INTERNATIONAL a@mmwm
CONFERENCE ON A
PARALLEL sighpc

PROCESSING ICPP/2021/CHICAGO/USA AUGUST9-12,20821

Multi-Resource List Scheduling of Moldable
Parallel Jobs under Precedence Constraints

Lucas Perotin (speaker)! Hongyang Sun?
Padma Raghavan?

LEcole Normale Supérieure de Lyon, France

2Vanderbilt University, USA

=== |V

ENS DE LYON

VANDERBILT
UNIVERSITY

August 10, 2021

Introduction

Single-resource scheduling

» Most traditional scheduling problems target a single type of
resource (e.g., CPUs)

BBf ==
.
Py T | Tio
@of =
Ps T

Time

» For example: classic NP-complete problem of makespan
minimization for moldable tasks with precedence constraints
on identical machines (P|moldable, prec|Cnax). Best known
algorithm is 3.42-approx. [Chen 2018]

Introduction

The case for multi-resource scheduling
» HPC systems embrace more heterogeneous components
(e.g., CPU, GPU, FPGA, MIC, APU)
» Data-intensive applications drive architecture enhancement for
better data-transfer efficiency (e.g., High-Bandwidth Memory,
Partitionable Cache, Burst Buffers)

Co-Processors

To achieve optimal system/application performance, multiple types
of resources (e.g., CPU, GPU, memory, cache, |/O) should be
scheduled simultaneously

A Simple Example

Resource 1 has 4 units.
Resource 2 has 6 units.

| Tasks [1[2]3[4]
Time 3171815
Resource1 [2 |1 |1]2
Resource2 [3 |2 | 4|2

The precedence constraints are :

O =0

v

© ©

Possible realisation :

Scheduling Model

A multi-resource scheduling model:

>

v

System with d resource types; i-th type has P() identical

resources

Set {1,2,---, n} of moldable tasks released at time 0

There may be precedence constraints between tasks

Each task j's execution time tj(ﬁj) depends on its resource
1) (2 . (d)

(pJ 7pJ) 7pJ)

Assumptions: non-increasing execution time,

allocation vector p; = and is known

non-superlinear speedup with respect to any ressource type.

B =G (or p” < g Vi) = 1(5) > (@)

(7
= tj(p) < (%) ~ti(qp) -

i=1.. dp()

Scheduling Objective

Scheduling objective:
Find a moldable schedule, i.e., resource allocation vector p; and
starting time s; for each task j which

» minimizes makespan: T = max;(s; + t;(p}))

> subject to resource constraint: Y= e at time ¢ pi) < PO vi,t

» subject to precedence constraint: j; — o = s, >, + t

Approximation ratio:
An algorithm is said to be r-approximation if its makespan satisfies
TLT < r for any task graph, where Typr denotes the optimal

makespan.

Main Results

Approximation ratios that increase linearly with number d of
resource types for different task graphs

» For general task graphs:
- 1.619d +2.545v/d + 1 for all d > 1
- d +3V/d? + O(V/d) for d > 22.
» For independant tasks (previous best ratio=2d [Sun et al.
18]):
- 1619d +1foralld>1
- d+2vd—1ford> 4.

Lower bound of d on the approximation ratio of any deterministic
list-based scheduling algorithm with local job priority consideration.

Introduction
Algorithm
Analysis

Conclusion

8/18

Preliminaries

Definitions: for a given resource allocation p = (B1, B2, -, Bn) |

0
> Total task area (normalized): A(p) = Z}’Zl Zf’j:l % ()
> Critical-Path: C(p)=max¢ >, t;(p;) over all paths f in the graph

Analogous to Area bound (T1/P) and Critical-Path bound (Cpax) in
single-resource scheduling

Preliminaries

Definitions: for a given resource allocation p = (B1, B2, -, Bn) |

0
> Total task area (normalized): A(p) = Z}’Zl Zf’j:l % ()
> Critical-Path: C(p)=max¢ >, t;(p;) over all paths f in the graph

Analogous to Area bound (T1/P) and Critical-Path bound (Cpax) in
single-resource scheduling

Lower bound (on makespan): L(p, d) = max (222 C(p))
Proposition
The optimal makespan satisfies

Topr > Lmin(d) = min L(p d)
p

Moldable Scheduling

Two-phase approach [Turek et al. 92]:

» Phase 1. Determines a resource allocation for each moldable task

T‘H_‘ Taskj

j_‘

Execution Time

Resource

» Phase 2. Constructs a rigid schedule based on the fixed resource
allocations of all tasks

Task j

Resource

Time

Phase 1: Resource Allocation

» Step (1): Filter possible allocation. For each task j:

- Linearize all P =[], (P + 1) allocations
- Remove ones with both higher execution time and larger area

Phase 1: Resource Allocation

» Step (1): Filter possible allocation. For each task j:

- Linearize all P = Hf/:l(P(i) + 1) allocations
- Remove ones with both higher execution time and larger area

