l N TE R NA TI ONA L HC@) In-Cooperation
CONFERENCE ON
PARALLEL sighpc
PROCESSING ICPP/2021/CHICAGO/USA AUGUST9-12,2021

ReguZD: Accelerating Vectorization of
SpMV on Intel Processors through 2D-

partitioning and Reqular Arrangement

Xiang Fei & Youhui Zhang*
Tsinghua University, Beijing, China

SNy
‘~s‘ \|‘.
~ SN e Q
/5 iy ()
W) Q .
. . D .
'k’ >
& 9 ’
=4 @ G g
8 & H N ﬂ
o" A
Dy 47
Q &’
0.. ~
\

Tsinghua University




Outline

* Introduction
* Previous Work Analyses

* Solutions and Implementation
* 1 Regular Arrangement
e 2 Adaptive 2D-partitioning
* 3 Indices Compression
* 4 Load Balancing

* Experiment
* Preprocessing

* Conclusions

| INTERNATIONAL A\
C/Og:gﬁfll_vgf ON 50th International Conference on Parallel Processing (ICPP) acm) In-Cooperation
PROCESSING August 9-12, 2021 in Virtual Chicago, IL AV 4 S‘IghpC




Input: ptr[]. x[]. data[], col[]
i Output: y[]
Introduction yli] = 0:
for i =0 torows = 1 in parallel do
for j = ptr{i] to ptrfi + 1] do
| y[i] += data[j] = x[col[/]] ;
end
end

. T : Algorithm 1: The CSR-based parallel SpMV
° Sparse matrix-vector mUItlpllcathn (Spl\/l\ﬂ IS an elementary an

necessary kernel in many HPC (high-performance computing) domain
applications.

* Accelerating SpMV faces three main issues:
* Irregular data access patterns (because of indexed-load like a[b[i]])
 Memory bandwidth (one multiplication of SpMV requires three load
instructions, two of which (array data&col in Alg. 1) access the matrix data
sequentially without data reuse)
» Short vector problem on vector processors (or SIMD processors in other
words). Due to the sparsity and irregularity of non-zero elements in some
rows, the lanes of a vector register may not be fully filled A

50th International Conference on Parallel Processing (ICPP) acm) In-Cooperation

August 9-12, 2021 in Virtual Chicago, IL AV 4 Slghpc

| INTERNATIONAL /'
CONFERENCE ON

/ PARALLEL
PROCESSING




Input: ptr[]. x[]. data[], col[]
i Output: y[]
Introduction yli] = 0:
for i =0 torows = 1 in parallel do
for j = ptr{i] to ptrfi + 1] do

| yli] += datalj] Jfxfcol]]]] <

end

end

. T : Algorithm 1: The CSR-based parallel SpMV
° Sparse matrix-vector mUItlpllcathn (Spl\/l\ﬂ IS an elementary an

necessary kernel in many HPC (high-performance computing) domain
applications.

* Accelerating SpMV faces three main issues:
* Irregular data access patterns (because of indexed-load like a[b[i]])
 Memory bandwidth (one multiplication of SpMV requires three load
instructions, two of which (array data&col in Alg. 1) access the matrix data
sequentially without data reuse)
» Short vector problem on vector processors (or SIMD processors in other
words). Due to the sparsity and irregularity of non-zero elements in some
rows, the lanes of a vector register may not be fully filled A

50th International Conference on Parallel Processing (ICPP) acm) In-Cooperation

August 9-12, 2021 in Virtual Chicago, IL AV 4 Slghpc

| INTERNATIONAL /'
CONFERENCE ON

/ PARALLEL
PROCESSING




Input: ptr[]. x[]. data[], col[]

i Output: y[]

Introduction yli]=0;

for i =0 torows = 1 in parallel do
for j = ptri] to ptri + 1] do

| y[i] += data[j] = x[col[/]] ;

‘ end

end

. . ] Algorithm 1: The C5R-based parallel SpMV
¢ Sparse matrix-vector mUItlpllcathn (Spl\/l\ﬂ IS an e ementary an

necessary kernel in many HPC (high-performance computing) domain
applications.

