
CCAE: Crash-Consistency-Aware Encryption
for Non-Volatile Memories

Mengya Lei, Fang Wang, Dan Feng, Fan Li, Xueliang Wei
Huazhong University of Science & Technology

• 1 Background
• 2 CCAE
• 3 Experiment
• 4 Conclusion

Outline

• 1 Background
• 2 CCAE
• 3 Experiment
• 4 Conclusion

Outline

 NVM is promising alternative of DRAM
 non-volatility
 large capacity
 fast speed + low power
 limited write endurance
 expensive write operations

Background : Non-Volatile Memory (NVM)

 Challenges caused by persistency
data security

CPU

Cache hierarchy

4

 NVM is promising alternative of DRAM
 non-volatility
 large capacity
 fast speed + low power
 limited write endurance
 expensive write operations

Background : Non-Volatile Memory (NVM)

crash consistency

 Challenges caused by persistency
data security

CPU

Cache hierarchy
volatile
non-volatile

inconsistency

5

 Data Security : Counter mode encryption (CME)
 hide the decryption latency
 OTP never reuse (temporal & spatial uniqueness)
 each data block (64B) has a counter
 counter+1 each time the data is encrypted

Background : Counter Mode Encryption (CME)

Encryption
Engine

MetaCache

LineAddr
Key

OTP

Counter
Encryption

plaintext

ciphertext

Decryption
plaintext

ciphertext

6

 Volatile--non volatile gap between CPU & memory
 Inconsistency caused by partial update and out-of-order execution

Background : Data Crash Consistency in NVM

Disk

Volatile Memory
DRAM

CPU
Cache

Non Volatile
Memory (NVM)

Disk

CPU
Cache

A B

C

A B

C in cache

in NVM

inconsistency

consistency

Example: add a new node to a persistent linked list volatile--non volatile gap

software control

hardware control

7

 Hardware persistent transaction : efficient order control + log management

 Example: ATOM [hpca17]: allocate log in Bucket granularity

Background : Data Crash Consistency in NVM

software PTX

hardware PTX

Record 1

Record 3
……

Record M

Record 2

Free Bucket Bit-Vector (on-chip) …:

Bucket 1

Bucket 2

……

Bucket N

HEADER

Cacheline 6

Cacheline 1
Cacheline 2

Cacheline 7

Cacheline 5
Cacheline 4
Cacheline 3

ATOM: Log Organization in NVM

8

• 1 Background
• 2 CCAE
• 3 Experiment
• 4 Conclusion

Outline

New Problem: Counter Crash Consistency

 Consistency + Security  counter crash consistency
 Volatile Counter Cache  partial persisted
 Correct recovery

Ciphertext = OTP ⊕ Plaintext，OTP= En(key,addr|counter)

(a)
Time

Data Counter Plaintextnew ≠ OTPstale ⊕ Ciphertext new

Time
Data Counter (b) Plaintextnew ≠ OTPnew ⊕ Ciphertextstale

inconsistency

inconsistency

Time
Data Counter (c) Plaintextnew = OTPnew ⊕ Ciphertextnew

consistency
10

New Problem: Challenges

 Can’t use data crash consistency mechanism
new security requirement: OTP can not reuse

Plaintext_known1,2,…,n

Ciphertext_known1,2,…,n
OTP1,2,…,n

(1)

Ciphertext_user1,2,…,n Plaintext_user1,2,…,n

(2)

 Expensive NVM writes（each data has a counter）

Write dataEncryption

Time

Write Ctr
Write logEncryption Write logCtr Write data Write dataCtr

The known-plaintext attack caused by OTP reuse

11

Existing Solutions & Our goals

 Exiting Solutions fail to efficiently guarantee counter crash consistency
 lack of integration of data characteristics
 OTP reuse or high recovery time or long execution time

