
Liangfeng Cheng1, Yuchong Hu1, Zhaokang Ke1, and Zhongjie Wu2

1Huazhong University of Science and Technology
2Alibaba Group

ICPP 2021

1

Property 1: Vast quantity
• IDC predicts that the global data size will grow from 33 ZB in 2018 to 175 ZB

by 2025. [The digitization of the world from edge to core, 2018]
• Facebook points out that more than 80% of data are cold. [f4, OSDI’14]

Property 2: Rarely read but not unacceptable long access
• Increasingly investing in big data analytics to derive insights in seconds.

[Borovica-Gajić, VLDB’16]

How to reduce the cost of storing cold data with acceptable long
access?
• Right-provisioning for reducing the cost of power and capital in data centers
• Deduplication for reducing the storage overhead

2

• Grouping all disks, only one group is
active at any given time

• Group switch for changing active
group currently

3

1,152 disks in 6 chassis, each of which
has 192 disks with 12 (rows)*16 (columns)

Acceptable second-long access
• HDD-based systems
• Group switch takes 8 seconds
• single file is stored into single group, considered as Single File

Single Group (SFSG) constraint

 New rack design in Pelican [OSDI’14]

Cold data has much redundancy
• Backup is a compelling usage model in cloud cold storage [Muthitacharoen,

SOSP’01]
• Backup data includes many redundant versions of files

The chunk-level deduplication splits the input data stream into
multiple chunks, identifies each chunk by fingerprints, eliminates
duplicate chunks, and stores only unique chunks
• Chunking
• Fingerprinting
• Indexing
• Storage management

4

Four widely used real-world backup datasets
• Linux, http://www.kernel.org/
• GCC, http://ftp.gnu.org/gnu/gcc/.
• VMDK, which is created by a virtual machine with Ubuntu (v.16.04)

running common tasks
• RDB, consists of many Redis snapshots (5GB with 1% change rate on

average from YCSB [SoCC’10])

5

Classical deduplications have no idea of “group” of right-provision
• A file would be deduplicated across multiple groups
• Violate SFSG constrain and trigger group switches
• Method: simple intra-dedup

6

Lower deduplication ratio
• The simple intra-dedup has much lower deduplication ratio than that of

classical-dedup
• Method: manipulate versions across groups

Turing-point (TP)
• Differentiate the two increasing parts (i.e., before TP and after TP).
• 50%(min + max) as default, where min the deduplication ratio of the first

version and the max that of the entire version

7

Non-linear increasing deduplication ratio
• Single intra-dedup is distributed version in average
• For most dataets, TP-based intra-dedup can improve the deduplication

ratio significantly compared to the simple intra-dedup

8

9

 Long tail after the turning point
• TP-based intra-dedup cannot be comparable with that of classical-dedup

after a large number of versions.
• Intra-dedup leaves a number of redundant data between groups
• The inter-group redundancy increases with the number of groups

10

Many identical and similar files between groups
• Identical files, whose all chunks simultaneously exist in multiple groups
• Similar files, whose most chunks (i.e., λ out of total chunks) simultaneously

exist in multiple groups
• For Linux and GCC, identical files

dominate all the files
• For VMDK and RDB, no identical

file but similar files account for
more than 90%

 Can we find and eliminate these
identical and similar files efficiently?

11

Notations
• Fi and Gj indicate a file and a group respectively
• S(G1-2) indicates the set of all same chunks between G1 and G2
• Fid and Fsi indicates all identical and similar files of a group respectively

 Three Theorems
• Identify identical and similar files
• Give redundant chunks for identical files
• Give redundant chunks and migrating chunks for similar files

We are the first to combine right-provisioning with deduplication
• Give observations based on TP to characterize the deduplication ratio with

the number of versions
• Give a theory based model to characterize inter-group redundancies

We design DeCold
• Propose an online TP-based intra-dedup
• Propose an additional offline set theory model based inter-dedup
• Design three improvements for inter-dedup efficiency

We implement DeCold atop Destor [FAST’15]
• Evaluations conducted on four real-world backup datasets demonstrate

the deduplication efficiency and access performance
• Release DeCold at https://github.com/yuchonghu/decold

12

Five modules
• N groups’ disks
• a Grouper
• a Write cache
• N Intra-dedup including Data Store
• an Inter-dedup including Identification, Identical, Similar submodules,

Recipe Store, and Migration Store

13

Satisfy the SFSG constraint
• Each group has an independent recipe for online TP-based intra-dedup
• Grouper module assigns each file a fid and the currently spinning group gid,

and then ensures a one-to-one mapping, i.e., fid → gid.

