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Dozens of big data frameworks are available in clouds today
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Selecting the best VM for multiple frameworks is challenging
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Limitation of existing machine learning approaches

Reusing pre-trained

low-level metrics
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Limitation of existing machine learning approaches

Training models
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Questions?
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O; How to balance prediction error and training overhead

@ for multiple frameworks?

| INTERNATIONAL /

/ CONFERENCE ON 50th International Conference on Parallel Processing (ICPP) acm) In-Cooperation

| PARALLEL o .
August 9-12, 2021 in Virtual Chicago, IL V4 SIghpC

PROCESSING |




Vesta: reusing knowledge by transfer learning

Source frameworks Target frameworks
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Our core finding: knowledge across frameworks
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(a) The result of Hadoop TeraSort. (b) The result of Hive Aggregation.

CPU count (#)
(c) The result of Spark PageRank.

Low-level metrics have high-level similarities (aka knowledge) across frameworks
(the blue areas in heat maps)
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Vesta: abstract knowledge

* Abstracting knowledge by a large-scale evaluation, it contains:
* 3 widely used big data frameworks: Hadoop, Hive and Spark
* 30 benchmark workloads (HiBench@Intel and BigDataBench@ICT)
e 120 VM types (x86-arch) on Amazon EC2
e 20 resource and execution metrics (e.g., CPU rate, number of tasks)

Step 1 Step 2 Step 3

Run & collect Correlation Knowledge
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Vesta: abstract knowledge

* Knowledge evaluation: abstract most valuable knowledge
* Top 10 knowledge after evaluation (valid for current dataset)

Table 1: High-level similarities (correlations) across frame-
works.

Correlations Description

Resource metrics

CPU-to-memory A positive [*] correlation probably denotes a heavy computa-
tional workload, so it can infer to larger CPU and memory sizes
in VM types. A negative correlation means the opposite side.

memory-to-disk A negative [¢] correlation can represent relatively small data
size, and can infer to lower VM memory size and disk band-
width in VM types. A positive correlation represents the oppo-
site side.

disk-to-network A positive correlation reveals that the workload exchange data
frequently to facilitate remote data storage capabilities, and can
infer to higher disk and network bandwidths in VM types. A
negative correlation means the opposite side.

buffer-to-cache A positive correlation reveals that buffer cache and page cache
are two critical memory caches in this workload, and can infer
to larger buffer and cache capabilities. A negative correlation
means the opposite side.

CPU-to-network A negative correlation probably means that there are lots of
data synchronizations in the workload, and can infer to higher
network bandwidths. A negative correlation means the oppo-
site side.

Execution metrics

iteration-to-parallelism

data-to-computation

data-to-cycle

disk-to-synchronization

network-to-
synchronization

A positive correlation means that the workload prefers run-
ning in a “thin” cluster (more iterations), and a negative cor-
relation means that it prefers running in a “fat” cluster (more
parallelism). It can infer to the choice of the number of VMs.
A positive correlation reveals that the workload has lots of
computation phases. A negative correlation means the opposite
side. It can infer to the choice of CPU cores and CPU rate.

A positive correlation means that it may be a data-intensive
workload or a compute-intensive workload. A negative corre-
lation means the opposite side. It can infer to the choice of RAM
size and RAM type.

A positive correlation reveals that the workload exchanges data
frequently. A negative correlation means the opposite side. It
can infer to the choice of disk bandwidth and disk size.

A positive correlation means that the workload transfers data
frequently. A negative correlation means the opposite side. It
can infer to the choice of network bandwidth.

Note: [*] The positive correlation reveals the relationship between two variables in which both
variables move in tandem — that is, in the same direction. [2] The negative correlation reveals one

variable decreases as the other variable increases.
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Vesta: abstract knowledge

* Knowledge evaluation: data distribution analysis

* We use scoring mechanism (X-axis for popularity, Y-axis for consistency) to
evaluate the importance of knowledge
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Vesta: represent knowledge

* Representing knowledge in a two-layer bipartite graph
* Blue boxes and edges: source workloads and frameworks
* Red boxes and edges: target workloads and frameworks
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Vesta: reuse knowledge

* Step 1: Decomposing the two-layer bipartite graph into matrices
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Vesta: reuse knowledge

 Step 2: Solving the data sparsity problem for target matrix U*
* Applying Collective Matrix Factorization (CMF) algorithm to select data

min A |U=U|IIZ +(1 =) I|{U =V |2
o, | 7 +( ) | %

+R(U,V,U%)

 Step 3: Searching the best VM for target workloads and frameworks
* Employing Stochastic Gradient Descent (SGD) algorithm to search the best VM
* Reusing knowledge (data) from source workloads and frameworks
* Training the model incrementally for target frameworks
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Evaluation setup

3 frameworks & 30 benchmark workloads

(Source: ‘Hadoop, Hivgl) (Ta rget: @

Alternative solutions:
e PARIS@SoCC’ 17
e Ernest@NSDI’ 16

@120 VM types from Amazon EC2

&

Experiment metrics:

* Performance improvement: prediction error
* Training overhead: number of runs

* Practical metrics: execution time & budget
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Performance improvement for multiple frameworks
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Vesta can reduce up to 51% prediction error, that is —
can improve up to 51% performance due to reuse knowledge
/ INTERNATIONAL PN
CONFERENCE ON / 50th International Conference on Parallel Processing (ICPP) acm) In-Cooperation
Péopé“g‘s’;bg" / August 9-12, 2021 in Virtual Chicago, IL A4 S‘I'ghpC




Training overhead improvement for multiple frameworks
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Vesta can reduce up to 85% training overhead due to transfer learning
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Optimizing the execution time of running application
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Vesta can find VMs with shorter execution time in 5 of 6 applications
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Optimizing the budget of renting VMs
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Vesta performs better or at least comparable budgets
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Ssummary

* Vesta selects the best VM effectively for multi-framework applications by transfer
learning.

* Vesta observes knowledge (high-level similarities) across frameworks.
* Vesta abstracts knowledge by a large scale evaluation on Amazon EC2.
* Vesta represents and reuses knowledge through a combination of technologies.

* Vesta can improve application performance up to 51% while reducing 85% training
overhead.

* Vesta can easily adapt to big data frameworks that follow the Bulk Synchronous
Parallelism (BSP) design. In the future, we want to extend Vesta to support deep
learning applications, such as TensorFlow and PyTorch.

Take a look of our paper for more details
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Q2 Thanks!

Any questions ?

You can find me at
® wuyuewen@otcaix.iscas.ac.cn
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