* Accelerating SpMV faces three main issues:
* Irregular data access patterns (because of indexed-load like a[b[i]])
 Memory bandwidth (one multiplication of SpMV requires three load
instructions, two of which (array data&col in Alg. 1) access the matrix data
sequentially without data reuse)
» Short vector problem on vector processors (or SIMD processors in other
words). Due to the sparsity and irregularity of non-zero elements in some
rows, the lanes of a vector register may not be fully filled A

50th International Conference on Parallel Processing (ICPP) acm) In-Cooperation

August 9-12, 2021 in Virtual Chicago, IL AV 4 Slghpc

| INTERNATIONAL /'
CONFERENCE ON

/ PARALLEL
PROCESSING




Original matrix SIMD lanes Input; P[r[], :{[], dat&[]1 1:[,][]
6 Vi Output: y[]
Intr y[i]=0:
7(8] |9 for i =0 torows — 1 in parallel do
<] la] [b] for j = ptrfi] to ptrfi + 1] do | <€
4 s y[i] += data[j] * x[col[j]] ;
f end
:li-: end
k Lo, i Algorithm 1: The C5R-based parallel SpMV
* §j iplichation (SpM\%J IS an elementary an
N HPC|(high-performance computing) domain
applications.

* Accelerating SpMV faces threq main issues:
* Irregular data access patterns (because of indexed-load like a[b[i]])

 Memory bandwidth (one multiplication of SpMV requires three load
instructions, two of which (array data&col in Alg. 1) access the matrix data
sequentially without data reusd)

» Short vector problem on vector|processors (or SIMD processors in other
words). Due to the sparsity and|irregularity of non-zero elements in some

rwrernariona FOWS, [the lanes of a vector register may not be fully filled | A
C/ONFERENCE ON / 50th International Conference on Parallel Processing (ICPP) acm) In-Cooperation
PRolqugsAsl;[l\_[gL / August 9-12, 2021 in Virtual Chicago, IL N Slghpc




Outline

* Introduction
* Previous Work Analyses

* Solutions and Implementation
* 1 Regular Arrangement
e 2 Adaptive 2D-partitioning
* 3 Indices Compression
* 4 Load Balancing

* Experiment
* Preprocessing

* Conclusions

| INTERNATIONAL A\
C/Og:gﬁfl’_vgf ON 50th International Conference on Parallel Processing (ICPP) acm) In-Cooperation
PROCESSING August 9-12, 2021 in Virtual Chicago, IL AV 4 Slghpc




INTE}
CONFERE
[ PARAL

PROCESS,

Previous Work Analyses

(a) Source matrix

* There are many existing sparse matrix

formats on vector Processors

* ELL: may introduce too many padding zeros

e JDS: (a variant of ELL) too many
storage/updating operations

* SELL-C-o: (a variant of ELL) still contain many

padding zeros, the best value of o is unknown

<€

* Some new formats are proposed

* Kreutzer, Moritz, et al. "A unified sparse matrix data format for efficient general sparse

matrix-vector multiplication on modern processors with wide SIMD units." SIAM

Journal on Scientific Computing 36.5 (2014): C401-C423.

(b) SELL-6-12

PaN
acC m) In-Cooperation

Vv sighpc



=2

Table 1: Optimization methods of the previous works — .
ALBUS VHCC CSR5 CVR ReguZD ALBUS Itisasimple work, and more likely to meet FGCS 2021
5 — v : the short vector problem
2 -p&rtltlﬂn X X X Spllce rows one bn’f
Splice rows X v v v one It uses splicing to avoid the short vector
Use FMA v Ve v Ve problem, but introduces many reduction
Avoid branches < X X 7 VHCC  additions. It needs conditional branches to CGO 2015
Use scatter instr. . x v X v; Arrange elements store the results to the output vector
Original matrix SIMD lanes ctls L v It puts elements vertically to partly avoid
012 3 reduction additions, and cuts one row into
6 N Avoid to cutonerow ~ C9R9  saveral parts and needs additional ICS 2015
into several parts operation to reduce. It also needs
(put all elements of conditional branches to store the results
7|8 9 one row in the same v
. . column) CVR It avoids reduction additions completely,
. but also needs conditional branches to CGO 2018
d e Arrange elements store the results
f regularly . o
It avoids conditional branches, and uses ICPP 2021
Regu2D gather/scatter to update the results
SIMD lanes Figure 3: The evolution of the previous works and Regu2D.
0123
b4
e aolr
dlef -
VHCC CVR
PaN
Figure 2: A sparse matrix example and the corresponding onal Conference on Parallel Processing (ICPP) acm) In-Cooperation
) t9-12, 2021 in Virtual Chi IL T
| data layouts for the previous works and Regu2D _us ' A Eese, bt SlghpC




