
Regu2D: Accelerating Vectorization of
SpMV on Intel Processors through 2D-
partitioning and Regular Arrangement

Xiang Fei & Youhui Zhang*

Tsinghua University, Beijing, China

INTERNATIONAL

CONFERENCE ON
PARALLEL

PROCESSING

Outline

• Introduction

• Previous Work Analyses

• Solutions and Implementation
• 1 Regular Arrangement

• 2 Adaptive 2D-partitioning

• 3 Indices Compression

• 4 Load Balancing

• Experiment
• Preprocessing

• Conclusions

50th International Conference on Parallel Processing (ICPP)
August 9-12, 2021 in Virtual Chicago, IL

INTERNATIONAL

CONFERENCE ON
PARALLEL

PROCESSING

Introduction

• Sparse matrix-vector multiplication (SpMV) is an elementary and
necessary kernel in many HPC (high-performance computing) domain
applications.

• Accelerating SpMV faces three main issues:
• Irregular data access patterns (because of indexed-load like a[b[i]])
• Memory bandwidth (one multiplication of SpMV requires three load

instructions, two of which (array data&col in Alg. 1) access the matrix data
sequentially without data reuse)

• Short vector problem on vector processors (or SIMD processors in other
words). Due to the sparsity and irregularity of non-zero elements in some
rows, the lanes of a vector register may not be fully filled

50th International Conference on Parallel Processing (ICPP)
August 9-12, 2021 in Virtual Chicago, IL

INTERNATIONAL

CONFERENCE ON
PARALLEL

PROCESSING

Introduction

• Sparse matrix-vector multiplication (SpMV) is an elementary and
necessary kernel in many HPC (high-performance computing) domain
applications.

• Accelerating SpMV faces three main issues:
• Irregular data access patterns (because of indexed-load like a[b[i]])
• Memory bandwidth (one multiplication of SpMV requires three load

instructions, two of which (array data&col in Alg. 1) access the matrix data
sequentially without data reuse)

• Short vector problem on vector processors (or SIMD processors in other
words). Due to the sparsity and irregularity of non-zero elements in some
rows, the lanes of a vector register may not be fully filled

50th International Conference on Parallel Processing (ICPP)
August 9-12, 2021 in Virtual Chicago, IL

INTERNATIONAL

CONFERENCE ON
PARALLEL

PROCESSING

Introduction

• Sparse matrix-vector multiplication (SpMV) is an elementary and
necessary kernel in many HPC (high-performance computing) domain
applications.

• Accelerating SpMV faces three main issues:
• Irregular data access patterns (because of indexed-load like a[b[i]])
• Memory bandwidth (one multiplication of SpMV requires three load

instructions, two of which (array data&col in Alg. 1) access the matrix data
sequentially without data reuse)

• Short vector problem on vector processors (or SIMD processors in other
words). Due to the sparsity and irregularity of non-zero elements in some
rows, the lanes of a vector register may not be fully filled

50th International Conference on Parallel Processing (ICPP)
August 9-12, 2021 in Virtual Chicago, IL

INTERNATIONAL

CONFERENCE ON
PARALLEL

PROCESSING

Introduction

• Sparse matrix-vector multiplication (SpMV) is an elementary and
necessary kernel in many HPC (high-performance computing) domain
applications.

• Accelerating SpMV faces three main issues:
• Irregular data access patterns (because of indexed-load like a[b[i]])
• Memory bandwidth (one multiplication of SpMV requires three load

instructions, two of which (array data&col in Alg. 1) access the matrix data
sequentially without data reuse)

• Short vector problem on vector processors (or SIMD processors in other
words). Due to the sparsity and irregularity of non-zero elements in some
rows, the lanes of a vector register may not be fully filled

50th International Conference on Parallel Processing (ICPP)
August 9-12, 2021 in Virtual Chicago, IL

