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Background : Non-Volatile Memory (NVM)

» NVM is promising alternative of DRAM
v non-volatility
v’ large capacity
v’ fast speed + low power
® limited write endurance
® expensive write operations f ,

» Challenges caused by per5|stency| L=
@ data security

-

Cache hierarchy




Background : Non-Volatile Memory (NVM)

» NVM is promising alternative of DRAM
v non-volatility ?
v’ large capacity

v’ fast speed + low power Cacheierarchy |
® |imited write endurance inconsistency- - - - - - - /o\atile
® expensive write operations . . R

» Challenges caused by persistency ===
@ data security

@ crash consistency



Background : Counter Mode Encryption (CME)

» Data Security : Counter mode encryption (CME)

v’ hide the decryption latency

v' OTP never reuse (temporal & spatial uniqueness)
v’ each data block (64B) has a counter

v’ counter+1 each time the data is encrypted

(MetaCache) Encryption  Decryption
Coulnter ( plaintext ) ( plaintext )
v
LineAddr— Encryption | OTP 4N A
. >
Key —» Engine \¢/
ciphertext ) | {ciphertext)




Background : Crash Consistency in NVM

» Volatile--non volatile gap between CPU & memory
» Inconsistency caused by partial update and out-of-order execution

CPU e
Cache @ .
hardware contro consistency
Volatile Memory Non Volatile
DRAM Memory (NVM)
softwa re contro
‘ Disk \ E Disk \

volatile--non volatile gap

inconsistency

Example: add a new node to a persistent linked list



Background :

» Hardware persistent transaction : efficient order control + log management

Crash Consistency in NVM

» Example: ATOM [hpcal7]: allocate log in Bucket granularity

[ o o I e

software PTX

|

B
.,

Lo B R
T ~

Log

e Flush Log

In Hardware

hardware PTX

mmmd Flush Data

Free Bucket Bit-Vector (on-chip) - m

Bucket 1

Bucket 2

Bucket N

HEADER

Cacheline 1

Cacheline 2

|
, Record 1 |
\ Record 2
|

Record 3

Cacheline 3

Cacheline 4
Cacheline 5

oooooo l [~
. Record M \_Cacheline 6
Cacheline 7

ATOM: Log Organization in NVM
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New Problem: Crash Consistency

» Consistency + Security = counter crash consistency
> Volatile Counter Cache - partial persisted
» Correct recovery

Ciphertext = OTP @ Plaintext, OTP= En(key,addr|counter) x
@) (05 G — praintert.., # OTP,.. Ciptertot s ¥
- Time Inconsistency
(b) ! (Counter)% —> Plaintext,., # OTPpw @ Ciphertextse ] x
»Time Inconsistency
(c) i(Counter)(Data} = Plaintext,e,, = OTP,.,, @ Ciphertext,e, v

»Time consistency
10



New Problem: Challenges

» Can’t use data crash consistency mechanism
®new security requirement: OTP can not reuse

Ciphertext_knowny, ..., W\ (1) TP
—> 1,2,°°-n

Plaintext_knowny, ..., A ﬁ/

Ciphertext_usersz ..., —» @ — Plaintext_user; , ...

The known-plaintext attack caused by OTP reuse

> Expensive NVM writes (each data has a counter)

Encryption Write data Write Ctr
Encryption Write log Write logCtr Write data | Write dataCtr

Time
11



Existing Solutions & Our goals

» Exiting Solutions fail to efficiently guarantee counter crash consistency
® |ack of integration of data characteristics
® OTP reuse or high recovery time or long execution time

Security Scalability Retcic:'\]/:ry Effectiveness da?;v:;:tzres
Counter-Atomic
[Ye et al, HPCA18] X X Vv Vv v
v W+ v
[Ye et al,, x
MICRO18]
SuperMem
[Zuo et
al,MICRO19] .\/ .\/ .\/ \)‘ v
Our Solution
COAE V V V V V

12



CCAE: highlight and architecture

» CCAE : efficient Crash-Consistency-Aware Encryption for NVM
® Two key observations of data characteristic in existing data crash consistency
® Shared counter optimization (SCO) for log encryption