Table 1: Optimization_methods of the previous works
. ALBUS

2D-partition : X ’

Splice rows I x

Use FMA | v

Avoid branchesy v

Use scatter insty ~ x
Original matrix SIMD lanes

0123

6 Vi
7|8 |9

/| Figure 2: A sparse matrix example and the corresponding
PR} data layouts for the previous works and Regu2D

onal Con
ust 9-12,

the short vector problem

ALBUS Itisasimple work, and more likely to meet I FGCS 2021

CGO 2015

ICS 2015

CGO 2018

ICPP 2021

Figure 3: The evolution of the previous works and Regu2D.

for each row do
sum = 0 (vector variable);
for each vector do <€

Vector load values and do vector multiplication;
sum + = result;
end

Reduce sum and store with a scalar instruction:
end

Algorithm 5: ALBUS kernel

More likely to
meet the short
vector problem

acm)) In-Cooperation

Vv sighpc



Table 1: Optimization methods of the previous works
~ VHCCI FGCS 2021
Splice rows IV l one I It uses splicing to avoid the short vector
Use FMA | x problem, but introduces many reduction |
Avoid branches X i I VHCC  additions. It needs conditional branches to I CGO 2015
- I—I store the results to the output vector
Use scatter instr. p X N I i |
Original matrix SIMD lanes SIMD lanes
0123 0123
€ Vb Vi ICS 2015
TE
<] CGO 2018
d e
f
ICPP 2021
k
SIMD lanes Conditional for each vector do
012 3 b h Vector load values and do vector multiplication;
A A ranches to test — if meet the last element of certain row(s) then
whether some Calculate segment sum with masks; €
> while meet the last element of certain row(s) do
vector lanes meet Access value of corresponding vector lane; Reduction
the last element of dUpdate result with scalar instructions; additions
one row after each o
L. . else
VHCC mu It'pl Ication | Reduce the whole vector and store at lane 0; €=
end
CZ' Figure 2: A sparse matrix example and the corresponding onal Conference on Parallel Proc¢ | end -Cooperation
PR ust 9-12, 2021 in Virtual Chicago, Algorithm 4: VHCC kernel

| data layouts for the previous works and Regu2D

sighpc



Table 1: Optimization methods of the previous works

2D-partition

Splice rows
Use FMA
Avoid branches

Use scatter instr.

] CSR5 '

Original matrix

6

7|8 |9

d e
f

NELIEE

/| Figure 2: A sparse matrix example and the corresponding

PR} data layouts for the previous works and Regu2D

Arrange elements
vertically

CSR5

1

FGCS 2021

CGO 2015

It puts elements vertically to partly avoid |
reduction additions, and cuts one row into

several parts and needs additional I ICS 2015
operation to reduce. It also needs |

conditional branches to store the results

CGO 2018

ICPP 2021

Too complicated to show the
pseudo code of CSR5

onal Conference on Parallel Processing (ICPP)
ust 9-12, 2021 in Virtual Chicago, IL

N\
acC m) In-Cooperation

Vv sighpc



PR

Table 1: Optimization methods of the previous works

] CVR |
ED—Ipartltmn X i
Splice rows v
Use FMA I v
Avoid bram:lhes X 1
Use scatter instr. | x .

Original matrix SIMD lanes SIMD lanes

0123 0123

6 Vb v

7(8 .9 .
d e
f

Figure 2: A sparse matrix example and the corresponding
| data layouts for the previous works and Regu2D

Avoid to cut one row

into several parts

(put all elements of

FGCS 2021

CGO 2015

ICS 2015

onerowinthesame [ =Vm= = = = == === =
It avoids reduction additions completely, |

column)

conditiona

but also needs conditional branches to

store the results

| CGO 2018

ICPP 2021

for each vector do

branches

end
end

Vector load values and do vector multiplication; €———

> while meet the last element of certain row(s) do
Access value of corresponding vector lane;

Update result with scalar instructions;
Clear corresponding vector lane to zero;

