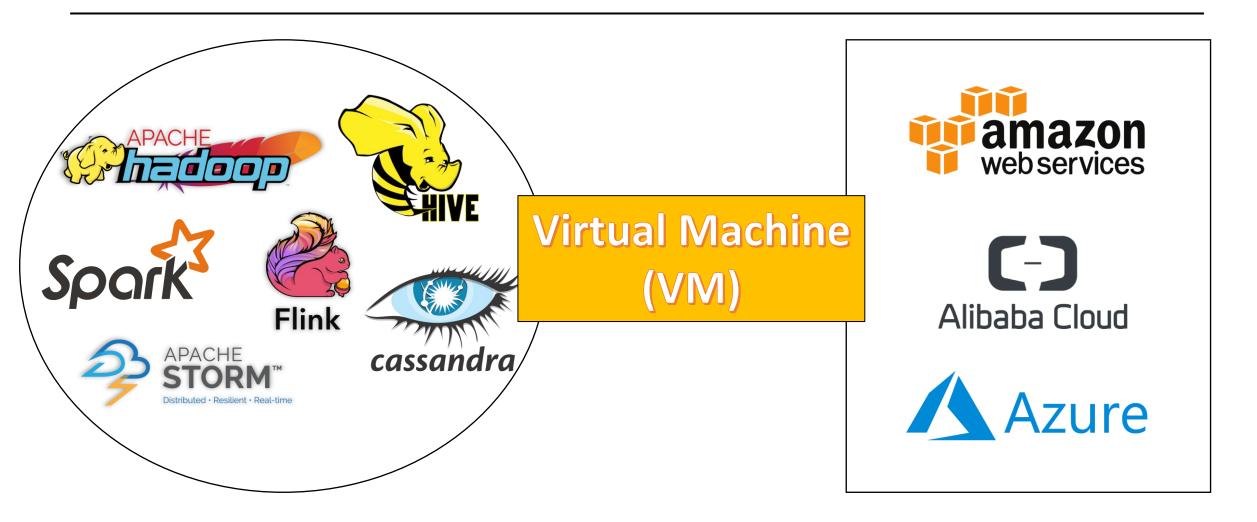
ICPP/2021/CHICAGO/USA

Best VM Selection for Big Data Applications across Multiple Frameworks by Transfer Learning

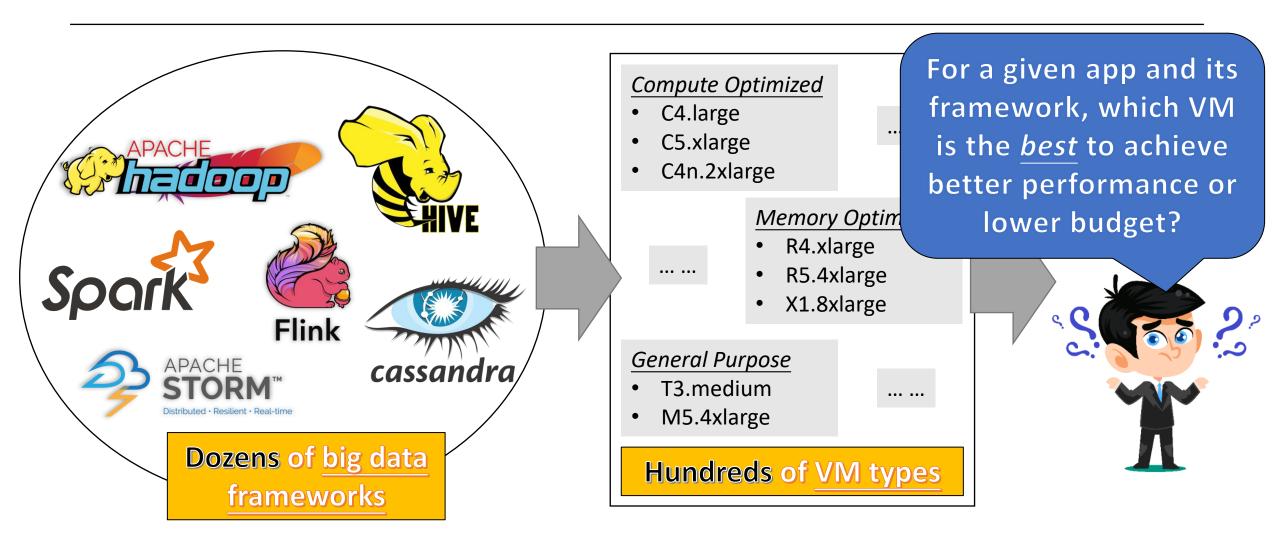
Yuewen Wu[⋄], Heng Wu [⋄], Yuanjia Xu ^{⋄+}, Yi Hu ^{⋄+}, Wenbo Zhang [⋄] ^{*}, Hua Zhong [⋄] ^{*}, Tao Huang [⋄] ^{*}