INTERNATIONAL

CONFERENCE ON
PARALLEL

PROCESSING

Outline

• Introduction

• Previous Work Analyses

• Solutions and Implementation
• 1 Regular Arrangement

• 2 Adaptive 2D-partitioning

• 3 Indices Compression

• 4 Load Balancing

• Experiment
• Preprocessing

• Conclusions

50th International Conference on Parallel Processing (ICPP)
August 9-12, 2021 in Virtual Chicago, IL

INTERNATIONAL

CONFERENCE ON
PARALLEL

PROCESSING

Previous Work Analyses

50th International Conference on Parallel Processing (ICPP)
August 9-12, 2021 in Virtual Chicago, IL

• There are many existing sparse matrix
formats on vector processors
• ELL: may introduce too many padding zeros
• JDS: (a variant of ELL) too many

storage/updating operations
• SELL-C-σ: (a variant of ELL) still contain many

padding zeros, the best value of σ is unknown

• Some new formats are proposed
• Kreutzer, Moritz, et al. "A unified sparse matrix data format for efficient general sparse

matrix-vector multiplication on modern processors with wide SIMD units." SIAM
Journal on Scientific Computing 36.5 (2014): C401-C423.

INTERNATIONAL

CONFERENCE ON
PARALLEL

PROCESSING

50th International Conference on Parallel Processing (ICPP)
August 9-12, 2021 in Virtual Chicago, IL

FGCS 2021

CGO 2015

ICS 2015

CGO 2018

ICPP 2021

INTERNATIONAL

CONFERENCE ON
PARALLEL

PROCESSING

50th International Conference on Parallel Processing (ICPP)
August 9-12, 2021 in Virtual Chicago, IL

More likely to
meet the short
vector problem

FGCS 2021

CGO 2015

ICS 2015

CGO 2018

ICPP 2021

INTERNATIONAL

CONFERENCE ON
PARALLEL

PROCESSING

50th International Conference on Parallel Processing (ICPP)
August 9-12, 2021 in Virtual Chicago, IL

Conditional
branches to test
whether some
vector lanes meet
the last element of
one row after each
multiplication

Reduction
additions

FGCS 2021

CGO 2015

ICS 2015

CGO 2018

ICPP 2021

INTERNATIONAL

CONFERENCE ON
PARALLEL

PROCESSING

50th International Conference on Parallel Processing (ICPP)
August 9-12, 2021 in Virtual Chicago, IL

Too complicated to show the
pseudo code of CSR5

FGCS 2021

CGO 2015

ICS 2015

CGO 2018

ICPP 2021

INTERNATIONAL

CONFERENCE ON
PARALLEL

PROCESSING

50th International Conference on Parallel Processing (ICPP)
August 9-12, 2021 in Virtual Chicago, IL

Use FMA
(fused
multiply-add)
to avoid
reduction
additions

conditional
branches

FGCS 2021

CGO 2015

ICS 2015

CGO 2018

ICPP 2021

INTERNATIONAL

CONFERENCE ON
PARALLEL

PROCESSING

50th International Conference on Parallel Processing (ICPP)
August 9-12, 2021 in Virtual Chicago, IL

Use
gather/scatter
to update the
results

FGCS 2021

CGO 2015

ICS 2015

CGO 2018

ICPP 2021

INTERNATIONAL

CONFERENCE ON
PARALLEL

PROCESSING

Previous Work Analyses

• The computation of SpMV can be divided into three stages:
• The multiplication stage

• The addition or reduction stage of each row

• The storing/updating stage

• Different element layouts decide the specific reduction and update
methods. An ideal approach should concern
• (1) To decrease the number of addition operations during reduction, and

avoid using conditional branch instructions whenever possible;

• (2) To avoid accessing lane(s) of a vector separately;

• (3) To use vector gather/scatter instr. in the updating stage whenever possible.