Use FMA
(fused
multiply-add)
to avoid
reduction

additions
|

Algorithm 3: CVR kernel

onal Conference on Parallel Processing (ICPP)

ust 9-12, 2021 in Virtual Chicago, IL

F -
acm)) In-Cooperation

Vv sighpc



Table 1: Optimization methods of the previous works__

1 Regu2D|

NV
ot

(\\

2D-partition

q\

Splice rows

Use FMA v
Avoid branches | v 0
Use scatter instr. I v |
Original matrix SIMD lanes SIMD lanes
0123 0123
6 I v Lo
7 8.9 .
d e
f

Iﬂﬂi
B
)
=
’l

/| Figure 2: A sparse matrix example and the corresponding

PR

| data layouts for the previous works and Regu2D

Arrange elements

regularly

onal Conference on P«
ust 9-12, 2021 in VirtL

FGCS 2021
CGO 2015
ICS 2015
CGO 2018
] | —_— | —_— | —_— | —_— | —_— | I
It avoids conditional branches, and uses
7 i Eoncitionl bennches, a 1 ICPP 2021
I Regu2D gather/scatter to update the results
] | ] | ] | ] | ] | ] | ] | I
for each group do
fen = group length;
sum = 0
fori =0 tolen do
Load matrix value a and column indices;
Indexed load input vector b; Use
i axb; gather/scatter
en
Load row indices (if no compression); tou pd ate th e
Scatter sum to the output vector; <€ resu ItS
end
for other rows do
. ) N\
ElndDu it as ALBUS does; ac m) In-Coopatation
AV 4

sighpc

Algorithm 7: Computations of ReguzD



Row 1 from matrix A

_ data:/| 3.1 142 /32— 3142 3.
Previous Work Analyses|  eolidx 25t ——»{am217s

Input Vector
092118 34|33 0.7
Output Vector

9.1 [16.2 ]4? 16.2

* The computation of SpMV can be divided into three stages: (2
* The multiplication stage
* The addition or reduction stage of each row
* The storing/updating stage

* Different element layouts decide the specific reduction and update
methods. An ideal approach should concern

* (1) To decrease the number of addition operations during reduction, and
avoid using conditional branch instructions whenever possible;

* (2) To avoid accessing lane(s) of a vector separately;
~nerw * (3) To use vector gather/scatter instr. in the updating stage whenever possjkle.

C/Og:gﬁfll_vél_ ; ; Pavon, Julian, et al. "VIA: A Smart Scratchpad for Vector Units with Application to Sparse Matrix Computations." 2021 acm) in-Cooperation

PROCESSING | IEEE International Symposium on High-Performance Computer Architecture (HPCA). IEEE, 2021. S‘I'ghpc




Table 1: Optimization methods of the previous ;wgrlis —,

: ALBUS VHCC CSR5 CVR, Regu2D,
Previous Work Analyses PD-partition _x 7 x  x ;7
Splice rows X v v v ooV |

Use FMA v X v v I

Avoid branches X X x |V I

Use scatter instr. x X v X | v/ [

* The computation of SpMV can be divided into three stages:
* The multiplication stage
* The addition or reduction stage of each row
* The storing/updating stage

* Different element layouts decide the specific reduction and update
methods. An ideal approach should concern

* (1) To decrease the number of addition operations during reduction, and
avoid using conditional branch instructions whenever possible;

* (2) To avoid accessing lane(s) of a vector separately;
wner * (3) To use vector gather/scatter instr. in the updating stage whenever possikle.

CONFERENC 50th International Conference on Parallel Processing (ICPP) acm) In-Cooperation
[ PARALLEL | |

PROCESSING ] August 9-12, 2021 in Virtual Chicago, IL AV 4 Slghpc




Outline

* Introduction
* Previous Work Analyses

* Solutions and Implementation
* 1 Regular Arrangement
e 2 Adaptive 2D-partitioning
* 3 Indices Compression
* 4 Load Balancing

* Experiment
* Preprocessing

* Conclusions

| INTERNATIONAL /

/ CONFERENCE ON 50th International Conference on Parallel Processing (ICPP) acm) In-Cooperation

| PARALLEL o .
August 9-12, 2021 in Virtual Chicago, IL A4 SIghpC

PROCESSING |




Irregular Short vector Inefficiency of Large storage space
access problem reduction and updating al;d memory 10

- i i e |
Solutions and Implementation _1.---_- T

Figure 4: Four challenges and three solutions we adopt. The
solid line and the dashed line respectively indicate that
the solution has alleviated or aggravated the corresponding
problem.

