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 NVM is promising alternative of DRAM
 non-volatility
 large capacity
 fast speed + low power
 limited write endurance 
 expensive write operations

Background : Non-Volatile Memory (NVM)

 Challenges caused by persistency
data security

CPU

Cache hierarchy
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 Data Security : Counter mode encryption (CME)
 hide the decryption latency   
 OTP never reuse (temporal & spatial uniqueness)
 each data block (64B) has a counter
 counter+1 each time the data is encrypted 

Background : Counter Mode Encryption (CME)

Encryption 
Engine

MetaCache

LineAddr
Key

OTP

Counter
Encryption

plaintext

ciphertext

Decryption
plaintext

ciphertext
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 Volatile--non volatile gap between CPU & memory
 Inconsistency caused by partial update and out-of-order execution

Background : Data Crash Consistency in NVM

Disk 

Volatile Memory
DRAM

CPU 
Cache

Non Volatile 
Memory (NVM)

Disk

CPU 
Cache

A B

C

A B

C in cache

in NVM

inconsistency

consistency

Example: add a new node to a persistent linked list volatile--non volatile gap

software control

hardware control
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 Hardware persistent transaction :  efficient order control + log management

 Example: ATOM [hpca17]: allocate log in Bucket granularity 

Background : Data Crash Consistency in NVM

software PTX 

hardware PTX 

Record 1

Record 3
……

Record M

Record 2

Free Bucket Bit-Vector (on-chip) …:

Bucket 1

Bucket 2

……

Bucket N

HEADER

Cacheline 6

Cacheline 1
Cacheline 2

Cacheline 7

Cacheline 5
Cacheline 4
Cacheline 3

ATOM: Log Organization in NVM 
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New Problem: Counter Crash Consistency

 Consistency  + Security   counter crash consistency
 Volatile Counter Cache  partial persisted
 Correct recovery

Ciphertext = OTP ⊕ Plaintext，OTP= En(key,addr|counter)

(a)
Time

Data Counter Plaintextnew ≠  OTPstale ⊕ Ciphertext new

Time
Data Counter (b) Plaintextnew  ≠ OTPnew ⊕ Ciphertextstale 

inconsistency

inconsistency

Time
Data Counter (c) Plaintextnew  =  OTPnew ⊕ Ciphertextnew 

consistency
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New Problem: Challenges

 Can’t use data crash consistency mechanism 
new security requirement: OTP can not reuse

Plaintext_known1,2,…,n

Ciphertext_known1,2,…,n
OTP1,2,…,n

(1)

Ciphertext_user1,2,…,n Plaintext_user1,2,…,n

(2)

 Expensive NVM writes（each data has a counter）

Write dataEncryption

Time

Write Ctr
Write logEncryption Write logCtr Write data Write dataCtr

The known-plaintext attack caused by OTP reuse
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Existing Solutions & Our goals

 Exiting Solutions fail to efficiently guarantee counter crash consistency 
 lack of integration of data characteristics
 OTP reuse or high recovery time or  long execution time

Security Scalability Recovery
time Effectiveness Aware of 

data features

Counter-Atomic
[Ye et al., HPCA18] × × √ √ √

Osiris
[Ye et al., 

MICRO18]
√ √ √ √ ×

SuperMem
[Zuo et

al.,MICRO19]
√ √ √ √ √

Our Solution
CCAE
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CCAE: highlight and architecture

CCAE : efficient Crash-Consistency-Aware Encryption for NVM
 Two key observations of data characteristic in existing data crash consistency
 Shared counter optimization (SCO) for log encryption
 Delayed counter persistency (DCP) for data encryption
 Implement based on ATOM [HPCA’17]

CPU cache
Log Write Initiate

cache arrays
data tag log bit

Log Manager
Counter  Cache

WPQ(battery)

log counterdata counter

Encryption Engine

NVM memory

memory controller

secure
unsecure

log areadata area
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CCAE: Shared counter optimization (SCO) 

SCO :  For log encryption
 append characteristic of log writing in NVM durable transactions
 During an allocation-recycling phase of a bucket, counters will only 

increase by one or remain unchanged 

L1
L2
L3

Log Bucket_1

C1
C2
C3

CounterAllocate Bucket_1
St L1
St L2
St L3
…
St Li
Reclaim Bucket_1

…
Li
Lj
…

...
Ci
Cj
…
CnLn

TX_A: 

