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Multi-GPU Interconnected & Platforms

PCI-e SLI Bridge NVSwitchNVLink V1&V2

IB-GPUDirect-

RDMA
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Why Parallelizing SpTRSV Is Not Trivial

Sparse Triangle Solver: Lx = b or Ux = b
• Compute a dense solution vector x from the sparse linear system, where L(U) is a 

square lower(upper) triangular sparse matrix, and b is a dense right-hand side.

• SpTrsv is inherently sequential. In this case, Component 2 has to wait for 

Component 1 to finish, and Component 3 has to wait for Component 0, 

meaning that the all four cores cannot work in parallel.

Solution:
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The SOTA SpTrsv on GPUs

➢ The analysis costs significant overhead

➢ Require synchronization across levels

• cuSparse lib: csrsv2()
• Basic idea: some components 

are independent and can be 

processed simultaneously.

• A Synchronization-Free SpTrsv
• Basic idea: Migrating the level-sets analysis 

at runtime

• Components are scheduled by the 

hardware warp-switch of the GPU

• Update the intermediate value (in_degree

and left_sum) using GPU atomic operations

Data communication and atomic update cost 

too much overhead on multi-GPUs!  
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Zero-Copy SpTrsv for Multi-GPUs

• Efficiency and asynchronously data 

communication using NVSHMEM

• Task-based workload balance 

approaches to ensures that the 

parallel components are scheduled 

on different GPUs
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Agenda

• Motivation and Introduction
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▪ Read-Only Inter-GPU Communication with NVSHMEM

▪ Fine Turning Workload Dependency 

• Evaluation and Results

• Conclusion
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SpTrsv with Unified Memory

• Convenient
▪ Hide complexity from users

• Page fault mechanism
▪ Coarse-grained data copy

• Data contentions 
▪ System-wide atomic update 

will access the data 

simultaneously

• Workload unbalance
▪ Dependency are unidirectional

Require Low Overhead Fine-

Grained Communications!!
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GPU CUDA NVSHMEM

• OpenSHMEM-based PGAS programming interface for multi-GPUs

• GPU-side interface allows GPU threads to
1. Access distributed memory via data movement API

2. Direct load/store (LD/ST) where GPUs are P2P-accessible

3. Highly-concurrent fine-grained messaging

4. Asynchronously one-side data communication 

Peer Direct LD/ST and Global Remote Access



9

Using NVSHMEM for Resolving Dependency

• For SpTrsv, we convert the system-wide atomic update from unified memory to 
NVSHMEM shared memory space
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Workload Balance among GPUs

• Task Based Workload Distribution 
▪ More tasks per GPU: workload becomes 

more balanced among GPUs

▪ Less task per GPU: can exploit in-task data 
locality for better performance

Three Approaches

• Balance components

• Balance nnz

• Component RR 
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Evaluation

• V100-DGX-1

• Hybrid cube-mesh interconnection network 
topology

• Up to 4 GPUs of DGX-1 due to P2P requirement 
of NVSHMEM

• 25 GB/s bandwidth per NVLink in each direction 

• V100-DGX-2

• All-to-all connected through NVSwitch

• Up to 16 GPUs of DGX-2

• 100 GB/s bandwidth per GPUs

• Benchmark Matrices

• 14 sparse matrices from SuiteSparse

• 2 out of memory matrices

• the intermediate arrays consume 10% of total 
memory requirement

V100-DGX-1

V100-DGX-2
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SpTrsv Results (Unified Mem VS NVSHMEM)
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SpTrsv Results (Scalability)

V100-DGX-1 V100-DGX-2

• Results are normalized to csrsv2() from cuSparse lib on single GPU

• Scalability depends on both matrices’ parallelism and hardware structure  
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Conclusion

• Through performance characterization, we identify that applying the state-of-
the-art Unified Memory for data sharing among GPUs may cause severe 
performance penalty.

• We leverage the new NVSHMEM technology to design an efficient and 
scalable algorithm for the SpTrsv kernel executing on a multi-GPU system 
setup. It has profound design implication for a spectrum of applications that 
have inherent irregular memory accesses and strong innertask dependencies.

• For better workload balancing, a task-based workload distribution scheme is 
further introduced.

• We demonstrate the performance benefit and scalability of our proposed 
SpTrsv design on a range of inputs that require out-of-core execution.



Thank you
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Q&A
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Page Thrashing of Unified Memory
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System-wide atomic updates incurs data contentions and page faults, 

that significantly slow down SpTrsv even with more computing resource
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Major Sparse Matrix Primitives

(Source: Berkeley Dwarfs Report)

• Many scientific simulation, 

machine learning, and graph 

analytics apps can be attributed 

as sparse BLAS problems in the 

end

• Among all sparse linear algebra 

kernels, Sparse Triangular 

Solver (SpTrsv), which solves 

sparse triangular linear system, 

play fundamental roles

• However, due to the inherently 

sequential feature, parallelizing 

SpTrsv is not trivial, specially for 

multi-GPU based HPC systems
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SpTrsv Results (Sensitive Over Task_size)
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More tasks per GPU leads to finer-grained communication and better workload 

balance, but at the same time, suffer from higher scheduling overhead to issue tasks