♦ ISCAS, +UCAS, * SKLCS

Dozens of big data frameworks are available in clouds today

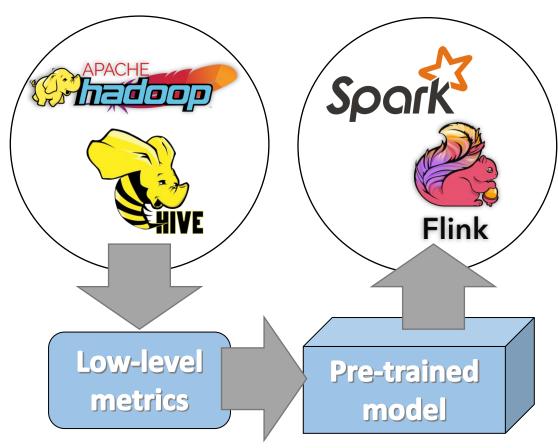


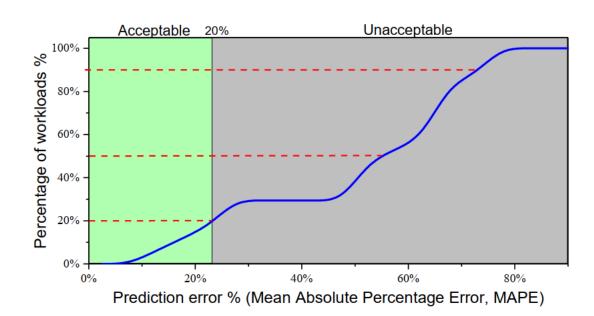
Selecting the best VM for multiple frameworks is challenging



