Input:** Probability threshold: β **Output:** Selected examples set: Ss_1 , Ss_2 1: initialize: $H_1, H_2 = list(), list()$ 2: initialize: Ds_1 , $Ds_2 = list()$, list()3: $P_1, P_2 = Ora_1(D_{SLP}), Ora_2(D_{SLP})$ 4: for $i = 1, 2, ..., |D_{SLP}|$ do $/* |D_{SLP}|$ is the number of D_{SLP} , the same below */5: $H_1.append(-\sum_{y \in 1,0} P_1[i] \cdot \log P_1[i])$ 6: $H_2.append(-\sum_{u\in 1,0}^{u}P_2[i]\cdot \log P_2[i])$ 7: $Ds_1.append(e^{-\frac{1}{|D_{SLP}|}\sum_{(\vec{x}_i, y_i)\in D_{SLP}}distance1(x, \vec{x}_i)})$ 8: $Ds_2.append(e^{-\frac{1}{|D_{SLP}|}\sum_{(\vec{x}_i, y_i) \in D_{SLP}} distance2(x, \vec{x}_i))})$ 9: /* distance1 & 2 use different features of \vec{x} */ 10:11: end for 12: $CV_1 = Sorted(H_1 \cdot Ds_1 \cdot (1 - H_2), seq = desc)$ 13: $CV_2 = Sorted(H_2 \cdot Ds_2 \cdot (1 - H_1), seq = desc)$ 14: for cv_i in CV_1 do if $m_1 > 0$ then 15: $m_1 = m_1 - 1$ 16:if $P_1[i](y_i = 1) \ge \beta$ then $Ss_1.add((\vec{x}_i, y_i = 1))$ 17:else $Ss_1.add((\vec{x}_i, y_i = 0))$ 18:end if 19:end if 20:21: end for 22: for cv_i in CV_2 do if $m_2 > 0$ then 23: $m_2 = m_2 - 1$ 24:if $P_2[i](y_i = 1) \ge \beta$ then $Ss_2.add((\vec{x}_i, y_i = 1))$ 25:else $Ss_2.add((\vec{x}_i, y_i = 0))$ 26:end if 27:end if 28:29: end for

13

Design

How to use it together

- learning and semi-supervised active learning are not completely independent in the algorithm, which mainly solves the imbalance between the positive and samples by negative choosing the number of samples \succ In our experiment, the sample ratio λ is
 - set to 3, sw to 15 days, m_1 and m_2 to 7

days, aw to 14 days

Algorithm 3 Active Semi-supervised Learning Disk Predict **Input:** Data Stream: $DS = \langle ..., (\vec{x}_T, y_T), ... \rangle$; Probability threshold: $\alpha_{min}, \alpha_{max}, \beta$ Input: ML Algorithm: $Oracle_1$, $Oracle_2$; Training data set: Tr_1 , Tr_2 ; Learning window size: aw, sw**Input:** Sample number of semi-supervised learning: m_1, m_2 ; Proportion of positive and negative samples: λ Output: Classifier: Ora1, Ora2 1: initialize: $AW, SW = queues(), queues(); D_{ASL}, D_{SLP} = set(), set()$ 2: for $T = 1 \rightarrow |DS|$ do /* |DS| is the number of |DS|, the same below. */ if AW.size() > aw then 3: if $\frac{|Tr_1(y=0)|}{|Tr_1(y=1)|} < \lambda$ then 4: $n_1 = |Tr_1(y=1)| \cdot \lambda - |Tr_1(y=0)|$ 5:**else** $n_1 = 0$ 6: end if 7: if $\frac{|Tr_2(y=0)|}{|Tr_2(y=1)|} < \lambda$ then 8: $n_2 = |Tr_2(y=1)| \cdot \lambda - |Tr_2(y=0)|$ 9: **else** $n_2 = 0$ 10:end if 11:while !*AW.empty()* do 12: $D_{ALP}.add(AW.pop())$ 13:end while 14: $Sa_1, Sa_2 = Alg1(D_{ALP}, Ora_1, Ora_2, n_1, n_2, \alpha_{min}, \alpha_{max}) /* Call Algorithm 1, Active Learning. */$ 15: $Tr_1.add(Sa_1), Tr_2.add(Sa_2); D_{ALP}.clear()$ 16: $Ora_1, Ora_2 = Oracle_1(Tr_1), Oracle_2(Tr_2)$ 17:end if 18:if $y_T == 1 \&\& SW.size() \ge sw$ then 19:while *!SW.empty()* do 20: $D_{SLP}.add(SW.pop())$ 21:end while 22: $Ss_1, Ss_2 = Alg2(D_{SLP}, Ora_1, Ora_2, m_1, m_2, \beta) /*$ Call Algorithm2, Semi-supervised Learning. */ 23: $Tr_1.add(Ss_1), Tr_2.add(Ss_2); D_{SLP}.clear()$ 24: $Tr_1.add((\vec{x}_T, y_T)), Tr_2.add((\vec{x}_T, y_T))$ 25: $Ora_1, Ora_2 = Oracle_1(Tr_1), Oracle_2(Tr_2)$ 26:end if 27:if $SW.size() \ge sw$ then AW.push(SW.pop())28:29:end if $SW.push((x_T, y_T))$ 30: 14 31: end for

