

An Edge-Fencing Strategy for Optimizing SSSP Computations on Large-Scale Graphs

Huashan YU

Peking University

Outline

- Edge-fencing strategy: enabling SSSP algorithms to schedule edge relaxations in a path-centric manner
 - Graph computations are traditionally implemented in a vertex-centric or edge-centric manner
- Skipping edges by scheduling edge relaxations according to lengths of the constructed paths
- The length distribution of a SSSP tree's shortest paths is correlated with the graph's degree distribution
- Customizing the schedule for skewed graphs
- Experimental results

SSSP computations

- Mature relaxation: the extended path is a shortest path
 - The relaxations on the edges incident to v₀ after the edges incident to rt have been relaxed
- Premature relaxation: the extended path is not a shortest path.
 - The relaxations on the edges incident to v₁ before its distance to rt has been updated to be 3
- Inward relaxation: the relaxed edge is not in the SSSP tree
 - The relaxation on the edge between rt and v₁

The objective is to reduce inward relaxations and premature relaxations

Scheduling edge relaxations according to lengths of the constructed paths

- The SSSP tree is divided into layers
- The paths with lengths greater than h_{i+1} are not allowed be extended before every vertex in layer_i has been settled
- In the right figure, the blue edge, the red edge and the yellow edges are relaxed in different steps
 - The blue edge and the yellow edge are relaxed with mature relaxations
 - Premature relaxations may be executed on the red edges

Each h_i is called a fence value

Skipping inward edge relaxations

- Using the push model to relax every edge incident to vertices whose distances are less than h₀
- If i is less then k, using the push model to relax edges between layer_i and vertices with the distances less than h_i
- If i is no less then k, using the pull model to relax edges between layer_i and vertices with the distances less than h_i
 - The yellow edge is skipped since the two connected vertices have been settled
 - The red edge is skipped since it is too long to be in the shortest path

Characteristics of large-scale graphs

- Skewness in degree distribution
 - Many real networks evolve with the generic mechanism of preferential attachment
 - The edges tends to increase more quickly than the vertices
- Randomness in nature
 - The weights are vertex-independent
 - Every vertex selects its neighbors independently

G=<V E w> is assumed to be undirected, connected and skewed enough, w(e) denote the edge e's weight and is a random value that is uniformly distributed in (0 1)

The correlation between a vertex's degree and its distance to the source vertex

- The probability that $x \ge \operatorname{dist}(rt, v_1) \operatorname{dist}(rt, p(rt))$ is about $(1 - (1 - x)^{\operatorname{deg}(v_1) \div 2}) \times (1 - (1/2)^{\operatorname{deg}(v_1)})$
- p(rt) is a vertex that both sum{deg(u) : dist(rt, u) < dist(rt, p(rt))} and sum{deg(u) : dist(rt, u) > dist(rt, p(rt))} are less than m, which is the number of graph edges
- The probability that v_1 is a neighbor of $\{u: dist(rt, u) \le dist(rt, p(rt))\}$ is at least $1 (1/2)^{deg(v_1)}$

• dist (rt, v_1) – dist(rt, p(rt)) is less than w(e)

INTERNATIONAL

CONFERENCE ON

PARALLEL

PROCESSING

 The probability that w(e) is greater than x: 1 – x, assuming x is a positive less than 1

Most high-degree vertices have similar distances to the source vertex

p(rt)

A hierarchical graph model

- rt_0 denote the vertex that minimizes average{dist_f(rt_0, u): $u \in V_c$ }, where V_c consists of the graph's high-degree vertices.
- The distance that minimizes $e^{r_0}/\log(\sup\{\deg(u): dist_f(rt_0, u) \le r_0\})$ is selected as r_0
- $r_i (1 \le i < s)$ is derived from r_{i-1} with average{deg(u): dist_f(rt_0, u) = r_i } × Φ = average{deg(u): dist_f(rt_0, u) > r_{i-1} } ≥ 2
 - Φ is a constant less than 1

Customizing the fence values for every input graph and every source vertex $(1)h_1 = \min\{dist_f(rt, u): u \in layer_0\}$ $(2)h_i = h_1 + r_{i-1}$

Most high-degree vertices are in the top layers

Approximating the hierarchical graph model

- Approach I: deriving from the incident edges from some high-degree vertices
 - 4 layers
 - Sorting the vertex's incident edges according to their weights
 - r_1 is x_i that minimizes $e^{x_i}/\log i$, r_0 is $r_1 \times (1 \Phi)^2$ and r_2 is min $\{1, r_1 \div (1 \Phi)\}$, where x_i denote weight of the i_{th} edge
- Approach I: deriving from some SSSP tree in the graph

Evaluation

- Experimental environment: a Supermicro SYS-2049U-TR4 server running CentOS Linux release 7.8.2003, 64 cores (4 Intel(R) Xeon(R) Gold 5218 CPUs @ 2.30GHz) and 1536 GB of memory.
- Implementation: as the customized SSSP algorithm of Graph500 3.0
 - To compare with the Δ -stepping algorithm's implementation in Graph500
 - Exploiting the graph generator in Graph500 to generate weighted R-MAT graphs
 - Two versions were implemented for evaluating our algorithm's sensitivity to the hierarchical graph model's accuracy

Evaluation: datasets

- 14 synthetic graphs generated with the Kronecker graph generator in Graph500 3.0
 - Edgefactor = 16 and scale = 26
 - krx_y denote the synthetic graph whose R-MAT model is configured with a=100x and b=c=100y
- 8 real graphs: selected from the publicly published networks, including social networks, Internets, Web networks and biological networks.

Evaluation: Parallel Performance

 a 3.83× - 55.27× improvement in GTEPS (Billion Edges Traversed Per Second) over the Δ-stepping algorithm's implementation in Graph500

In-Cooperation

 the performance is relatively insensitive to the hierarchical graph model's accuracy

Evaluation: Efficiency

• Edge relaxation intensity (ERI): average number of relaxations on each graph edge • the edge relaxations are reduced to 0.04× - 0.44× graph edges

acm) In-Cooperation

Evaluation: parallelism

• Normalized synchronization intensity (NSI): average phases for the SSSP tree's every hop-level the bulk synchronizations required in parallel settings are 1.55× - 4.06× maximum of edges in one shortest path created during the computation

50th International Conference on Parallel Processing (ICPP) August 9-12, 2021 in Virtual Chicago, IL

Thank you

50th International Conference on Parallel Processing (ICPP) August 9-12, 2021 in Virtual Chicago, IL