Limitation of existing machine learning approaches

1. Reusing pre-trained model based on low-level metrics (e.g., CPU utilization)

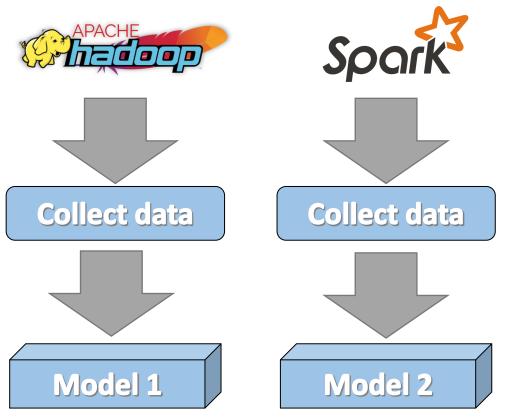


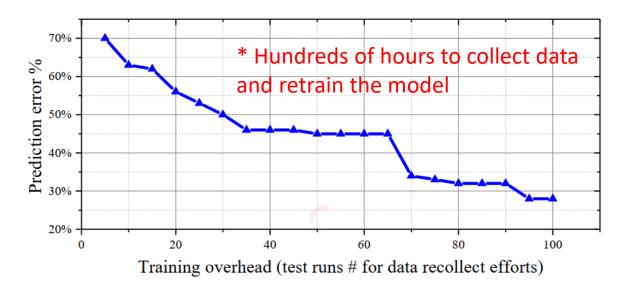


High prediction error for new frameworks

Limitation of existing machine learning approaches

2. Training models for each framework

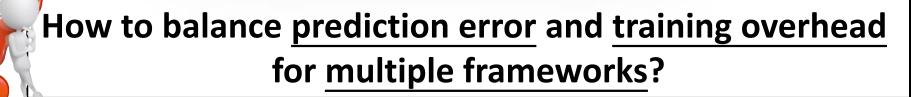




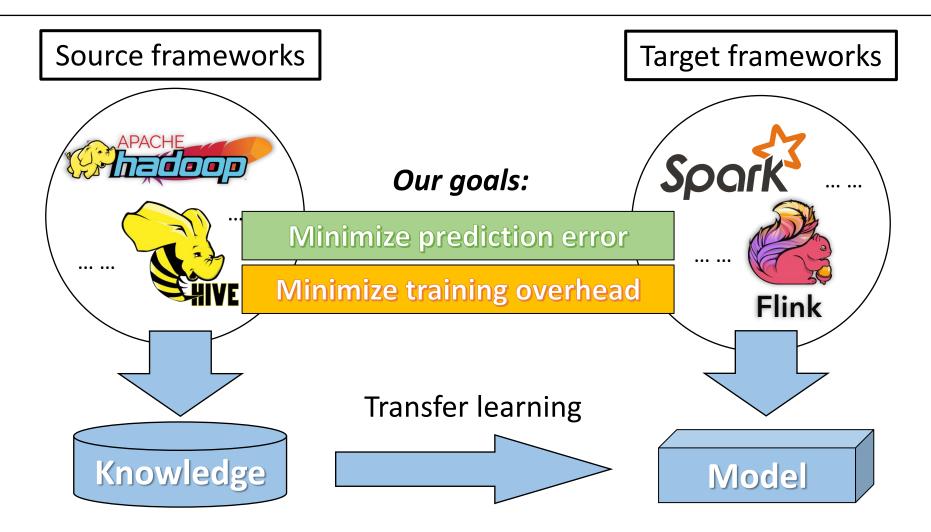
High training overhead for each framework

Questions?

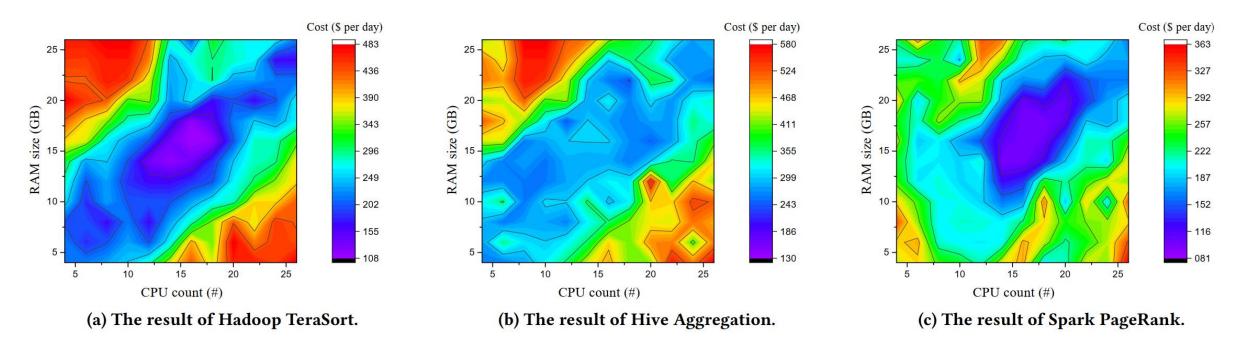




Vesta: reusing knowledge by transfer learning



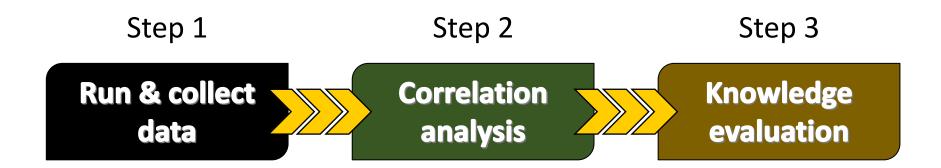
Our core finding: knowledge across frameworks