 Regu2D = Regular Arrangement + Adaptive 2D-partitioning

e Use 2D-partitioning to alleviate Irregular access

* but it cuts each row into several parts, and aggravates the short vector problem
and need to store the row indices several times (large storage space)

e Use splicing to alleviate the short vector problem
* Use regular arrangement to solve the Inefficiency of reduction and updating

* Use indices compression to decrease the storage space and the amount
of memory 10

| INTERNATIONAL I\
C/Og:gﬁfﬁlgf ON 50th International Conference on Parallel Processing (ICPP) acm) In-Cooperation
PROCESSING August 9-12, 2021 in Virtual Chicago, IL AV 4 SllghpC




1 Regular Arrangement

* Select N rows that have the same number of elements to be a group
and then make the i th element of row j (0 <j < N ) occupy lane j of
vector i (arrange non-zero elements vertically). Thus each row needs
the same number of FMA (fused multiply-add) in the reduction stage

Original matrix

<€ group

< group

| INTERNATIONAL N\
C/Og:gﬁfll_vgf ON 50th International Conference on Parallel Processing (ICPP) acm) In-Cooperation
PROCESSING | August 9-12, 2021 in Virtual Chicago, IL AV 4 Slghpc




1 Regular Arrangement

* The regular arrangement is required to find as many groups as
possible to cover the maximum number of rows and elements. We
use a dynamic programming algorithm to find them.

* To increase the flexibility of regular arrangement, we set a threshold T1 and
limit the maximum difference of the number of elements in N rows to T1.

* Not all the rows are involved by regular arrangement
* Key difference with SELL-C-o

maximum difference <=T1

| INTERNATIONAL /

CONFERENCE ON 50th International Conference on Parallel Processing (ICPP)
| PARALLEL

SIMD lanes

1 2 3

m(o|h <O

Len=1

:Len:E

PROCESSING / August 9-12, 2021 in Virtual Chicago, IL

Others

HEEUED

N\
acC m) In-Cooperation

Vv sighpc



1 Regular Arrangement

* Let f[i] be the maximum number of groups between the first
i rows, g[i] be the minimum number of elements (including
padding zeros) between the first i rows.

* There are two choices for each row i (i.e. f[i]): combine row i
with the last N-1 rows to be a group or not.

Len=1

 Len=3

i) {f[! — N|+1, if combining increases f|i] or decreases g|i|
il =

fli—1], otherwise, not to combine

f
* For those rows that are not to be combined, we compute ) Others
them row by row as ALBUS does.
- Regu2D
| INTERNATIONAL N\
/ C/nggﬁfll_vgf ON / 50th International Conference on Parallel Processing (ICPP) acm) In-Cooperation
PROCESSING / August 9-12, 2021 in Virtual Chicago, IL N Slghpc




2 Adaptive 2D-partitioning

10° 10°

* Fixed size is not the best choices for every matrices,
Because of various distributions of elements within
different regions -
e The small sizes (i.e. P * Q) make some chunks contain too few | .. Sl g
elements to improve the data access locality . w0 L f
* The large sizes represent the large range of irregular data b= ]l _ il
accesses for other chunks and results in poor data locality as N ) Sitrcenrr
well Figure 1: The distribution of elements of two typical sparse

matrices. (Left: irregular or scale-free matrix from the so-

* jrreqular matrices or scale-free matrices: The number |cial network field; right: regular matrix from the engineer
and the position distribution of elements in each row scentificfeld
vary greatly, and a small number of rows contain a great
number of elements (power-law distribution). They are
more challenging in terms of the computation regularity
and load balancing in a multi-threaded environment

| INTERNATIONAL N\
/ C/Oﬁfﬁﬁfﬁ’gf ON acm)) In-Cooperation
PROCESSING __| fadd S‘IghpC




2 Adaptive 2D-partitioning

* Solutions: after 2D-partitioning with fixed size P * Q, we merge adjacent
chunks horizontally to form a larger chunk. Two rules need to obey:

* Only the chunks that hold too few elements (less than threshold T2) need to be
merged.