50th International Conference on Parallel Processing (ICPP)

August 9-12, 2021 in Virtual Chicago, IL
Pavon, Julian, et al. "VIA: A Smart Scratchpad for Vector Units with Application to Sparse Matrix Computations." 2021
IEEE International Symposium on High-Performance Computer Architecture (HPCA). IEEE, 2021.

INTERNATIONAL

CONFERENCE ON
PARALLEL

PROCESSING

Previous Work Analyses

• The computation of SpMV can be divided into three stages:
• The multiplication stage

• The addition or reduction stage of each row

• The storing/updating stage

• Different element layouts decide the specific reduction and update
methods. An ideal approach should concern
• (1) To decrease the number of addition operations during reduction, and

avoid using conditional branch instructions whenever possible;

• (2) To avoid accessing lane(s) of a vector separately;

• (3) To use vector gather/scatter instr. in the updating stage whenever possible.
50th International Conference on Parallel Processing (ICPP)

August 9-12, 2021 in Virtual Chicago, IL

INTERNATIONAL

CONFERENCE ON
PARALLEL

PROCESSING

Outline

• Introduction

• Previous Work Analyses

• Solutions and Implementation
• 1 Regular Arrangement

• 2 Adaptive 2D-partitioning

• 3 Indices Compression

• 4 Load Balancing

• Experiment
• Preprocessing

• Conclusions

50th International Conference on Parallel Processing (ICPP)
August 9-12, 2021 in Virtual Chicago, IL

INTERNATIONAL

CONFERENCE ON
PARALLEL

PROCESSING

Solutions and Implementation

• Regu2D = Regular Arrangement + Adaptive 2D-partitioning

• Use 2D-partitioning to alleviate Irregular access
• but it cuts each row into several parts, and aggravates the short vector problem

and need to store the row indices several times (large storage space)

• Use splicing to alleviate the short vector problem
• Use regular arrangement to solve the Inefficiency of reduction and updating

• Use indices compression to decrease the storage space and the amount
of memory IO

50th International Conference on Parallel Processing (ICPP)

August 9-12, 2021 in Virtual Chicago, IL

INTERNATIONAL

CONFERENCE ON
PARALLEL

PROCESSING

1 Regular Arrangement

• Select N rows that have the same number of elements to be a group
and then make the i th element of row j (0 ≤ j < N) occupy lane j of
vector i (arrange non-zero elements vertically). Thus each row needs
the same number of FMA (fused multiply-add) in the reduction stage

50th International Conference on Parallel Processing (ICPP)
August 9-12, 2021 in Virtual Chicago, IL

group

group

INTERNATIONAL

CONFERENCE ON
PARALLEL

PROCESSING

1 Regular Arrangement

• The regular arrangement is required to find as many groups as
possible to cover the maximum number of rows and elements. We
use a dynamic programming algorithm to find them.
• To increase the flexibility of regular arrangement, we set a threshold T1 and

limit the maximum difference of the number of elements in N rows to T1.

• Not all the rows are involved by regular arrangement

• Key difference with SELL-C-σ

50th International Conference on Parallel Processing (ICPP)
August 9-12, 2021 in Virtual Chicago, IL

maximum difference <= T1

INTERNATIONAL

CONFERENCE ON
PARALLEL

PROCESSING

1 Regular Arrangement

• Let f[i] be the maximum number of groups between the first
i rows, g[i] be the minimum number of elements (including
padding zeros) between the first i rows.

• There are two choices for each row i (i.e. f[i]): combine row i
with the last N−1 rows to be a group or not.

• For those rows that are not to be combined, we compute
them row by row as ALBUS does.