Security Scalability Recovery
time Effectiveness Aware of

data features

Counter-Atomic
[Ye et al., HPCA18] × × √ √ √

Osiris
[Ye et al.,

MICRO18]
√ √ √ √ ×

SuperMem
[Zuo et

al.,MICRO19]
√ √ √ √ √

Our Solution
CCAE

12

CCAE: highlight and architecture

CCAE : efficient Crash-Consistency-Aware Encryption for NVM
 Two key observations of data characteristic in existing data crash consistency
 Shared counter optimization (SCO) for log encryption
 Delayed counter persistency (DCP) for data encryption
 Implement based on ATOM [HPCA’17]

CPU cache
Log Write Initiate

cache arrays
data tag log bit

Log Manager
Counter Cache

WPQ(battery)

log counterdata counter

Encryption Engine

NVM memory

memory controller

secure
unsecure

log areadata area

13

CCAE: Shared counter optimization (SCO)

SCO : For log encryption
 append characteristic of log writing in NVM durable transactions
 During an allocation-recycling phase of a bucket, counters will only

increase by one or remain unchanged

L1
L2
L3

Log Bucket_1

C1
C2
C3

CounterAllocate Bucket_1
St L1
St L2
St L3
…
St Li
Reclaim Bucket_1

…
Li
Lj
…

...
Ci
Cj
…
CnLn

TX_A:

TX_B: Allocate Bucket_1
St L1
St L2
Reclaim Bucket_1

14

CCAE: Shared counter optimization (SCO)

SCO : For log encryption
 append characteristic of log writing in NVM durable transactions
 During an allocation-recycling phase of a bucket, counters will only

increase by one or remain unchanged

L1
L2
L3

LogBucket_1

C1
C2
C3

CounterAllocate Bucket_1
St L1
St L2
St L3
…
St Li
Reclaim Bucket_1

…
Li
Lj
…

...
Ci
Cj
…
CnLn

L1 C1+1

TX_A:

TX_B: Allocate Bucket_1
St L1
St L2
Reclaim Bucket_1

15

CCAE: Shared counter optimization (SCO)

SCO : For log encryption
 append characteristic of log writing in NVM durable transactions
 During an allocation-recycling phase of a bucket, counters will only

increase by one or remain unchanged

L1
L2
L3

LogBucket_1

C1
C2
C3

CounterAllocate Bucket_1
St L1
St L2
St L3
…
St Li
Reclaim Bucket_1

…
Li
Lj
…

...
Ci
Cj
…
CnLn

L1 C1+1
L2 C2+1

TX_A:

TX_B: Allocate Bucket_1
St L1
St L2
Reclaim Bucket_1

16

CCAE: Shared counter optimization (SCO)

SCO : For log encryption
 append characteristic of log writing in NVM durable transactions
 During an allocation-recycling phase of a bucket, counters will only

increase by one or remain unchanged

L1
L2
L3

LogBucket_1

C1
C2
C3

CounterAllocate Bucket_1
St L1
St L2
St L3
…
St Li
Reclaim Bucket_1

…
Li
Lj
…

...
Ci
Cj
…
CnLn

L1 C1+1
L2 C2+1
L3 C3+1

TX_A:

TX_B: Allocate Bucket_1
St L1
St L2
Reclaim Bucket_1

17

CCAE: Shared counter optimization (SCO)

SCO : For log encryption
 append characteristic of log writing in NVM durable transactions
 During an allocation-recycling phase of a bucket, counters will only

increase by one or remain unchanged

L1
L2
L3

LogBucket_1

C1
C2
C3

CounterAllocate Bucket_1
St L1
St L2
St L3
…
St Li
Reclaim Bucket_1

…
Li
Lj
…

...
Ci
Cj
…
CnLn

L1 C1+1
L2 C2+1
L3 C3+1
… …
Li Ci+1

TX_A:

TX_B: Allocate Bucket_1
St L1
St L2
Reclaim Bucket_1

18

CCAE: Shared counter optimization (SCO)