 We don’t merge two chunks that distribute too far
* Maintain the maximum range of the input vector indices requested by compression rule (next slice)

* Example: T2 = 20 and the maximum span of each block does not exceed four
chunks.
* Because of the first rule, block 3 cannot contain the next chunk
* Block 1 cannot contain the fifth chunk limited by the second rule

71215131112 25] 2 13 4
—— S —— <
Block 1 Block 2 Block 3 Block 4 Block 5
| INTERNATIONAL / I\
CONFERENCE ON . . . acm)) In-Cooperation
RALLEL . . o
/ , '4 OPéqESSING / Figure 5: An example of adaptive 2D-partitioning. N/ Slghp C




3 Indices Compression

e Decrease the storage of row indices

e Renumber the row and column indices starting at 0 within a chunk
and compress these two indices into an int type (32 bits).

* The sizes of chunks P *Q need to ensure [logP]*[logQ] < 32.

* This is the compression rule that constrains the merging strategy during 2D-
partitioning

| INTERNATIONAL N\
/ C/Oﬁfﬁﬁfﬁ’gf ON acm)) In-Cooperation
PROCESSING __| SIg




100

80
60 M

4 Load Balancing

40

* The previous four works (ALBUS, CSR5, VHCC, and 20
CVR) allocate all the elements evenly to each thread o e e of ficks # of scaiter Tnsiru. of Fickr

Mormalized (%)

* Because of the random distribution of sparse matrices, | Figure 6: statistics of execution time and # of scatter instruc-

tions of matrix flickr with 28 threads.
an equal number of elements does not guarantee the L
equal number of corresponding rows, that is, the number of updating operations
varies widely

e Particularly evident in the scale-free matrices

 Example: different threads have a different number of scatter instructions, resulting
in different execution times, and the trends of them are basically the same

* Solutions: the number of elements and the number of corresponding rows both need
to be considered during load balancing. We count the number of rows of the output
vector for each thread and use it as a weight to readjust computation loads of each
thread based on experience

| INTERNATIONAL N\
/ C/Oﬁfﬁﬁfﬁ’gf ON acm)) In-Cooperation
PROCESSING __| fadd S‘IghpC




Outline

* Introduction
* Previous Work Analyses

* Solutions and Implementation
* 1 Regular Arrangement
e 2 Adaptive 2D-partitioning
* 3 Indices Compression
* 4 Load Balancing

* Experiment
* Preprocessing

* Conclusions

| INTERNATIONAL A\
C/Og:gﬁfl’_vgf ON 50th International Conference on Parallel Processing (ICPP) acm) In-Cooperation
PROCESSING August 9-12, 2021 in Virtual Chicago, IL AV 4 Slghpc