Low-level metrics have <u>high-level similarities</u> (aka <u>knowledge</u>) across frameworks (the blue areas in heat maps)

Vesta: abstract knowledge

- Abstracting knowledge by a large-scale evaluation, it contains:
 - 3 widely used big data frameworks: Hadoop, Hive and Spark
 - 30 benchmark workloads (HiBench@Intel and BigDataBench@ICT)
 - 120 VM types (x86-arch) on Amazon EC2
 - 20 resource and execution metrics (e.g., CPU rate, number of tasks)



Vesta: abstract knowledge

- Knowledge evaluation: abstract most valuable knowledge
 - Top 10 knowledge after evaluation (valid for current dataset)

Table 1: High-level similarities (correlations) across frame-	-
works.	

Correlations	Description
Resource metrics	
CPU-to-memory	A positive [★] correlation probably denotes a heavy computational workload, so it can infer to larger CPU and memory sizes in VM types. A negative correlation means the opposite side.
memory-to-disk	A negative [?] correlation can represent relatively small data size, and can infer to lower VM memory size and disk band width in VM types. A positive correlation represents the opposite side.
disk-to-network	A positive correlation reveals that the workload exchange data frequently to facilitate remote data storage capabilities, and car infer to higher disk and network bandwidths in VM types. A negative correlation means the opposite side.
buffer-to-cache	A positive correlation reveals that buffer cache and page cache are two critical memory caches in this workload, and can infer to larger buffer and cache capabilities. A negative correlation means the opposite side.
CPU-to-network	A negative correlation probably means that there are lots of data synchronizations in the workload, and can infer to higher network bandwidths. A negative correlation means the oppo- site side.

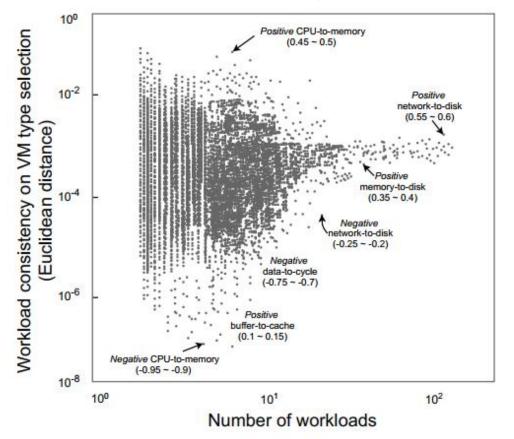
Execution metrics	
iteration-to-parallelism	A positive correlation means that the workload prefers running in a "thin" cluster (more iterations), and a negative correlation means that it prefers running in a "fat" cluster (more parallelism). It can infer to the choice of the number of VMs.
data-to-computation	A positive correlation reveals that the workload has lots of <i>computation</i> phases. A negative correlation means the opposite side. It can infer to the choice of CPU cores and CPU rate.
data-to-cycle	A positive correlation means that it may be a data-intensive workload or a compute-intensive workload. A negative corre- lation means the opposite side. It can infer to the choice of RAM size and RAM type.
disk-to-synchronization	A positive correlation reveals that the workload exchanges data frequently. A negative correlation means the opposite side. It can infer to the choice of disk bandwidth and disk size.
network-to-	A positive correlation means that the workload transfers data
synchronization	frequently. A negative correlation means the opposite side. It can infer to the choice of network bandwidth.
synchronization	A positive correlation means that the workload transfers data frequently. A negative correlation means the opposite side. It

variables move in tandem — that is, in the same direction. [≀] The negative correlation reveals one

variable decreases as the other variable increases.