SCO : For log encryption
 append characteristic of log writing in NVM durable transactions
 During an allocation-recycling phase of a bucket, counters will only

increase by one or remain unchanged

L1
L2
L3

LogBucket_1

C1
C2
C3

CounterAllocate Bucket_1
St L1
St L2
St L3
…
St Li
Reclaim Bucket_1

…
Li
Lj
…

...
Ci
Cj
…
CnLn

C1+1
C2+1
C3+1

…
Ci+1

TX_A:

TX_B: Allocate Bucket_1
St L1
St L2
Reclaim Bucket_1

19

CCAE: Shared counter optimization (SCO)

SCO : For log encryption
 append characteristic of log writing in NVM durable transactions
 During an allocation-recycling phase of a bucket, counters will only

increase by one or remain unchanged

L1
L2
L3

LogBucket_1

C1
C2
C3

CounterAllocate Bucket_1
St L1
St L2
St L3
…
St Li
Reclaim Bucket_1

…
Li
Lj
…

...
Ci
Cj
…
CnLn

C1+1
C2+1
C3+1

…
Ci+1

C1
C2
C3

Counter

...
Ci

Cj+1
…

Cn+1

C1+1
C2+1
C3+1

…
Ci+1

invalid log

TX_A:

TX_B: Allocate Bucket_1
St L1
St L2
Reclaim Bucket_1

no effect on
logs and security

all counters of LogBucket_1 have
the same changes 20

CCAE: Shared counter optimization (SCO)

SCO : For log encryption
 append characteristic of log writing in NVM durable transactions
 During an allocation-recycling phase of a bucket, counters will only

increase by one or remain unchanged

L1
L2
L3

LogBucket_1

C1
C2
C3

CounterAllocate Bucket_1
St L1
St L2
St L3
…
St Li
Reclaim Bucket_1

…
Li
Lj
…

...
Ci

Cj+1
…

Cn+1Ln

C1+1
C2+1
C3+1

…
Ci+1

TX_A:

TX_B: Allocate Bucket_1
St L1
St L2
Reclaim Bucket_1

21

CCAE: Shared counter optimization (SCO)

SCO : For log encryption
 append characteristic of log writing in NVM durable transactions
 During an allocation-recycling phase of a bucket, counters will only

increase by one or remain unchanged

L1
L2
L3

LogBucket_1

C1
C2
C3

CounterAllocate Bucket_1
St L1
St L2
St L3
…
St Li
Reclaim Bucket_1

…
Li
Lj
…

...
Ci

Cj+1
…

Cn+1Ln

C1+2
C2+1
C3+1

…
Ci+1

TX_A:

TX_B: Allocate Bucket_1
St L1
St L2
Reclaim Bucket_1

22

CCAE: Shared counter optimization (SCO)

SCO : For log encryption
 append characteristic of log writing in NVM durable transactions
 During an allocation-recycling phase of a bucket, counters will only

increase by one or remain unchanged

L1
L2
L3

LogBucket_1

C1
C2
C3

CounterAllocate Bucket_1
St L1
St L2
St L3
…
St Li
Reclaim Bucket_1

…
Li
Lj
…

...
Ci

Cj+1
…

Cn+1Ln

C1+2
C2+2
C3+1

…
Ci+1

TX_A:

TX_B: Allocate Bucket_1
St L1
St L2
Reclaim Bucket_1

23

CCAE: Shared counter optimization (SCO)

SCO : For log encryption
 append characteristic of log writing in NVM durable transactions
 During an allocation-recycling phase of a bucket, counters will only

increase by one or remain unchanged

L1
L2
L3

LogBucket_1

C1
C2
C3

CounterAllocate Bucket_1
St L1
St L2
St L3
…
St Li
Reclaim Bucket_1

…
Li
Lj
…

...
Ci

Cj+2
…

Cn+2Ln

C1+2
C2+2
C3+2

…
Ci+2

TX_A:

TX_B: Allocate Bucket_1
St L1
St L2
Reclaim Bucket_1 Observation: counters for logs in a bucket have the same values!