Table 2: Hardware & software configurations

Scenario D matrix name rOWS columns NONZEros
. 1 ASIC_680k 682,862 682,862 3,871,773
E CPU Intel(R) Xeon(R) Gold 6132, 2.60GHz, 2CPU*14cores 2 cant 62451 62451 4,007,383
X p e rl I I I e n 3°  consph 83,334 83,334 6,010,480
Memory  92GB, DDR4, 2666 MT/s ; Srank:ig_:e bjzzg bjzzi 1;;;32
ENse 8 i ' 1
Caches L1D=32KB, L1I=32KB, L2=1MB, L3=19.25MB 6 FullChip 2087012 2,087,012 26,621,090
: : - Engineer 7°  Ga4lAs41H72Z 268,096 268,096 18,488,476
Cumpller icc 19.0.5.281 ( -O3 -fopenmp -xCORE-AVX512 ) scifnliﬁc 8* inline 1 503,712 503712 36,816,342
0S Red Hat 4.8.5-36 (regular  9°  ldoor 952,203 952,203 46,522,475
matrix) 10 mac_econ_fwd500 206,500 206,500 1,273,389
115 mipl 66,463 66,463 10,352,819
12*  mouse_gene 45,101 45,101 28,967,291
. H 13* pdblHYS 36,417 36,417 4,344,765
* Platform: Intel Xeon processors (Skylake architecture)
15 rmald 46,835 46,835 2,374,001
. . . 16° Si4lGed1H72 185,639 185,639 15,011,265
W I t h AVX— 5 1 2 S I M D I n St r u Ct I O n S 17 12monthl 12,471 872,622 22,624,727
18 amazon0312 400,727 400,727 3,200,440
19 amazon-2008 735,323 735,323 5,158 388
° . | | d I f d 20 cnr-2000 325,557 325,557 3,216,152
Datasets: 30 real-world scale-free and 16 HPC T com Yoo L4 LB 5975288
- 22 eu-2005 862,664 862,664 19,235,140
. . . raph® 23*  hollywood-2009 1,139,905  1,139.905 113,891,327
(regular) sparse matrices from the University of S
25 in-2004 1382008 1,382,908 16,917,053
. . . 26  NotreDame_actors 392,400 127,823 1,470,404
F I O r'l d a S p a r‘s e M at r‘ I X CO | | e Ct I O n 27 uk-2002 18,520,486 18520486 298 113,762
28 web-Google 916,428 916,428 5,105,039
29 web-Stanford 281,903 281,903 2,312,497
o C . . R 2 D VS A L B U S CV R CS R5 d —— 30 witi—Talk 2394385 2,394,385 5,021,410
31 wiki-topeats 1,791,489 1,791,489 28,511,807
O m p a rI S O n ° eg u ) ) ) a n 32* citationCiteseer 268,495 268,495 2,313,294
Citation® 33 comDBLP 317,080 317,080 2,099,732
S E L L_ C_ 0 34" coPapersCiteseer 434,102 434,102 32,073,440
35 patents 3,774,768 3,774,768 14,970,767
36 railazsa 4284 1,096,894 11,284,032
Road™ 37"  road_usa 23,947,347 23,947,347 57,708,624
38 roadNet-CA 1,971,281 1,971,281 5,533 214
Routing™ 39"  as-Skitter 1,696,415 1,696,413 22,190,596
40*  com-Orkut 3,072,441 3,072,441 234,370,166
41 flickr 820,878 820,878 9,837,214
Social 42 higgs-twitter _ 456,626 456,626 14,855,842
network®* 43 soc-LiveJournall 4,847,571 4,847,571 68,993,773
44 soc-Pokec 1,632,803 1,632,803 30,622,564
45 s0C-SIgn-epinions 131,828 131,828 841,372
46 twitter-2010 41,652,230 41,652,230  1,468,365,182
/ INTERNATIONAL * Symmetric matrix; ** Scale-free matrix
CONFERENCE ON 50th International Conference on Parallel Processing (ICPP) Figure 7: The benchmark suite.

| PARALLEL
PROCESSING |

August 9-12, 2021 in Virtual Chicago, IL A" 4 SIghpC




T Tl T
I This work HEEN ALBUS BBm CVR BB CSR5 X SELL-C-sigma

Experiment

Normalized of exec. time (28 threads)

Speedup Max(scale | Avg(scale- Max(HPC) | Avg(HPC)
of -free) free)

8 9
Matrix ID

Regu2D
compared
with

ALBUS  15.23 1.69 12.40 1.34
CVR : 2.93 1.93 : 2.85 1.89
CSR5 12.19 1.40 12.17 1.34
SELL-C-c 1 1.82 1.20 1 3.05 1.50 | |

Normalized of exec. time (28 threads)

Normalized of exec. time (28 threads)

0

/ INTERNA TIONAL 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
CONFERENCE ON . -
/ PARALLEL 50th International Confj Figure 9: The performance of SpMV. The number on the bar chart is the GFLOPS G of Regu2D calculated by G = 2+nnz/t where
PROCESSING / August 9-12, nnz is # of elements and 1 is the execution time.

lel IIJ\-



Experiment

» Effects of different optimizations on performance
. Set ALBUS as a baseline
. 2D-partitioning degrades 15% of the performance

on average because of serious short vector problem.

So simply adopting 2D-partitioning does not
accelerate vectorization of SpMV

. Regular arrangement improves 37% on average
because it avoids the short vector problem and
makes the computation more regular

* Decrease the number of branch instructions (Figure 10) and
the branch miss rate (Figure 11)

* The number of store operations is lower than that of ALBUS
and CVR because we use both scalar store and vector
scatter instructions (Figure 12)

-
(=]
=]

1]
(=]

[=3]
[=]

40

M
(=]

# of branches % (Normalized)

(=]

| INTERNATIONAL
/ CONFERENCE ON
| PARALLEL
PROCESSING |

Figure 12: # of store instructions of different works.

|
E ALBUS (baseline)
N 20
[l :0+R
I ZD+R+M
= 2D+R+M+LE
B 2D+R+M+LB+C

Mormalized exec. time (28 threads)

0 FullChip patents roadMet-CA as-Skitter com-DBLP flickr citationCiteseer
Matrix name

Figure 8: Performance profiling. 2D=2D-partitioning;
R=regular arrangement; M=merging of adaptive 2D-
partitioning; LB=load balancing; C=indices compression.