Vesta: abstract knowledge

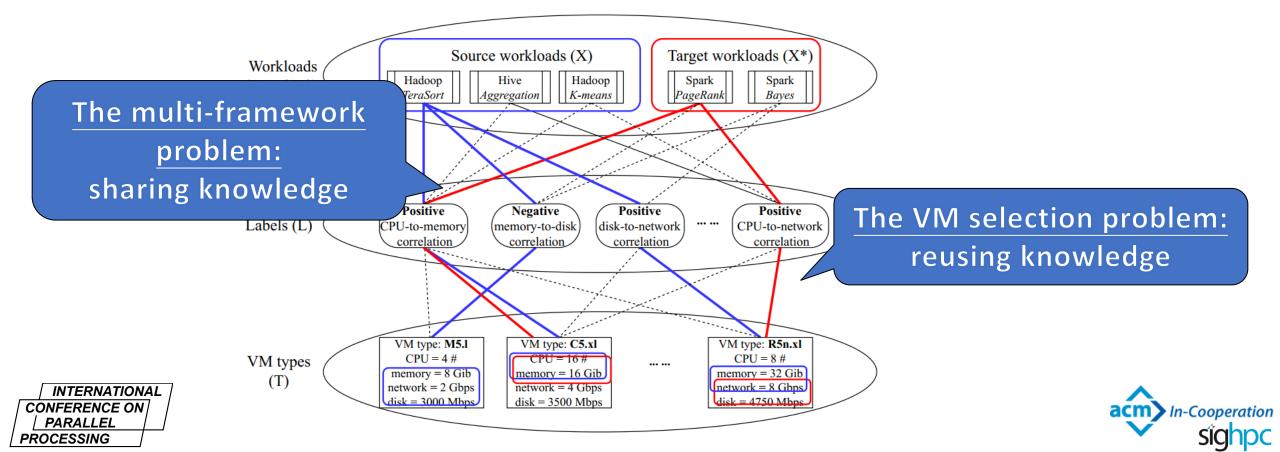
- Knowledge evaluation: data distribution analysis
 - We use scoring mechanism (X-axis for *popularity*, Y-axis for *consistency*) to evaluate the importance of knowledge



We train a K-means model for source frameworks

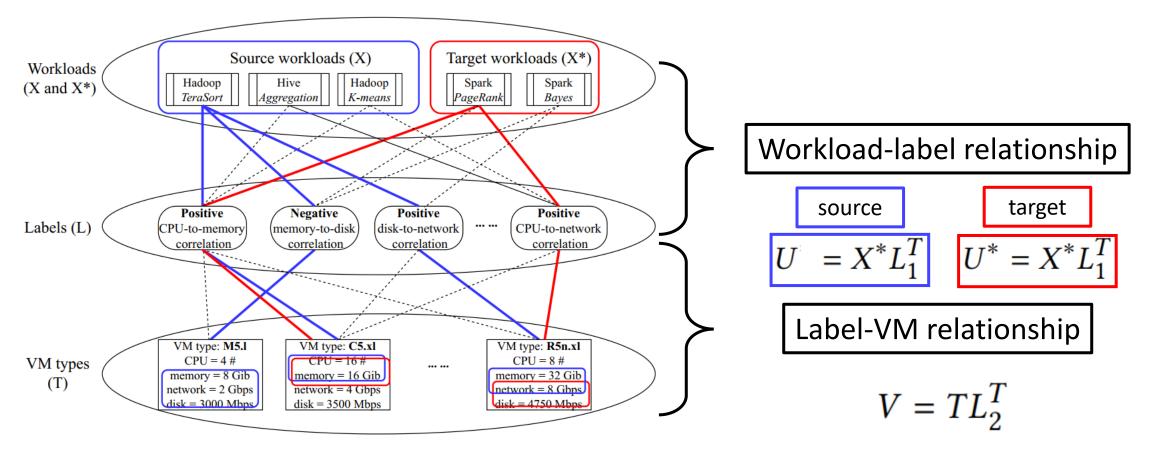
Vesta: represent knowledge

- Representing knowledge in a two-layer bipartite graph
 - Blue boxes and edges: source workloads and frameworks
 - Red boxes and edges: target workloads and frameworks