14

Separating metadata from data
• Storing chunks in Data Store inside groups while keeping recipes in Recipe

Store outside of groups

Enabling TP-based intra-dedup
• If not know TP in advance, we can use the simple method, and adjust the

number of versions via calculating the deduplication ratio in real time
• If current active group does not have enough versions, Write Cache module

will hold these versions temporarily until the number of versions achieves TP

• Finding inter-group chunks
• Realizing Theorem 1

15

1. Obtaining all chunks’ fps of G1
and G2 via reading their Recipe
Stores.

2. Calculating S(G1-2) via sorting all
fps of G1 and G2 ,and traversing
then in a two-pointer way

1. Finding the fid and fsi via
Theorem 1

Identification submodule: Identification of identical and similar files

• Realizing Theorem 2
• Eliminating chunks offline
• Updating Grouper and
 Recipe Store

16

1. Via Theorem 2, getting the
eliminated chunk

 S(G1) - S(F1 - Fid)

1. Removing these chunks until G1
(or G2) turns to be active

1. Updating the mappings of
the involved identical files in
Grouper

2. Updating the recipes of these
files in Recipe Store

Identical submodule: Chunk elimination for identical files

• Realizing chunk elimination in Theorem 3
• Realizing chunk migration in Theorem 3
• Eliminating and migrating
 chunks offline
• Updating Grouper
 and Recipe Store

17

1. Via Theorem 3, getting
the eliminated chunk

 S(G1) - S(F1 - Fsi)

1. Via Theorem 3, getting
the migrated chunk

 S(Fsi)−S(Fsi) ⋂ S(G1−2)

1. Reading from G1’s Data Store to
Migration Store when G1 spins up

2. Writing from Migration Store to
G2’s Data Store when G2 spins up

1. Similar to identical files;
2. For migrated files, computing their

fps, inserting them into the Recipe
Store as well as storing their values
into containers in Data of new group

Similar submodule: Chunk elimination and migration for similar files

Random-pairs for extending from two to N groups
• Randomly divide N groups into N/2 pairs of 2-group inter-dedup

Filtering for reducing scale of S(G1-2)
• borrow the idea of the fact [Lillibridge, FAST’19] that two files sharing

the same representative fps are likely to be the identical files

Starting-size for ignoring small-size files
• define a starting-size to perform inter-dedup to ignore these files

whose file sizes are smaller than the starting-size

18

 Implementation
• 3K SLoC in C on Linux atop Destor [FAST’15]
• Grouper module, which is implemented by RocksDB to store mappings
• 12 intra-dedup modules

Setup
• Intel(R) Xeon(R) Gold 5117 CPU @ 2.00 GHz, 256GB RAM and 26 1TB 3.5”

SATA disks, and runs Ubuntu-16.04
• varied-sized chunks via Content-Defined Chunking (CDC) , 4KB-size

average chunks, 4MB-size containers, and no rewriting algorithm
• Starting-size = 16KB, and λ = 0.8 as default

19

Metadata kinds
• Recipe Store, Grouper, Migration Store

Results
• The metadata size can be negligible compared to the data size, i.e., for

VMDK, only taking up to 0.71% of the data size
• The size of Recipe store is linearly related to the data size of datasets
• The size of Grouper is linearly related to the number of files

20

DeCold achieves comparable deduplication ratios
• TP-based intra-dedup realizes up to 2.5× (when RDB across 12-group)

compared to the simple intra-dedup
• DeCold improves the deduplication ratio of simple intra-dedup by up to

87.8% for VMDK
• DeCold’s deduplication ratio across 2-group can achieve 98.4% of classical-

dedup for VMDK

21

DeCold achieves acceptable single file latency
• Simple intra-dedup, TP-based intra-dedup and DeCold can perform a file

read by reading its chunks satisfying the SFSG constraint
• We simulate classical-dedup and find that it incurs higher file latency

22

Three improvements enhance inter-dedup performance
• For Linux, DeCold with filtering reduces the inter-dedup time by 43.0%

compared to that of without filtering across 2-group
• for GCC, DeCold with random-pairs reduces the inter-dedup time by

90.2% compared to that of without random-pairs across 12-group
• DeCold with starting-size reduces the inter-dedup time by up to 94.2%

(when the starting-size = 256KB in Linux)

23

We are the first to combine right-provisioning with deduplication,
propose an online TP-based intra-dedup and an additional offline
model-based inter-dedup

We design and prototype DeCold based on the above intra-dedup
and inter-dedup as well as inter-dedup improvements

Testbed experiments on four real-world backup datasets
demonstrate DeCold’s deduplication efficiency and acceptable read
performance

24

DeCold prototype: https://github.com/yuchonghu/decold
Contact: lenfungcheng@hust.edu.cn, yuchonghu@hust.edu.cn

25