SMART Features

- We only use some commonly used SMART features
 - Model can be less influenced by the inability to collect some features, the change of feature importance, and so on
 - We may have no or only few historical disk logs for feature selection, because ASLDP is positioned as an online learning method
 - Although historical disk logs allow us to identify representative SMART features for failure characterization, the selected features may change over time
- Since our semi-supervised learning requires two-view features, two types of feature views are used here. One is the raw SMART values and the normalized values, the other is the difference between them

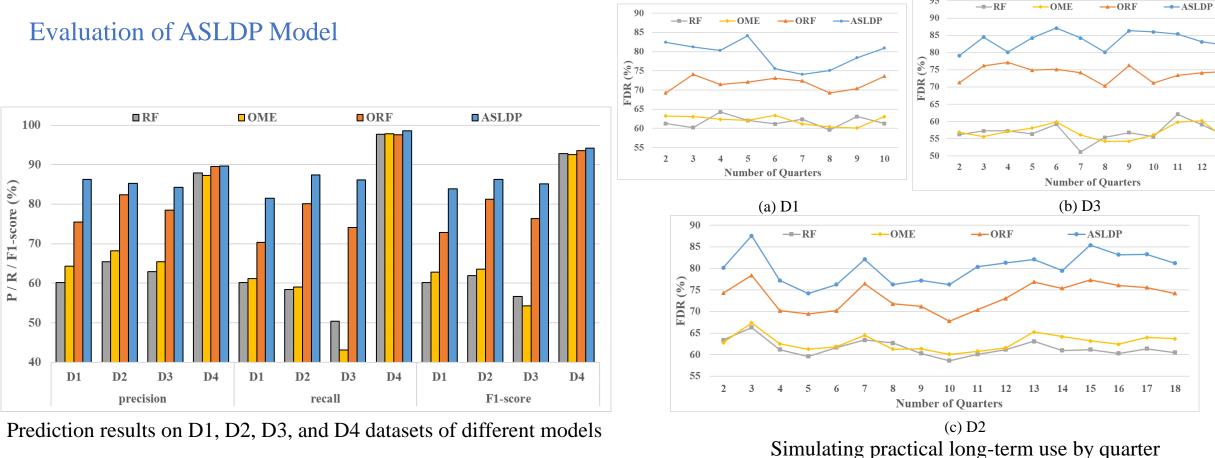
Туре	#ID	SMART Feature Name	Feature type
	001	Raw Read Error Rate	Normalized
	003	Spin Up Time	Normalized
	004	Start / Stop Count	Raw
	005	Reallocated Sectors Count	Normalized & Raw
	007	Seek Error Rate	Normalized
	009	Power-On Time Count	Normalized & Raw
	010	Spin up Retry Count	Raw
	012	Power Cycle Count	Normalized & Raw
	187	Reported Uncorrectable Errors	Normalized & Raw
ackblaze	188	Command Timeout	Raw
DACKUIAZC	189	High Fly Writes	Normalized
	191	G-sense error rate	Normalized
	192	Power-Off Retract Count	Raw
	193	Load / Unload Cycle Count	Normalized & Raw
	194	Temperature	Normalized & Raw
	195	Hardware ECC Recovered	Normalized
	197	Current Pending Sector Count	Normalized & Raw
	198	Offline Uncorrectable Sector Count	Normalized & Raw
	241	Total LBAs Written	Raw
	242	Total LBAs Read	Raw
	001	Raw Read Error Rate	Normalized
	003	Spin Up Time	Normalized
	005	Reallocated Sectors Count	Normalized & Raw
	007	Seek Error Rate	Normalized
Baidu	009	Power On Hours	Normalized
Daluu	187	Reported Uncorrectable Errors	Normalized
	189	High Fly Writes	Normalized
	194	Temperature Celsius	Normalized
	195	Hardware ECC Recovered	Normalized
	197	Current Pending Sector Count	Normalized & Raw

Evaluation Metrics

- ➢ Precision (P)
- ➤ Recall (R)
- ➢ F1-score
- Failure Detection Rate (FDR)
- Failure Alarm Rate (FAR)

Testing Methods and Configurations

- ▶ RF, OME [ICCD' 18 Xie *et al.*], and ORF [ICPP' 18 Xiao *et al.*]
 - all models use decision trees (DT) as base learners



> Overall, ASLDP achieves the highest precision, recall, and F1-score among all comparison models and datasets. In the long-

term use process, the FDR of ASLDP can also be controlled within 10%, which realizes online learning and model updating 50th International Conference on Parallel Processing (ICPP) August 9-12, 2021 in Virtual Chicago, IL

13

> We present the complete design of *ASLDP* and evaluate our model on datasets from real data center. We demonstrate

that ASLDP has high practicability, better online self-learning (training) & self-turning ability, and can overcome the

problems of data labeling and imbalanced datasets

> To the best of our knowledge, we pioneer the use of active learning and semi-supervised learning on disk failure

prediction. This is *very different* from the supervised learning method used by most previous research work

> By analyzing the characteristics of disk data in different periods, the reasons for using active learning and semi-

supervised learning methods and the specific implementation method are given

Thank You

Question?

zhouyang1024@hust.edu.cn

This work is supported in part by NSFC No.61832020, No.61821003

PhD Candidate @ Huazhong University of Sci.& Tech.