Vesta: reuse knowledge

• Step 1: Decomposing the two-layer bipartite graph into matrices



Vesta: reuse knowledge

- Step 2: Solving the data sparsity problem for target matrix U*
 - Applying Collective Matrix Factorization (CMF) algorithm to select data

$$\min_{U, F, U^*} \lambda \| U^* - U \|_F^2 + (1 - \lambda) \| U^* - V \|_F^2 + R(U, V, U^*)$$

- Step 3: Searching the best VM for target workloads and frameworks
 - Employing Stochastic Gradient Descent (SGD) algorithm to search the best VM
 - Reusing knowledge (data) from source workloads and frameworks
 - Training the model incrementally for target frameworks

Evaluation setup

3 frameworks & 30 benchmark workloads (Source: *Hadoop, Hive*) (Target: *Spark*)

Alternative solutions:

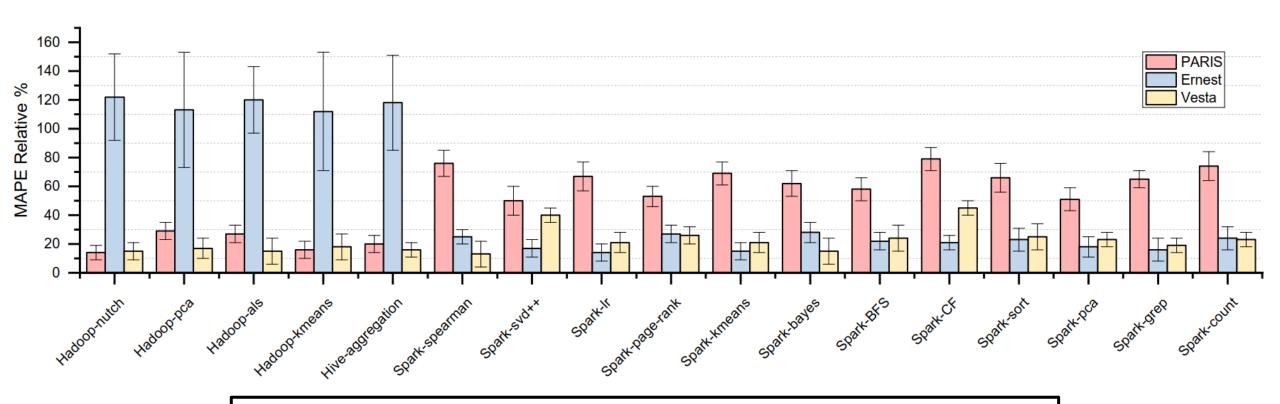
- PARIS@SoCC' 17
- Ernest@NSDI' 16

120 VM types from Amazon EC2

Experiment metrics:

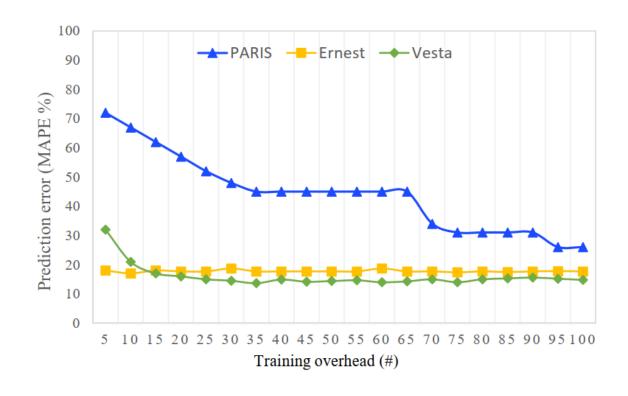
- Performance improvement: prediction error
- Training overhead: number of runs
- Practical metrics: execution time & budget