® Delayed counter persistency (DCP) for data encryption
® Implement based on ATOM [HPCA'17]

CPU cache [ cache arrays ]
(Log Write Initiate] {|_data || tag [log bit

& ¢

memory controller

:—]Log Manager :>[ Encryption Engine
' Counter Cache |<=> P :

J

WPQ(battery) &
_ secure ___ __ _ @ _______________
unsecure
data area log area |data counter|log counter
NVM memory
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CCAE: Shared counter optimization (SCO)

»SCO : For log encryption

® append characteristic of log writing in NVM durable transactions

® During an allocation-recycling phase of a bucket, counters will only
increase by one or remain unchanged

TX_A: = Allocate Bucket_1 Log Bucket_1  Counter
St L1 L1 C1
St L2 L2 C2
>t L3 3 C3
e — &

Reclaim Bucket 1

TX_B: Allocate Bucket_1 L) C)
St L1 = -
St L2 Ln Cn

Reclaim Bucket 1
14



CCAE: Shared counter optimization (SCO)

»SCO : For log encryption

® append characteristic of log writing in NVM durable transactions

® During an allocation-recycling phase of a bucket, counters will only
increase by one or remain unchanged

TX_A: Allocate Bucket_1 LogBucket 1~ Counter
—> st L1 Cir

St L2 L2 C2

St L3 L3 C3

e Li 5 =

Reclaim Bucket_1 t! g!

TX_B: Allocate Bucket 1 ] J

<t L1 " "

_— Ln Cn

Reclaim Bucket 1
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CCAE: Shared counter optimization (SCO)

»SCO : For log encryption

® append characteristic of log writing in NVM durable transactions

® During an allocation-recycling phase of a bucket, counters will only
increase by one or remain unchanged

TX_A: Allocate Bucket_1 LogBucket 1~ Counter
>t L1 L1 C1+1
=> >t L2 L2 C2+1
St L3 L3 C3
e L 5 =
Reclaim Bucket_1 t! g!
TX_B: Allocate Bucket 1 ] J
<t L1 " "
_— Ln Cn

Reclaim Bucket 1
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CCAE: Shared counter optimization (SCO)

»SCO : For log encryption

® append characteristic of log writing in NVM durable transactions

® During an allocation-recycling phase of a bucket, counters will only
increase by one or remain unchanged

TX_A: Allocate Bucket_1 LogBucket 1~ Counter
>t L1 L1 C1+1
>t L2 L2 C2+1

—> St L3 13 C3+1
e L o =
Reclaim Bucket_1 t! E!

TX_B: Allocate Bucket 1 ] J
<t L1 " e
_— Ln Cn

Reclaim Bucket 1
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CCAE: Shared counter optimization (SCO)

»SCO : For log encryption

® append characteristic of log writing in NVM durable transactions
® During an allocation-recycling phase of a bucket, counters will only

TX_A:

TX_B:

increase by one or remain unchanged

Allocate Bucket 1
St L1
St L2
St L3

=P St Li

Reclaim Bucket 1

Allocate Bucket 1
St L1

St L2

Reclaim Bucket 1

LogBucket 1

Counter

C1+1
C2+1
C3+1

Ci+1
g

Cn
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CCAE: Shared counter optimization (SCO)

»SCO : For log encryption

® append characteristic of log writing in NVM durable transactions
® During an allocation-recycling phase of a bucket, counters will only

TX_A:

TX_B:

increase by one or remain unchanged

Allocate Bucket 1
St L1
St L2
St L3

St Li

=p Reclaim Bucket 1

Allocate Bucket 1
St L1

St L2

Reclaim Bucket 1

LogBucket 1 Counter
L1 C1+1
L2 C2+1
L3 C3+1
Li Ci+1
Lj Cj
Ln Cn
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CCAE: Shared counter optimization (SCO)

»SCO : For log encryption

® append characteristic of log writing in NVM durable transactions

® During an allocation-recycling phase of a bucket, counters will only
increase by one or remain unchanged