50th International Conference on Parallel Processing (ICPP)

August 9-12, 2021 in Virtual Chicago, IL

INTERNATIONAL

CONFERENCE ON
PARALLEL

PROCESSING

2 Adaptive 2D-partitioning

• Fixed size is not the best choices for every matrices,
Because of various distributions of elements within
different regions
• The small sizes (i.e. P ∗ Q) make some chunks contain too few

elements to improve the data access locality

• The large sizes represent the large range of irregular data
accesses for other chunks and results in poor data locality as
well

• irregular matrices or scale-free matrices: The number
and the position distribution of elements in each row
vary greatly, and a small number of rows contain a great
number of elements (power-law distribution). They are
more challenging in terms of the computation regularity
and load balancing in a multi-threaded environment

50th International Conference on Parallel Processing (ICPP)

August 9-12, 2021 in Virtual Chicago, IL

INTERNATIONAL

CONFERENCE ON
PARALLEL

PROCESSING

2 Adaptive 2D-partitioning

• Solutions: after 2D-partitioning with fixed size P ∗ Q, we merge adjacent
chunks horizontally to form a larger chunk. Two rules need to obey:
• Only the chunks that hold too few elements (less than threshold T2) need to be

merged.

• We don’t merge two chunks that distribute too far
• Maintain the maximum range of the input vector indices requested by compression rule (next slice)

• Example: T2 = 20 and the maximum span of each block does not exceed four
chunks.
• Because of the first rule, block 3 cannot contain the next chunk

• Block 1 cannot contain the fifth chunk limited by the second rule

50th International Conference on Parallel Processing (ICPP)
August 9-12, 2021 in Virtual Chicago, IL

INTERNATIONAL

CONFERENCE ON
PARALLEL

PROCESSING

3 Indices Compression

• Decrease the storage of row indices

• Renumber the row and column indices starting at 0 within a chunk
and compress these two indices into an int type (32 bits).

• The sizes of chunks P ∗Q need to ensure ⌈logP⌉∗⌈logQ⌉ ≤ 32.
• This is the compression rule that constrains the merging strategy during 2D-

partitioning

50th International Conference on Parallel Processing (ICPP)
August 9-12, 2021 in Virtual Chicago, IL

INTERNATIONAL

CONFERENCE ON
PARALLEL

PROCESSING

4 Load Balancing

• The previous four works (ALBUS, CSR5, VHCC, and
CVR) allocate all the elements evenly to each thread

• Because of the random distribution of sparse matrices,
an equal number of elements does not guarantee the
equal number of corresponding rows, that is, the number of updating operations
varies widely
• Particularly evident in the scale-free matrices

• Example: different threads have a different number of scatter instructions, resulting
in different execution times, and the trends of them are basically the same

• Solutions: the number of elements and the number of corresponding rows both need
to be considered during load balancing. We count the number of rows of the output
vector for each thread and use it as a weight to readjust computation loads of each
thread based on experience

50th International Conference on Parallel Processing (ICPP)
August 9-12, 2021 in Virtual Chicago, IL

INTERNATIONAL

CONFERENCE ON
PARALLEL

PROCESSING

Outline

• Introduction

• Previous Work Analyses

• Solutions and Implementation
• 1 Regular Arrangement

• 2 Adaptive 2D-partitioning

• 3 Indices Compression

• 4 Load Balancing

• Experiment
• Preprocessing

• Conclusions

50th International Conference on Parallel Processing (ICPP)
August 9-12, 2021 in Virtual Chicago, IL

INTERNATIONAL

CONFERENCE ON
PARALLEL

PROCESSING

Experiment

• Platform: Intel Xeon processors (Skylake architecture)
with AVX-512 SIMD instructions

• Datasets: 30 real-world scale-free and 16 HPC
(regular) sparse matrices from the University of
Florida Sparse Matrix Collection

• Comparison: Regu2D VS ALBUS, CVR, CSR5, and
SELL-C-σ

50th International Conference on Parallel Processing (ICPP)
August 9-12, 2021 in Virtual Chicago, IL

INTERNATIONAL

CONFERENCE ON
PARALLEL

PROCESSING

Experiment

Speedup
of
Regu2D
compared
with

Max(scale
-free)

Avg(scale-
free)

