

Multi-Resource List Scheduling of Moldable Parallel Jobs under Precedence Constraints

Lucas Perotin (speaker)¹ Hongyang Sun² Padma Raghavan²

¹École Normale Supérieure de Lyon, France

²Vanderbilt University, USA

August 10, 2021

Introduction

Single-resource scheduling

 Most traditional scheduling problems target a single type of resource (e.g., CPUs)

For example: classic NP-complete problem of makespan minimization for moldable tasks with precedence constraints on identical machines (*P*|*moldable*, *prec*|*C*_{max}). Best known algorithm is 3.42-approx. [Chen 2018]

Introduction

The case for multi-resource scheduling

- HPC systems embrace more heterogeneous components (e.g., CPU, GPU, FPGA, MIC, APU)
- Data-intensive applications drive architecture enhancement for better data-transfer efficiency (e.g., High-Bandwidth Memory, Partitionable Cache, Burst Buffers)

To achieve optimal system/application performance, multiple types of resources (e.g., CPU, GPU, memory, cache, I/O) should be scheduled simultaneously

A Simple Example

Resource 1 has 4 units. Resource 2 has 6 units.

Tasks	1	2	3	4
Time	3	7	8	5
Resource 1	2	1	1	2
Resource 2	3	2	4	2

The precedence constraints are :

Scheduling Model

A multi-resource scheduling model:

- System with *d* resource types; *i*-th type has *P*^(*i*) identical resources
- Set $\{1, 2, \dots, n\}$ of moldable tasks released at time 0
- There may be precedence constraints between tasks
- ► Each task j's execution time $t_j(\vec{p}_j)$ depends on its resource allocation vector $\vec{p}_j = (p_j^{(1)}, p_j^{(2)}, \cdots, p_j^{(d)})$ and is known
- Assumptions: non-increasing execution time, non-superlinear speedup with respect to any ressource type.

$$egin{aligned} ec{p}_j ec ec{q}_j \ (ext{ or } \ p_j^{(i)} &\leq q_j^{(i)}, orall i \end{pmatrix} &\implies t_j(ec{p}_j) \geq t_j(ec{q}_j), \ &\implies t_j(p_j) \leq \left(\max_{i=1 \ldots d} rac{q_j^{(i)}}{p_j^{(i)}}
ight) \cdot t_j(q_j) \;. \end{aligned}$$

Scheduling objective:

Find a moldable schedule, i.e., resource allocation vector \vec{p}_j and starting time s_j for each task j which

- minimizes makespan: $T = \max_j (s_j + t_j(\vec{p}_j))$
- ▶ subject to resource constraint: $\sum_{i \text{ active at time } t} p_i^{(i)} \leq P^{(i)}, \forall i, t$
- ▶ subject to precedence constraint: $j_1 \rightarrow j_2 \implies s_{j_2} \ge s_{j_1} + t_{j_1}$

Approximation ratio:

An algorithm is said to be *r*-approximation if its makespan satisfies $\frac{T}{T_{\text{OPT}}} \leq r$ for any task graph, where T_{OPT} denotes the optimal makespan.

Approximation ratios that increase linearly with number d of resource types for different task graphs

- ► For general task graphs:
 - $1.619d + 2.545\sqrt{d} + 1$ for all $d \ge 1$
 - $d + 3\sqrt[3]{d^2} + O(\sqrt[3]{d})$ for $d \ge 22$.
- For independant tasks (previous best ratio = 2d [Sun et al. 18]):
 - 1.619d + 1 for all $d \ge 1$
 - $d + 2\sqrt{d-1}$ for $d \ge 4$.

Lower bound of d on the approximation ratio of any deterministic list-based scheduling algorithm with local job priority consideration.

Outline

Introduction

Algorithm

Analysis

Conclusion

Preliminaries

Definitions: for a given resource allocation $\mathbf{p} = (\vec{p}_1, \vec{p}_2, \cdots, \vec{p}_n)^T$

- Total task area (normalized): $A(\mathbf{p}) = \sum_{j=1}^{n} \sum_{i=1}^{d} \frac{p_{j}^{(i)}}{P^{(i)}} \cdot t_{j}(\vec{p}_{j})$
- ► Critical-Path: $C(\mathbf{p}) = \max_f \sum_{j \in f} t_j(\vec{p}_j)$ over all paths f in the graph

Analogous to Area bound (T_1/P) and Critical-Path bound (C_{max}) in single-resource scheduling