TX_A:

TX_B:

Allocate Bucket 1

St L1
St L2
St L3

St Li

Reclaim Bucket 1
Allocate Bucket 1

St L1
St L2

invalid log

Reclaim Bucket 1

|

LogBucket 1  Counter
L1 C1+1
L2 C2+1
L3 C3+1
Li Ci+1
Lj Cj
Ln Cn

Counter

C1+1

C2+1

C3+1

Ci+1

Cj+1

Cn+1

no effect on
logs and security

all counters of LogBucket_1 have
the same changes 20



CCAE: Shared counter optimization (SCO)

»SCO : For log encryption

® append characteristic of log writing in NVM durable transactions

® During an allocation-recycling phase of a bucket, counters will only
increase by one or remain unchanged

TX_A: Allocate Bucket_1 LogBucket 1~ Counter
St L1 K C1+1
St L2 L2 C2+1
St L3 L3 C3+1
5t L1 L Cit

Reclaim Bucket 1

TX_B: = Allocate Bucket_1 L) Cj+1
S_t Ll eoe cos
St L2 Ln Cn+1

Reclaim Bucket 1
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CCAE: Shared counter optimization (SCO)

»SCO : For log encryption

® append characteristic of log writing in NVM durable transactions

® During an allocation-recycling phase of a bucket, counters will only
increase by one or remain unchanged

TX_A: Allocate Bucket_1 LogBucket 1~ Counter
st L1 CT+2
>t L2 L2 C2+1
>t L3 L3 C3+1
St L1 i Cit1

Reclaim Bucket 1

TX_B: Allocate Bucket_1 L) Cj+1
- St L1
St L2 Ln Cn+1

Reclaim Bucket 1
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CCAE: Shared counter optimization (SCO)

»SCO : For log encryption

® append characteristic of log writing in NVM durable transactions

® During an allocation-recycling phase of a bucket, counters will only
increase by one or remain unchanged

TX_A: Allocate Bucket_1 LogBucket 1~ Counter
>t L1 L1 C1+2
>t L2 . C2+2
>t L3 L3 C3+1
St Li — —
Reclaim Bucket 1 t! gk:l

TX_B: Allocate Bucket 1 ] J
<t L1 . .

—_ St L2 Ln Cn+1

Reclaim Bucket 1
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CCAE: Shared counter optimization (SCO)

»SCO : For log encryption

® append characteristic of log writing in NVM durable transactions

® During an allocation-recycling phase of a bucket, counters will only
increase by one or remain unchanged

TX_A:

TX_B:

Allocate Bucket 1
St L1
St L2
St L3

St Li
Reclaim Bucket 1
Allocate Bucket 1
St L1
St L2

=P Reclaim Bucket 1

LogBucket 1 Counter
L1 C1+2
L2 C2+2
L3 C3+2
¥ e
¥ Gj+2
T G

Observation

: counters for logs in a bucket have the same values!

Initial:

1st allocated:

2nd allocated:

xth allocated:

C11C2 ...|Ci|Gj|... |Cn
0/]0[..10]0 0
}

1117 .. i 1 1
2121 .. i 2 2
X | X | .| X| X X

24




CCAE: Shared counter optimization (SCO)

»SCO : For log encryption
® all counters for cachelines in a bucket have the same values
® |og cachelines in a bucket shared a bucket_counter
® strict persist for consistency. Since there are only a few bucket _counters and updates

(a log bucket has 2216 log cachelines) ( please refer to the paper for the details of record _header)

allocate log value writes recycle
Im |
(a) Basic | L1 L2 L3 Ln |
|

:Time

25



CCAE: Shared counter optimization (SCO)

»SCO : For log encryption
® all counters for cachelines in a bucket have the same values
® |og cachelines in a bucket shared a bucket_counter
® strict persist for consistency. Since there are only a few bucket _counters and updates