Max(HPC) Avg(HPC)

ALBUS 5.23 1.69 2.40 1.34

CVR 2.93 1.93 2.85 1.89

CSR5 2.19 1.40 2.17 1.34

SELL-C-σ 1.82 1.20 3.05 1.50

50th International Conference on Parallel Processing (ICPP)
August 9-12, 2021 in Virtual Chicago, IL

INTERNATIONAL

CONFERENCE ON
PARALLEL

PROCESSING

Experiment
• Effects of different optimizations on performance

• Set ALBUS as a baseline

• 2D-partitioning degrades 15% of the performance
on average because of serious short vector problem.
So simply adopting 2D-partitioning does not
accelerate vectorization of SpMV

• Regular arrangement improves 37% on average
because it avoids the short vector problem and
makes the computation more regular

• Decrease the number of branch instructions (Figure 10) and
the branch miss rate (Figure 11)

• The number of store operations is lower than that of ALBUS
and CVR because we use both scalar store and vector
scatter instructions (Figure 12)

50th International Conference on Parallel Processing (ICPP)
August 9-12, 2021 in Virtual Chicago, IL

INTERNATIONAL

CONFERENCE ON
PARALLEL

PROCESSING

Experiment
• Effects of different optimizations on performance

• Set ALBUS as a baseline

• 2D-partitioning degrades 15% of the performance on average
because of serious short vector problem. So simply adopting
2D-partitioning does not accelerate vectorization of SpMV

• Regular arrangement improves 37% on average because it
avoids the short vector problem and makes the computation
more regular

• Adaptive chunk merging improves 5% on average, due to the
improved data locality of chunks that contain a small number of
elements

• Load balancing is used for the matrices with very irregular
element distribution, especially for scale-free matrices and
brings 9% acceleration

• Indices compression brings 13% speedup on average because it
decreases the amount of memory IO

• All the optimizations improve 49% overall in seven
representative matrices

50th International Conference on Parallel Processing (ICPP)
August 9-12, 2021 in Virtual Chicago, IL

INTERNATIONAL

CONFERENCE ON
PARALLEL

PROCESSING

Preprocessing

• The original format is the Matrix Market format (column-major COO)

• Regu2D write back the data of the entire matrix twice after 2D-
partitioning & regular arrangement
• on average 1.56 times and 1.51 times longer than that of ALBUS and CSR5

• SpMV will iterate hundreds or thousands of times, so the larger preprocessing
overhead will be amortized

50th International Conference on Parallel Processing (ICPP)
August 9-12, 2021 in Virtual Chicago, IL

INTERNATIONAL

CONFERENCE ON
PARALLEL

PROCESSING

Outline

• Introduction

• Previous Work Analyses

• Solutions and Implementation
• 1 Regular Arrangement

• 2 Adaptive 2D-partitioning

• 3 Indices Compression

• 4 Load Balancing

• Experiment
• Preprocessing

• Conclusions

50th International Conference on Parallel Processing (ICPP)
August 9-12, 2021 in Virtual Chicago, IL

INTERNATIONAL

CONFERENCE ON
PARALLEL

PROCESSING

Conclusions

• Analyze three issues of accelerating SpMV
• Irregular data access, the short vector problem, and the memory bandwidth

• Propose regu2D and use four methods to solve them
• Use adaptive 2D-partitioning to increase

• The data locality, the range of regular arrangement, the vectorization intensity

• Use regular arrangement to regularize and simplify the computation process
• Dynamic programming algorithm is proposed to find the optimal regular arrangement

• Use indices compression to decrease the amount of memory IO

• Improve load balancing by consider the number of elements and the number
of corresponding rows both

• Compared with four works (ALBUS, CVR, CSR5, and SELL-C-σ) and
achieve almost the best performance

50th International Conference on Parallel Processing (ICPP)
August 9-12, 2021 in Virtual Chicago, IL