Performance improvement for multiple frameworks

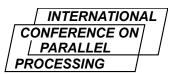


Vesta can reduce up to <u>51%</u> prediction error, that is – can improve up to 51% performance due to reuse knowledge

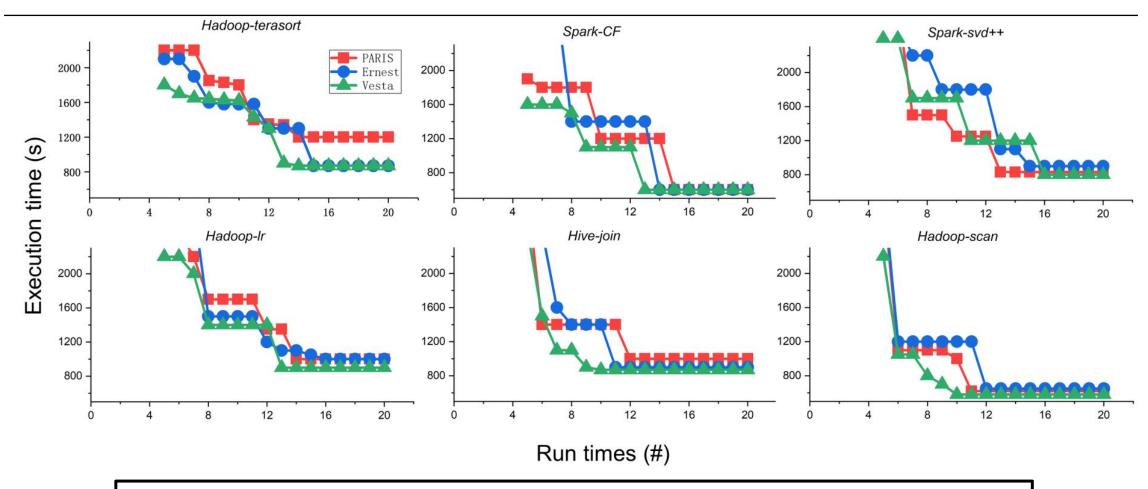
Training overhead improvement for multiple frameworks



Vesta can reduce up to 85% training overhead due to transfer learning

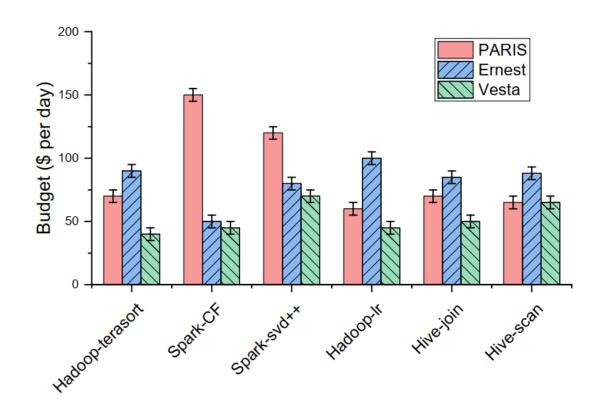


Optimizing the execution time of running application

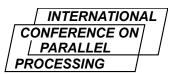


Vesta can find VMs with shorter execution time in 5 of 6 applications

Optimizing the budget of renting VMs



Vesta performs better or at least comparable budgets



Summary

- Vesta selects the best VM effectively for multi-framework applications by transfer learning.
- Vesta observes knowledge (high-level similarities) across frameworks.
- Vesta abstracts knowledge by a large scale evaluation on Amazon EC2.
- Vesta represents and reuses knowledge through a combination of technologies.
- Vesta can improve application performance up to 51% while reducing 85% training overhead.
- Vesta can easily adapt to big data frameworks that follow the *Bulk Synchronous Parallelism* (BSP) design. In the future, we want to extend Vesta to support deep learning applications, such as TensorFlow and PyTorch.

Take a look of our paper for more details

Any questions?

You can find me at

wuyuewen@otcaix.iscas.ac.cn