Preliminaries

Definitions: for a given resource allocation $\mathbf{p} = (\vec{p}_1, \vec{p}_2, \cdots, \vec{p}_n)^T$

- Total task area (normalized): $A(\mathbf{p}) = \sum_{j=1}^{n} \sum_{i=1}^{d} \frac{p_{j}^{(i)}}{P^{(i)}} \cdot t_{j}(\vec{p}_{j})$
- ► Critical-Path: $C(\mathbf{p}) = \max_f \sum_{j \in f} t_j(\vec{p}_j)$ over all paths f in the graph

Analogous to Area bound (T_1/P) and Critical-Path bound (C_{max}) in single-resource scheduling

Lower bound (on makespan): $L(\mathbf{p}, d) = \max\left(\frac{A(\mathbf{p})}{d}, C(\mathbf{p})\right)$

Proposition

The optimal makespan satisfies

$$T_{\text{OPT}} \geq L_{\min}(d) = \min_{\mathbf{p}} L(\mathbf{p}, d)$$

Moldable Scheduling

Two-phase approach [Turek et al. 92]:

Phase 1: Determines a resource allocation for each moldable task

Phase 2: Constructs a rigid schedule based on the fixed resource allocations of all tasks

Phase 1: Resource Allocation

Step (1): *Filter possible allocation*. For each task *j*:

- Linearize all $P = \prod_{i=1}^{d} (P^{(i)} + 1)$ allocations
- Remove ones with both higher execution time and larger area

Phase 1: Resource Allocation

- Step (1): *Filter possible allocation*. For each task *j*:
 - Linearize all $P = \prod_{i=1}^{d} (P^{(i)} + 1)$ allocations
 - Remove ones with both higher execution time and larger area

Step (2): Find best tradeoff. For all n tasks:

- Use linear programming to obtain $L(\mathbf{p}^*, d) = L_{\min}^*(d)$ (Adapted from the Discrete Time-Cost Tradeoff problem [Skutella 98])
- For a given $ho \in (0,1)$, round to \mathbf{p}' such that

$$\mathcal{C}(\mathbf{p}') \leq rac{\mathcal{T}_{ ext{OPT}}}{
ho} ext{ and } \mathcal{A}(\mathbf{p}') \leq rac{\mathcal{T}_{ ext{OPT}}}{1-
ho}$$

Phase 1: Resource Allocation

- Step (1): *Filter possible allocation*. For each task *j*:
 - Linearize all $P = \prod_{i=1}^{d} (P^{(i)} + 1)$ allocations
 - Remove ones with both higher execution time and larger area

Step (2): *Find best tradeoff*. For all *n* tasks:

- Use linear programming to obtain $L(\mathbf{p}^*, d) = L_{\min}^*(d)$ (Adapted from the Discrete Time-Cost Tradeoff problem [Skutella 98])
- For a given $ho \in (0,1)$, round to \mathbf{p}' such that

$$\mathcal{C}(\mathbf{p}') \leq rac{\mathcal{T}_{ ext{opt}}}{
ho} ext{ and } \mathcal{A}(\mathbf{p}') \leq rac{\mathcal{T}_{ ext{opt}}}{1-
ho}$$

Step (3): Adjust allocation. For each task j and a given $\mu \in (0, 0.5)$:

 $\forall i, p_j^{(i)} = \begin{cases} \lceil \mu P^{(i)} \rceil, & \text{if } p_j^{\prime(i)} > \lceil \mu P^{(i)} \rceil \\ p_j^{\prime(i)}, & \text{otherwise.} \end{cases}$

Phase 2: Rigid Scheduling

For a fixed resource allocation:

List Scheduling:

- Arrange all tasks in a list according to priority rules.
- Whenever an existing task completes, scan the list and schedule first ready task that fits.

Phase 2: Rigid Scheduling

For a fixed resource allocation:

List Scheduling:

- Arrange all tasks in a list according to priority rules.
- Whenever an existing task completes, scan the list and schedule first ready task that fits.