C1 C2 ... Ci Cj … Cn
0 0 ... 0 0 … 0

1 1 ... 1 1 … 1

2 2 ... 2 2 … 2

x x ... x x … x

Initial:

1st allocated:

2nd allocated:

xth allocated:

……

24

CCAE: Shared counter optimization (SCO)

SCO : For log encryption
 all counters for cachelines in a bucket have the same values
 log cachelines in a bucket shared a bucket_counter
 strict persist for consistency. Since there are only a few bucket_counters and updates

(a log bucket has 2^16 log cachelines) (please refer to the paper for the details of record_header)

L1 L2 L3 Ln…

Time

log value writes

(a) Basic

allocate recycle

25

CCAE: Shared counter optimization (SCO)

SCO : For log encryption
 all counters for cachelines in a bucket have the same values
 log cachelines in a bucket shared a bucket_counter
 strict persist for consistency. Since there are only a few bucket_counters and updates

(a log bucket has 2^16 log cachelines) (please refer to the paper for the details of record_header)

L1 L2 L3 Ln…

Time

log value writes

(a) Basic

allocate recycle

CnC1 C2 C3

log counter writes

26

CCAE: Shared counter optimization (SCO)

SCO : For log encryption
 all counters for cachelines in a bucket have the same values
 log cachelines in a bucket shared a bucket_counter
 strict persist for consistency. Since there are only a few bucket_counters and updates

(a log bucket has 2^16 log cachelines) (please refer to the paper for the details of record_header)

L1 L2 L3 Ln…

Time

log value writes

(a) Basic

allocate recycle

CnC1 C2 C3

log counter writes

L1 L2 Ln…

Time

log value writes

L3(b) SCO

27

CCAE: Shared counter optimization (SCO)

SCO : For log encryption
 all counters for cachelines in a bucket have the same values
 log cachelines in a bucket shared a bucket_counter
 strict persist for consistency. Since there are only a few bucket_counters and updates

(a log bucket has 2^16 log cachelines) (please refer to the paper for the details of record_header)

L1 L2 L3 Ln…

Time

log value writes

(a) Basic

allocate recycle

CnC1 C2 C3

log counter writes

L1 L2 Ln…

Time

log value writes

L3(b) SCO Cshare

bucket counter write

 saved

28

CCAE: Delayed Counter Persistency (DCP)
DCP : For data encryption
 uncommitted transactions will be discarded
 no need to restore the latest values of the corresponding counters

undolog(A0)
undolog(B0)

Roll back to initially state: A1 A0 B1  B0 discarded on recovery

(a) Initially and committed states

Tx_begin
 st A, A1
 st B, B1
 st A, A2
Tx_end

Initially:
 A = A0
 B = B0

A0 B0 A2 B1
data area

after Tx_end

Tx_begin
 st A, A1
 st B, B1
 st A, A2
Tx_end

A1 B1
data area

(b) crash happens before commit

St A , Ctr_A++
if Ctr_A % N == 0?

perist Ctr_A
else

update A in cache
……
if Tx about to end?

persist all working ctr

2 period-write
Nwrite limit

1 delayed persist

 restore the counters to the newer value before crash to avoid OTP reuse  period-write

29

CCAE: Delayed Counter Persistency (DCP)

DCP : For data encryption
 uncommitted transactions will be discarded
 no need to restore the latest values of the corresponding counters
 restore the counters to the newer value before crash to avoid OTP reuse  period-write

A B C A D BData Write:

Ctr Write: C1 C1 C2 C1 C2 C1 Time

tx_begin tx_end

Write Set: A B

Counter:

C D

M mA mB …C1 M mC mD …C2
A B C A D BData Write:

Ctr Write: C1C2 Time

tx_begin tx_end

 saved
DCP:

Baseline:

Since write-limit N is set to 32, few data blocks can be written more than N times, so we did not draw the counter write
caused by write-limit solution. (but this part is included in the experiment)