TX_B: Allocate Bucket_1
St L1
St L2
Reclaim Bucket_1
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CCAE: Shared counter optimization (SCO) 

SCO :  For log encryption
 append characteristic of log writing in NVM durable transactions
 During an allocation-recycling phase of a bucket, counters will only 
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CCAE: Shared counter optimization (SCO) 

SCO :  For log encryption
 all counters for cachelines in a bucket have the same values
 log cachelines in a bucket shared a bucket_counter
 strict persist for consistency. Since there are only a few bucket_counters and updates

(a log bucket has 2^16 log cachelines)  ( please refer to the paper for the details of record_header)

L1 L2 L3 Ln…

Time

log value writes 

(a) Basic

allocate recycle
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CCAE: Shared counter optimization (SCO) 

SCO :  For log encryption
 all counters for cachelines in a bucket have the same values
 log cachelines in a bucket shared a bucket_counter
 strict persist for consistency. Since there are only a few bucket_counters and updates

(a log bucket has 2^16 log cachelines)  ( please refer to the paper for the details of record_header)

L1 L2 L3 Ln…

Time

log value writes 

(a) Basic

allocate recycle

CnC1 C2 C3

log counter writes

L1 L2 Ln…

Time

log value writes 

L3(b) SCO Cshare

bucket counter write

 saved

28



CCAE: Delayed Counter Persistency (DCP)
DCP :  For data encryption
 uncommitted transactions will be discarded
 no need to restore the latest values of the corresponding counters

undolog(A0)
undolog(B0)

Roll back to initially state:               A1 A0      B1  B0     discarded on recovery

(a) Initially and committed states

Tx_begin
      st  A,  A1
      st  B,   B1
      st  A,  A2
Tx_end 

Initially:
       A  = A0
       B   =  B0
     

A0 B0 A2 B1
data area 

after Tx_end

Tx_begin
      st  A,  A1
      st  B,   B1
      st  A,  A2
Tx_end 

A1 B1
data area 

(b) crash happens before commit

St A , Ctr_A++
if Ctr_A % N == 0?

perist Ctr_A
else

update A in cache
……
if Tx about to end?

persist all working ctr

2 period-write
Nwrite limit

1 delayed persist

 restore the counters to the newer value before crash to avoid OTP reuse  period-write
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CCAE: Delayed Counter Persistency (DCP)

DCP :  For data encryption
 uncommitted transactions will be discarded
 no need to restore the latest values of the corresponding counters
 restore the counters to the newer value before crash to avoid OTP reuse  period-write

A B C A D BData Write:

Ctr Write: C1 C1 C2 C1 C2 C1 Time

tx_begin tx_end

Write Set:  A B

Counter:  

C D

M mA mB …C1  M mC mD …C2  
A B C A D BData Write:

Ctr Write: C1C2 Time

tx_begin tx_end

 saved
DCP: 

Baseline: 

Since write-limit N is set to 32, few data blocks can be written more than N times, so we did not draw the counter write 
caused by write-limit solution. (but this part is included in the experiment)
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CCAE: System Recovery

Log Counter recovery 
 direct read

Data Counter recovery 
 Ctr_stale + write_limit

Data recovery 
 undo log

Counter Recovery time
 negligible 
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Model secure NVM using GEM5 simulator

CCAE: Performance Evaluation
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CCAE :Experiment Results

Compared to SP/Osiris[micro18], the 
NVM writes cause by counters in CCAE 
are reduced         , while the system 
execution time is reduced by ,
The NVM energy is reduced by                   . 

65x/67%
53%/14%

96%/35%

SP：the original solution Osiris: one state-of-the-art solution
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 Problem
 Existing counter crash consistency solutions ingore data features in NVM

CCAE: Conclusion

 Results
 less NVM writes for counters:  65x/67%  to  SP/Osiris [Ye et al., MICRO18]

 low system overhead:  53%/14%  to  SP/Osiris [Ye et al., MICRO18]

 low NVM energy: 96%/35% to  SP/Osiris [Ye et al., MICRO18]

 fast recovery  & high scalability

 CCAE enables efficient counter crash consistency 
 Shared counter optimization (SCO) for log encryption
 Delayed counter persistency (DCP) for data encryption
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Thanks! 
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