
Fast and Scalable Sparse
Triangular Solver

For Multi-GPU Based
HPC Architectures

Chenhao Xie1, Jieyang Chen2, Jesun S Firoz1,

Jiajia Li1,3, Shuaiwen Leon Song4,

Kevin Barker1, Mark Raugas1, Ang Li1

1Pacific Northwest National Laboratory
2Oak Ridge National Laboratory

3William & Mary
4University of Sydney

2

Multi-GPU Interconnected & Platforms

PCI-e SLI Bridge NVSwitchNVLink V1&V2

IB-GPUDirect-

RDMA

3

Why Parallelizing SpTRSV Is Not Trivial

Sparse Triangle Solver: Lx = b or Ux = b
• Compute a dense solution vector x from the sparse linear system, where L(U) is a

square lower(upper) triangular sparse matrix, and b is a dense right-hand side.

• SpTrsv is inherently sequential. In this case, Component 2 has to wait for

Component 1 to finish, and Component 3 has to wait for Component 0,

meaning that the all four cores cannot work in parallel.

Solution:

01

0

1 0

0

00

0

000

0

0

0

2

3 1

1
X =

Known b

0

0

0

d

a

b

c

Input matrix L (4x4)

0

0

0

x3

x0

x1

x2

Unknown x

1

x0 = a / 1

x1 = (b – x0) / 1

x3 = (d – 3*x0) / 1

x2 = (c – 2*x1) / 1

Thread 0

Thread 1

Thread 3

Thread 2

T 0

T 1

T 2

T 3

4

The SOTA SpTrsv on GPUs

➢ The analysis costs significant overhead

➢ Require synchronization across levels

• cuSparse lib: csrsv2()
• Basic idea: some components

are independent and can be

processed simultaneously.

• A Synchronization-Free SpTrsv
• Basic idea: Migrating the level-sets analysis

at runtime

• Components are scheduled by the

hardware warp-switch of the GPU

• Update the intermediate value (in_degree

and left_sum) using GPU atomic operations

Data communication and atomic update cost

too much overhead on multi-GPUs!

5

Zero-Copy SpTrsv for Multi-GPUs

• Efficiency and asynchronously data

communication using NVSHMEM

• Task-based workload balance

approaches to ensures that the

parallel components are scheduled

on different GPUs

6

Agenda

• Motivation and Introduction

• Fast and Scalable Sparse Triangular Solver For Multi-GPU Based HPC
Architectures

▪ Limitation of Unified Memory Solution of SpTrsv

▪ Read-Only Inter-GPU Communication with NVSHMEM

▪ Fine Turning Workload Dependency

• Evaluation and Results

• Conclusion

7

SpTrsv with Unified Memory

• Convenient
▪ Hide complexity from users

• Page fault mechanism
▪ Coarse-grained data copy

• Data contentions
▪ System-wide atomic update

will access the data

simultaneously

• Workload unbalance
▪ Dependency are unidirectional

Require Low Overhead Fine-

Grained Communications!!

8

GPU CUDA NVSHMEM

• OpenSHMEM-based PGAS programming interface for multi-GPUs

• GPU-side interface allows GPU threads to
1. Access distributed memory via data movement API

2. Direct load/store (LD/ST) where GPUs are P2P-accessible

3. Highly-concurrent fine-grained messaging

4. Asynchronously one-side data communication

Peer Direct LD/ST and Global Remote Access

9

Using NVSHMEM for Resolving Dependency

• For SpTrsv, we convert the system-wide atomic update from unified memory to
NVSHMEM shared memory space

10

Workload Balance among GPUs

• Task Based Workload Distribution
▪ More tasks per GPU: workload becomes

more balanced among GPUs

▪ Less task per GPU: can exploit in-task data
locality for better performance

Three Approaches

• Balance components

• Balance nnz

• Component RR

11

Agenda

• Motivation and Introduction

• Fast and Scalable Sparse Triangular Solver For Multi-GPU Based HPC
Architectures

▪ Limitation of Unified Memory Solution of SpTrsv

▪ Read-Only Inter-GPU Communication with NVSHMEM

▪ Fine Turning Workload Dependency

• Evaluation and Results

• Conclusion

12

Evaluation

• V100-DGX-1

• Hybrid cube-mesh interconnection network
topology

• Up to 4 GPUs of DGX-1 due to P2P requirement
of NVSHMEM

• 25 GB/s bandwidth per NVLink in each direction

• V100-DGX-2

• All-to-all connected through NVSwitch

• Up to 16 GPUs of DGX-2

• 100 GB/s bandwidth per GPUs

• Benchmark Matrices

• 14 sparse matrices from SuiteSparse

• 2 out of memory matrices

• the intermediate arrays consume 10% of total
memory requirement

V100-DGX-1

V100-DGX-2

13

SpTrsv Results (Unified Mem VS NVSHMEM)

0

2

4

6

8

Sp
e

e
d

u
p

4GPU-Unified 4GPU-Unified+8Task 4GPU-Shmem 4GPU-Zerocopy

1
0
.8

8
,9
3

9
.1
8

5
.6

8
.9
3

9
.1
8

1
0
.8

0

2

4

6

8

Sp
e

e
d

u
p

DGX-1-Unified DGX-2-Unified DGX-1-Zerocopy DGX-2-Zercopy

8
.9

3
1

0
.6

1
0

.8
8

.6
5

14

SpTrsv Results (Scalability)

V100-DGX-1 V100-DGX-2

• Results are normalized to csrsv2() from cuSparse lib on single GPU

• Scalability depends on both matrices’ parallelism and hardware structure

15

Conclusion

• Through performance characterization, we identify that applying the state-of-
the-art Unified Memory for data sharing among GPUs may cause severe
performance penalty.

• We leverage the new NVSHMEM technology to design an efficient and
scalable algorithm for the SpTrsv kernel executing on a multi-GPU system
setup. It has profound design implication for a spectrum of applications that
have inherent irregular memory accesses and strong innertask dependencies.

• For better workload balancing, a task-based workload distribution scheme is
further introduced.

• We demonstrate the performance benefit and scalability of our proposed
SpTrsv design on a range of inputs that require out-of-core execution.

Thank you

16

Q&A

17

Page Thrashing of Unified Memory

0

0.5

1

1.5

2

2.5

Sp
e

e
d

u
p

2 GPUs 4 GPUs 8 GPUs

0

0.5

1

1.5

2

2.5

3

3.5

N
o

rm
al

iz
e

d
 P

ag
e

 F
au

lt
 C

o
u

n
t

2 GPUs 4 GPUs 8 GPUs
11.71

System-wide atomic updates incurs data contentions and page faults,

that significantly slow down SpTrsv even with more computing resource

18

Major Sparse Matrix Primitives

(Source: Berkeley Dwarfs Report)

• Many scientific simulation,

machine learning, and graph

analytics apps can be attributed

as sparse BLAS problems in the

end

• Among all sparse linear algebra

kernels, Sparse Triangular

Solver (SpTrsv), which solves

sparse triangular linear system,

play fundamental roles

• However, due to the inherently

sequential feature, parallelizing

SpTrsv is not trivial, specially for

multi-GPU based HPC systems

19

SpTrsv Results (Sensitive Over Task_size)

0

0.5

1

1.5

2

N
o

rm
al

iz
e

d
 P

e
rf

o
rm

an
ce 4 tasks/GPU 8 tasks/GPU 16 tasks/GPU 32 tasks/GPU

More tasks per GPU leads to finer-grained communication and better workload

balance, but at the same time, suffer from higher scheduling overhead to issue tasks