» Step (2): Find best tradeoff. For all n tasks:

- Use linear programming to obtain L(p*,d) = L ;.(d) (Adapted
from the Discrete Time-Cost Tradeoff problem [Skutella 98])

- For a given p € (0,1), round to p’ such that

7—OPT
I-p

C(p) < 12 and Ap) <
p

Phase 1: Resource Allocation

» Step (1): Filter possible allocation. For each task j:

- Linearize all P = Hf/:l(P(i) + 1) allocations
- Remove ones with both higher execution time and larger area

» Step (2): Find best tradeoff. For all n tasks:
- Use linear programming to obtain L(p*,d) = L ;.(d) (Adapted
from the Discrete Time-Cost Tradeoff problem [Skutella 98])
- For a given p € (0,1), round to p’ such that
TOPT
I-p

C(p) < 12 and Ap) <
p

(0 _ {MP(")W, if p/'0 > [P0

p’J(.’), otherwise.

Phase 2: Rigid Scheduling

For a fixed resource allocation:

» List Scheduling:

- Arrange all tasks in a list according to priority rules.
- Whenever an existing task completes, scan the list
and schedule first ready task that fits.

Phase 2: Rigid Scheduling

For a fixed resource allocation:

» List Scheduling:

- Arrange all tasks in a list according to priority rules.
- Whenever an existing task completes, scan the list
and schedule first ready task that fits.

Proposition

This two-phase algorithm with p =1 — é and p =

T§(0d+2\/0d+1) 7—opt'

1

\/pd+1

satisfies:

where ¢ = HT‘@ < 1.619 is the golden ratio

Introduction
Algorithm
Analysis

Conclusion

13/18

Analytical Tools

Definitions: The processing time [0,T] is subdivided in three sets:

» /1: For all /, less than 1P{) resources are used
— No tasks have been reduced in I
—> No tasks are ready in /;

> |

> /3

Analytical Tools

Definitions: The processing time [0,T] is subdivided in three sets:
» /1: For all /, less than 1P{) resources are used
— No tasks have been reduced in I
—> No tasks are ready in /;
» I Excludes Iy, for all i at most (1 — 1)P") resources are used
=—> No tasks are ready in
— At least a fraction p of a resource is used in b
> /3

Analytical Tools

Definitions: The processing time [0,T] is subdivided in three sets:

» /1: For all /, less than 1P{) resources are used
— No tasks have been reduced in I
—> No tasks are ready in /;

» I Excludes Iy, for all i at most (1 — 1)P") resources are used
=—> No tasks are ready in
— At least a fraction p of a resource is used in b

> /5 [0, T] \(Il @] 12)
=—> At least a fraction 1 — y of a resource is used in /5

Analytical Tools

Definitions: The processing time [0,T] is subdivided in three sets:

» /1: For all /, less than 1P{) resources are used
— No tasks have been reduced in I
—> No tasks are ready in /;

» I Excludes Iy, for all i at most (1 — 1)P") resources are used
=—> No tasks are ready in
— At least a fraction p of a resource is used in b

> /5 [0, T] \(Il @] 12)
=—> At least a fraction 1 — y of a resource is used in /5

T=T1i+Tr+ T3

Impact of Reduction (In Resource Allocation)

t' L 4
. I | w
t t
I :
reduction
t &
[w I | u
£ t
<p <u

After step 3:
- t > t’: The execution time may not decrease
-t < tﬁl: The speedup may not be superlinear

- Vi, w; < w': The work for each resource is lower than the
initial work among all resources.

Combining Two Bounds

» Critical-Path Bound:
- There exists a path filling ; Uk
- No tasks were reduced in /;

= Ti+uT < C(p) < L2

Combining Two Bounds

» Critical-Path Bound:

- There exists a path filling ; Uk
- No tasks were reduced in /;

— Ti+pTh<CPE) <. (1)

> Area Bound:

- At least a fraction p of a resource is used in b
- At least a fraction (1 — p) of a resource is used in /3
- Vi,w < w'

= uTo+ (1—p)Ts < dA(p) < T2 . (2)

Combining Two Bounds

» Critical-Path Bound:

- There exists a path filling ; Uk
- No tasks were reduced in /;

— Ti+pTh<CPE) <. (1)

> Area Bound:

- At least a fraction p of a resource is used in b
- At least a fraction (1 — p) of a resource is used in /3

- Vi,w < w'
= uTo+ (1—p)Ts < dA(p) < T2 . (2)
Proposition

Combining (1) and (2) with T = Ty + T, + T3, we obtain

= (; - u)d(l = p)) Yoz

The ratio is obtained by optimizing the two variables in above expression.

Introduction
Algorithm
Analysis

Conclusion

17/18

Conclusion

What does this paper brings:
» A new algorithm for multi-resource scheduling

» Several approximation ratios.

Future work:

» Reduce gap between upper and lower bounds of the
approximation ratios

» Experimental work.

	Introduction
	Algorithm
	Analysis
	Conclusion