T 100
N

80

60

40

20

# of branches % (Normali

& 18 24 26 28 32 33 34 35 38 39

Matrix ID
Figure 10: # of branches of different works. One loop is
counted as one branch regardless of the number of itera-

tions.
5 12.6 5.3 7.4 7.8

2

I This work
I ALBUS
I CVR
I CSR5

=3

w

WVector scatter

Branch miss rate %
[\8]

-

[=]

1 6 18 24 26 28 32 33 34 35 38 39
1 6 18 24 26 28 32 33 34 35 38 39 Matrix 1D
50 Matrix ID

Figure 11: Branch miss rates of different works.
Y IjIe



|
E ALBUS (baseline)
N 20
[l :0+R
I ZD+R+M
= 2D+R+M+LE
B 2D+R+M+LB+C

Experiment

Effects of different optimizations on performance
Set ALBUS as a baseline

2D_pa rt|t|on|ng degrades 15% Of the performance on average 0 FullChip  patents roadNet-CA asa-tsrﬁtﬁggéom-DBLP flickr citationCiteseer
because of serious short vector problem. So simply adopting
2D-partitioning does not accelerate vectorization of SpMV

Mormalized exec. time (28 threads)

Figure 8: Performance profiling. 2D=2D-partitioning;
R=regular arrangement; M=merging of adaptive 2D-
Regular arrangement improves 37% on average because it partitioning; LB~load balancing; C-indices compression.
avoids the short vector problem and makes the computation

more regular

Adaptive chunk merging improves 5% on average, due to the
improved data locality of chunks that contain a small number of
elements

Load balancing is used for the matrices with very irregular
element distribution, especially for scale-free matrices and
brings 9% acceleration

. Indices compression brings 13% speedup on average because it
decreases the amount of memory 10

* All the optimizations improve 49% overall in seven
INTE representative matrices

C/Og:gﬁiLEL o 50th International Conference on Parallel Processing (ICPP) acm) In-Cooperation

PROCESSING ] August 9-12, 2021 in Virtual Chicago, IL A4 SlghpC




U
(=

=~ -

= un
o
...

Preprocessing

B This work
I ALBUS
B CVR
I CSRS

5 14 20 25 30 35 38 39 41 42
Matrix |D

MNormalized exec, time
o
n

o
o

1

Figure 15: performance of preprocessing of different works.

* The original format is the Matrix Market format (column-major COO)

* Regu2D write back the data of the entire matrix twice after 2D-
partitioning & regular arrangement
* on average 1.56 times and 1.51 times longer than that of ALBUS and CSR5

* SpMV will iterate hundreds or thousands of times, so the larger preprocessing
overhead will be amortized

| INTERNATIONAL /

/ CONFERENCE ON 50th International Conference on Parallel Processing (ICPP) acm) In-Cooperation

| PARALLEL o . P
August 9-12, 2021 in Virtual Chicago, IL A4 SIghpC

PROCESSING |




Outline

* Introduction
* Previous Work Analyses

* Solutions and Implementation
* 1 Regular Arrangement
e 2 Adaptive 2D-partitioning
* 3 Indices Compression
* 4 Load Balancing

* Experiment
* Preprocessing

* Conclusions

| INTERNATIONAL A\
C/Og:gﬁfll_vgf ON 50th International Conference on Parallel Processing (ICPP) acm) In-Cooperation
PROCESSING August 9-12, 2021 in Virtual Chicago, IL AV 4 S‘IghpC




Conclusions

* Analyze three issues of accelerating SpMV
* |rregular data access, the short vector problem, and the memory bandwidth

* Propose regu2D and use four methods to solve them
* Use adaptive 2D-partitioning to increase
* The data locality, the range of regular arrangement, the vectorization intensity

e Use regular arrangement to regularize and simplify the computation process
* Dynamic programming algorithm is proposed to find the optimal regular arrangement

* Use indices compression to decrease the amount of memory IO

* Improve load balancing by consider the number of elements and the number
of corresponding rows both

* Compared with four works (ALBUS, CVR, CSR5, and SELL-C-o) and
achieve almost the best performance

| INTERNATIONAL N\
/ CONFERENCE ON acm)) In-Cooperation

| PARALLEL ;
PROCESSING | k. 2 Slg