(a log bucket has 2216 log cachelines) ( please refer to the paper for the details of record _header)

allocate log value writes log cc_)u_nyg[\wrltes recycle
| - P _—:::__—‘Ef::—: \\\\\\\ |
(@Basic |[L1|ci|L2|c2{L3]cC3| - Ln{Cn |
|
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CCAE: Shared counter optimization (SCO)

»SCO : For log encryption
® all counters for cachelines in a bucket have the same values
® |og cachelines in a bucket shared a bucket_counter
® strict persist for consistency. Since there are only a few bucket _counters and updates

(a log bucket has 2216 log cachelines) ( please refer to the paper for the details of record _header)

allocate log value writes log cc_)u_nyir\wrltes recycle
| - P _—:::-_—";_":f-":—: \\\\\\\\ |
(@Basic |[L1|ci|L2|c2{L3]cC3| - Ln{Cn |
|

log value writes

(b) SCO L1 [ 2] L3 ][ Ln
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CCAE: Shared counter optimization (SCO)

»SCO : For log encryption
® all counters for cachelines in a bucket have the same values
® |og cachelines in a bucket shared a bucket_counter
® strict persist for consistency. Since there are only a few bucket _counters and updates

(a log bucket has 2216 log cachelines) ( please refer to the paper for the details of record _header)

allocate log value writes log cc_)u_nyir\wrltes recycle
| - P _—:::-_—";_":f-":—: \\\\\\\\ |
(@Basic |[L1|ci|L2|c2{L3]cC3| - Ln{Cn |
|

bucket counter write log value writes
|

I
() SCO [Coe| L1 [ L2 ] L3 ][ Ln ]« saved N
I
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CCAE: Delayed Counter Persistency (DCP)

»DCP : For data encryption

® uncommitted transactions will be discarded
® no need to restore the latest values of the corresponding counters

® restore the counters to the newer value before crash to avoid OTP reuse = period-write

Initially: Tx_bte%i\n A Tx_bte%i\n A
A=A St A, st A, - :
B = Bg st B, Bi —ct B Bi Roll back to initially state:
st A, A st A, A, A12A, B2 By
Tx_end Tx_and discarded on recovery
after Tx_end - %—E- - -I:i
A | [ B, A | B A alk undolog(Ao)

data area _data area +—undolog(B)

(a) Initially and committed states

(b) crash happens before commit

StA, Ctr_A++

if Ctr A% N ==07
perist Ctr_A

else
update A in cache

if Tx about to end?
persist all working ctr

2 period-write
N->write limit

1 delayed persist
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CCAE: Delayed Counter Persistency (DCP)

»DCP : For data encryption
® uncommitted transactions will be discarded
® no need to restore the latest values of the corresponding counters
® restore the counters to the newer value before crash to avoid OTP reuse = period-write

tx_begin tx_end
DataWrite::A BI>{CI>A>{D|—>B :
fl'iﬁe
|

Baseline:

CtrWrite:: Cl—Cl—C2 1 2->C1

Write Set: | A B C D

tx_blegin tx_end | Counter: C]|M mAimBE'" C2M mcimoi'"
Data Write;|A|B|C|A|D|B : |
DCP: ! l =
Ctr Write;, Clczlh—saVed—’:TlHe

Since write-limit N is set to 32, few data blocks can be written more than N times, so we did not draw the counter write
caused by write-limit solution. (but this part is included in the experiment)

30



CCAE: System Recovery

> Log co u nte r reco\’e ry Algorithm 1: Recovery Process of CCAE

Input:write_limit
® dirECt read 1 // 1 Find uncommeitted transactions

2 Read log metadata;

> Data CO U nte r recove ry 3 Find uncommitted transactions uncommit_TX;

4 // 2 Recover uncommitted transactions

® Ctr stale + write |imit 5 for all TX; in uncommit_TX do

6 // 2.1 read and decrypt undo log
7 for all bucket in log_bucket do
> Data recove ry 8 \Bucket Ctr «— flead shared bucket counter; |
9 Read log headers (counter in them) and decrypt;
® undo Iog 10 Read log values and decrypt them with Bucket_Ctr ;
. 11 end for
> co u nte r Recove ry tl me 12 // 2.2 recover data counter
13 for all Ctr in data_counter do
PY negligible 14 Ctr_stale «— Read counter in NVM;
15 ICtr_recovery = Ctr_stale + write_limit; |
16 end for
17 // 2.3 recover data
18 | |Roll back the data with undo log and Ctr_recovery .|