30

CCAE: System Recovery

Log Counter recovery
 direct read

Data Counter recovery
 Ctr_stale + write_limit

Data recovery
 undo log

Counter Recovery time
 negligible

31

• 1 Background
• 2 CCAE
• 3 Experiment
• 4 Conclusion

Outline

Model secure NVM using GEM5 simulator

CCAE: Performance Evaluation

33

CCAE :Experiment Results

Compared to SP/Osiris[micro18], the
NVM writes cause by counters in CCAE
are reduced , while the system
execution time is reduced by ,
The NVM energy is reduced by .

65x/67%
53%/14%

96%/35%

SP：the original solution Osiris: one state-of-the-art solution

34

CCAE :Experiment Results

Compared to SP/Osiris[micro18], the
NVM writes cause by counters in CCAE
are reduced , while the system
execution time is reduced by ,
The NVM energy is reduced by .

65x/67%
53%/14%

96%/35%

SP：the original solution Osiris: one state-of-the-art solution

35

CCAE :Experiment Results

Compared to SP/Osiris[micro18], the
NVM writes cause by counters in CCAE
are reduced , while the system
execution time is reduced by ,
The NVM energy is reduced by .

65x/67%
53%/14%

96%/35%

SP：the original solution Osiris: one state-of-the-art solution

36

CCAE :Experiment Results
SP：the original solution Osiris: one state-of-the-art solution

Compared to SP/Osiris[micro18], the
NVM writes cause by counters in CCAE
are reduced , while the system
execution time is reduced by ,
The NVM energy is reduced by .

65x/67%
53%/14%

96%/35%

37

• 1 Background
• 2 CCAE
• 3 Experiment
• 4 Conclusion

Outline

 Problem
 Existing counter crash consistency solutions ingore data features in NVM

CCAE: Conclusion

 Results
 less NVM writes for counters: 65x/67% to SP/Osiris [Ye et al., MICRO18]

 low system overhead: 53%/14% to SP/Osiris [Ye et al., MICRO18]

 low NVM energy: 96%/35% to SP/Osiris [Ye et al., MICRO18]

 fast recovery & high scalability

 CCAE enables efficient counter crash consistency
 Shared counter optimization (SCO) for log encryption
 Delayed counter persistency (DCP) for data encryption

39

Thanks!

40

	幻灯片编号 1
	Outline
	Outline
	Background : Non-Volatile Memory (NVM)
	Background : Non-Volatile Memory (NVM)
	Background : Counter Mode Encryption (CME)
	Background : Data Crash Consistency in NVM
	Background : Data Crash Consistency in NVM
	Outline
	New Problem: Counter Crash Consistency
	New Problem: Challenges
	Existing Solutions & Our goals
	CCAE: highlight and architecture
	CCAE: Shared counter optimization (SCO)
	CCAE: Shared counter optimization (SCO)
	CCAE: Shared counter optimization (SCO)
	CCAE: Shared counter optimization (SCO)
	CCAE: Shared counter optimization (SCO)
	CCAE: Shared counter optimization (SCO)
	CCAE: Shared counter optimization (SCO)
	CCAE: Shared counter optimization (SCO)
	CCAE: Shared counter optimization (SCO)
	CCAE: Shared counter optimization (SCO)
	CCAE: Shared counter optimization (SCO)
	CCAE: Shared counter optimization (SCO)
	CCAE: Shared counter optimization (SCO)
	CCAE: Shared counter optimization (SCO)
	CCAE: Shared counter optimization (SCO)
	CCAE: Delayed Counter Persistency (DCP)
	CCAE: Delayed Counter Persistency (DCP)
	CCAE: System Recovery
	Outline
	CCAE: Performance Evaluation
	CCAE :Experiment Results
	CCAE :Experiment Results
	CCAE :Experiment Results
	CCAE :Experiment Results
	Outline
	CCAE: Conclusion
	幻灯片编号 40

