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Introduction

Single-resource scheduling
I Most traditional scheduling problems target a single type of

resource (e.g., CPUs)

I For example: classic NP-complete problem of makespan
minimization for moldable tasks with precedence constraints
on identical machines (P|moldable, prec|Cmax). Best known
algorithm is 3.42-approx. [Chen 2018]
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Introduction

The case for multi-resource scheduling
I HPC systems embrace more heterogeneous components

(e.g., CPU, GPU, FPGA, MIC, APU)
I Data-intensive applications drive architecture enhancement for

better data-transfer efficiency (e.g., High-Bandwidth Memory,
Partitionable Cache, Burst Buffers)

To achieve optimal system/application performance, multiple types
of resources (e.g., CPU, GPU, memory, cache, I/O) should be
scheduled simultaneously
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A Simple Example
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Scheduling Model

A multi-resource scheduling model:
I System with d resource types; i-th type has P(i) identical

resources
I Set {1, 2, · · · , n} of moldable tasks released at time 0
I There may be precedence constraints between tasks
I Each task j ’s execution time tj(~pj) depends on its resource

allocation vector ~pj = (p(1)
j , p(2)

j , · · · , p(d)
j ) and is known

I Assumptions: non-increasing execution time,
non-superlinear speedup with respect to any ressource type.

~pj � ~qj
(
or p(i)

j ≤ q(i)
j ,∀i

)
=⇒ tj(~pj) ≥ tj(~qj),

=⇒ tj(pj) ≤
(

max
i=1...d

q(i)
j

p(i)
j

)
· tj(qj) .
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Scheduling Objective

Scheduling objective:
Find a moldable schedule, i.e., resource allocation vector ~pj and
starting time sj for each task j which
I minimizes makespan: T = maxj(sj + tj(~pj))
I subject to resource constraint: ∑j active at time t p(i)

j ≤ P(i),∀i , t
I subject to precedence constraint: j1 → j2 =⇒ sj2 ≥ sj1 + tj1

Approximation ratio:
An algorithm is said to be r -approximation if its makespan satisfies

T
Topt
≤ r for any task graph, where Topt denotes the optimal

makespan.
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Main Results

Approximation ratios that increase linearly with number d of
resource types for different task graphs

I For general task graphs:
- 1.619d + 2.545

√
d + 1 for all d ≥ 1

- d + 3 3
√

d2 + O( 3
√

d) for d ≥ 22.
I For independant tasks (previous best ratio = 2d [Sun et al.

18]):
- 1.619d + 1 for all d ≥ 1
- d + 2

√
d − 1 for d ≥ 4.

Lower bound of d on the approximation ratio of any deterministic
list-based scheduling algorithm with local job priority consideration.
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Preliminaries

Definitions: for a given resource allocation p = (~p1, ~p2, · · ·, ~pn)T

I Total task area (normalized): A(p) =
∑n

j=1
∑d

i=1
p(i)

j
P(i) · tj(~pj)

I Critical-Path: C(p)=maxf
∑

j∈f tj(~pj) over all paths f in the graph

Analogous to Area bound (T1/P) and Critical-Path bound (Cmax ) in
single-resource scheduling

Lower bound (on makespan): L(p, d) = max
(A(p)

d ,C(p)
)

Proposition
The optimal makespan satisfies

Topt ≥ Lmin(d) = min
p

L(p, d)
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Moldable Scheduling
Two-phase approach [Turek et al. 92]:
I Phase 1: Determines a resource allocation for each moldable task

I Phase 2: Constructs a rigid schedule based on the fixed resource
allocations of all tasks
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Phase 1: Resource Allocation

I Step (1): Filter possible allocation. For each task j :
- Linearize all P =

∏d
i=1(P(i) + 1) allocations

- Remove ones with both higher execution time and larger area

I Step (2): Find best tradeoff. For all n tasks:
- Use linear programming to obtain L(p∗, d) = L∗min(d) (Adapted

from the Discrete Time-Cost Tradeoff problem [Skutella 98])
- For a given ρ ∈ (0, 1), round to p′ such that

C(p′) ≤ Topt
ρ

and A(p′) ≤ Topt
1− ρ

I Step (3): Adjust allocation. For each task j and a given
µ ∈ (0, 0.5):

∀i , p(i)
j =

{
dµP(i)e, if p′(i)j > dµP(i)e
p′(i)j , otherwise.
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Phase 2: Rigid Scheduling

For a fixed resource allocation:
I List Scheduling:

- Arrange all tasks in a list according to priority rules.
- Whenever an existing task completes, scan the list

and schedule first ready task that fits.

Proposition
This two-phase algorithm with µ = 1− 1

φ and ρ = 1√
φd+1

satisfies:

T ≤ (φd + 2
√
φd + 1) · Topt

where φ = 1+
√

5
2 < 1.619 is the golden ratio
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Analytical Tools

Definitions: The processing time [0,T] is subdivided in three sets:
I I1: For all i , less than µP(i) resources are used

=⇒ No tasks have been reduced in I1
=⇒ No tasks are ready in I1

I I2:

Excludes I1, for all i at most (1− µ)P(i) resources are used
=⇒ No tasks are ready in I2
=⇒ At least a fraction µ of a resource is used in I2

I I3:

[0,T ] \(I1 ∪ I2)
=⇒ At least a fraction 1− µ of a resource is used in I3

T = T1 + T2 + T3
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Impact of Reduction (In Resource Allocation)

After step 3:
- t ≥ t ′: The execution time may not decrease
- t ≤ t′

µ : The speedup may not be superlinear
- ∀i ,wi ≤ w ′: The work for each resource is lower than the

initial work among all resources.
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Combining Two Bounds

I Critical-Path Bound:
- There exists a path filling I1 ∪ I2
- No tasks were reduced in I1

=⇒ T1 + µT2 ≤ C(p′) ≤ Topt
ρ . (1)

I Area Bound:
- At least a fraction µ of a resource is used in I2
- At least a fraction (1− µ) of a resource is used in I3
- ∀i ,wi ≤ w ′

=⇒ µT2 + (1− µ)T3 ≤ dA(p′) ≤ dTopt
1−ρ . (2)

Proposition
Combining (1) and (2) with T = T1 + T2 + T3, we obtain

T ≤
(1
ρ

+ d
(1− µ)(1− ρ)

)
Topt

The ratio is obtained by optimizing the two variables in above expression.
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Conclusion

What does this paper brings:
I A new algorithm for multi-resource scheduling
I Several approximation ratios.

Future work:
I Reduce gap between upper and lower bounds of the

approximation ratios
I Experimental work.
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