19 end for

31



e 3 Experiment



CCAE: Performance Evaluation

» Model secure NVM using GEM5 simulator

Table 1: System Configurations

Table 2: Evaluated Workloads

Workload Description

B-Tree Insert/delete nodes in a b-tree

Hash Insert/delete entries in a hash table
Queue Insert/delete entries in a queue
RB-Tree Insert/delete nodes in a rb-tree

SDG Insert/delete edges in a scalable graph
SPS Random swap entries in an array

Processor
CPU 4-core, 1GHz, X86-64, out-of-order
L1 Cache private, 4 cycles, 32KB, 8-way, 64B block
L2 Cache private, 12 cycles, 512KB, 8-way, 64B block
L3 Cache shared, 28 cycles, 8MB, 16-way, 64B block
DDR-based PCM Main Memory

Capacity 16GB PCM
Latency 36ns row hit 100/300ns read/write row conflict
Energy 0.93 (1.02) pJ/bit row buffer read (write)

2.47 (16.82) pJ/bit PCM array read (write)

Security Parameters

En/decryption | 40ns AES
Counter Cache | 256KB

33



CCAE :Experiment Results

SP: the original solution Osiris: one state-of-the-art solution
"1 sP R CCAE_DCP B CCAE_SCO [ Osiris [l CCAE| /

S
N

£ | Compared to SP/Osiris[micro18], the
P 7 2 NVM writes cause by counters in CCAE
£ )
5 30| are reduced 65x/67% , While the system
2 execution time is reduced by 53%/14%,
0 BTree Hash Quewe  RB-Tree  SDG sPS Average The NVM energy is reduced by 96% /35% .
Figure 13: Counter write traffic of different systems. /
5 /A sp Ry ccaE_pcp B ccAE_sco [ Osiris|lll CCAE| A sp R ccAE_pcp B cCAE_scO [ Osiris Il CCAE|
7] 5+
9 N § N ] 7]
2 N [ N =N 7R \ N N S
o N % 23 /N
e \ \ S N N
= |
0 B-Tree Hash Queue RB-Tree SDG SPS Average 0 B-Tree Hash Queue RB-Tree SDG SPS Average
Figure 14: System execution time of different systems. Figure 15: The energy consumption of different systems.
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Figure 13: Counter write traffic of different systems. /
5 /A sp Ry ccaE_pcp B ccAE_sco [ Osiris|lll CCAE| A sp R ccAE_pcp B cCAE_scO [ Osiris Il CCAE|
7] 5+
9 N § N ] 7]
&2t N R P N N s 3 b S
o N % 23 /N
e \ \ S N N
g 1r EB 2 i N N
0 B-Tree Hash Queue RB-Tree SDG SPS Average 0 B-Tree Hash Queue RB-Tree SDG SPS Average
Figure 14: System execution time of different systems. Figure 15: The energy consumption of different systems.
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o Q £ N - .
o4 r
2t N 7N N 5 ION N \ N 5 S
g N RN N \
£ O
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36



CCAE :Experiment Results

SP: the original solution Osiris: one state-of-the-art solution
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CCAE: Conclusion

> Problem
v’ Existing counter crash consistency solutions ingore data features in NVM

» CCAE enables efficient counter crash consistency

® Shared counter optimization (SCO) for log encryption
® Delayed counter persistency (DCP) for data encryption

» Results
v less NVM writes for counters: 65x/67% to SP/Osiris [Ye et al., MICRO18]
v low system overhead: 53%/14% to SP/Osiris [Ye et al., MICRO18]
v low NVM energy: 96%/35% to SP/Osiris [Ye et al., MICRO18]
v’ fast recovery & high scalability
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