Proposition

This two-phase algorithm with
$$\mu = 1 - \frac{1}{\phi}$$
 and $\rho = \frac{1}{\sqrt{\phi d+1}}$ satisfies:

$$T \leq (\phi d + 2\sqrt{\phi d} + 1) \cdot T_{opt}$$

where $\phi = \frac{1+\sqrt{5}}{2} < 1.619$ is the golden ratio

Outline

Introduction

Algorithm

Analysis

Conclusion

Definitions: The processing time [0,T] is subdivided in three sets:

- ▶ I_1 : For all *i*, less than $\mu P^{(i)}$ resources are used
 - \implies No tasks have been reduced in I_1
 - \implies No tasks are ready in I_1
- ► *I*₂:

Definitions: The processing time [0,T] is subdivided in three sets:

- ▶ I_1 : For all *i*, less than $\mu P^{(i)}$ resources are used
 - \implies No tasks have been reduced in I_1
 - \implies No tasks are ready in I_1
- ▶ I_2 : Excludes I_1 , for all *i* at most $(1 \mu)P^{(i)}$ resources are used
 - \implies No tasks are ready in I_2
 - \implies At least a fraction μ of a resource is used in I_2

Definitions: The processing time [0,T] is subdivided in three sets:

- ▶ I_1 : For all *i*, less than $\mu P^{(i)}$ resources are used
 - \implies No tasks have been reduced in I_1
 - \implies No tasks are ready in I_1
- ▶ I_2 : Excludes I_1 , for all *i* at most $(1 \mu)P^{(i)}$ resources are used
 - \implies No tasks are ready in I_2
 - \implies At least a fraction μ of a resource is used in \textit{I}_2
- $\blacktriangleright I_3: [0, T] \setminus (I_1 \cup I_2)$
 - \implies At least a fraction $1-\mu$ of a resource is used in \textit{I}_3

Definitions: The processing time [0,T] is subdivided in three sets:

- ▶ I_1 : For all *i*, less than $\mu P^{(i)}$ resources are used
 - \implies No tasks have been reduced in I_1
 - \implies No tasks are ready in I_1
- ▶ I_2 : Excludes I_1 , for all *i* at most $(1 \mu)P^{(i)}$ resources are used
 - \implies No tasks are ready in I_2
 - \implies At least a fraction μ of a resource is used in \textit{I}_2
- $\blacktriangleright I_3: [0, T] \setminus (I_1 \cup I_2)$
 - \implies At least a fraction $1-\mu$ of a resource is used in \textit{I}_3

 $T = T_1 + T_2 + T_3$

Impact of Reduction (In Resource Allocation)

After step 3:

- $t \ge t'$: The execution time may not decrease
- $t \leq \frac{t'}{u}$: The speedup may not be superlinear
- $\forall i, w_i \leq w'$: The work for each resource is lower than the initial work among all resources.

Combining Two Bounds

Critical-Path Bound:

- There exists a path filling $I_1 \cup I_2$
- No tasks were reduced in I_1

 $\implies T_1 + \mu T_2 \le C(\mathbf{p}') \le \frac{T_{opt}}{\rho}$ (1)

Combining Two Bounds

Critical-Path Bound:

- There exists a path filling $I_1 \cup I_2$
- No tasks were reduced in I_1

 $\implies T_1 + \mu T_2 \le C(\mathbf{p}') \le \frac{T_{opt}}{\rho}$ (1)

Area Bound:

- At least a fraction μ of a resource is used in I_2
- At least a fraction $(1-\mu)$ of a resource is used in I_3

$$\begin{array}{l} - \forall i, w_i \leq w' \\ \Longrightarrow \mu T_2 + (1-\mu) T_3 \leq dA(\mathbf{p}') \leq \frac{dT_{opt}}{1-\rho} \end{array} .$$

Combining Two Bounds

Critical-Path Bound:

- There exists a path filling $I_1 \cup I_2$
- No tasks were reduced in I_1

 $\implies T_1 + \mu T_2 \le C(\mathbf{p}') \le \frac{T_{opt}}{\rho}$. (1)

Area Bound:

- At least a fraction μ of a resource is used in I_2
- At least a fraction $(1-\mu)$ of a resource is used in I_3

$$\begin{array}{l} - & \forall i, w_i \leq w' \\ \implies \mu T_2 + (1-\mu) T_3 \leq dA(\mathbf{p}') \leq \frac{dT_{opt}}{1-\rho} \end{array} .$$
 (2)

Proposition

Combining (1) and (2) with $T = T_1 + T_2 + T_3$, we obtain

$$extsf{T} \leq \left(rac{1}{
ho} + rac{d}{(1-\mu)(1-
ho)}
ight) extsf{T}_{ extsf{OPT}}$$

The ratio is obtained by optimizing the two variables in above expression.

Outline

Introduction

Algorithm

Analysis

Conclusion

What does this paper brings:

- A new algorithm for multi-resource scheduling
- Several approximation ratios.

Future work:

- Reduce gap between upper and lower bounds of the approximation ratios
- Experimental work.