G MICHIGAN STATE UNIVERSITY

An Evaluation of Task-Parallel Frameworks for
Sparse Solvers on Multicore and Manycore
CPU Architectures

Abdullah Alperen’, Md Afibuzzaman®, Fazlay Rabbi®, M. Yusuf Ozkaya¥,
Umit V Catalyiirek*, Hasan M. Aktulga®

TComputer Science & Engineering, Michigan State University
*School of Computational Science & Engineering, Georgia Institute of Technology

® G

ICPP ’21, August 9-12, 2021, Lemont, IL, USA

G MICHIGAN STATE UNIVERSITY

Introduction

= Sparse matrix computations comprise the core component of
a broad base of scientific applications.

= They become challenging in the presence of large-scale data
due to the memory-bound nature of the computations.

= These challenges are not well addressed by bulk synchronous
parallel (BSP) approaches where poor cache performance and
high synchronization costs become the limiting factors.

= This validates the emergence and increased use of
asynchronous many-task (AMT) programming models.

G MICHIGAN STATE UNIVERSITY

Introduction

= OpenMP’s task parallelism has been used since 2013 allowing
extracting parallelism via asynchronous execution of fine-
grained tasks [1].

= HPX [2] is an advanced runtime system and a programming
API that conforms to the C++ standards while supporting
lightweight task scheduling to expose parallelism.

= Regent [3], a programming language and compiler designed
for HPC. Regent runtime system discovers implicit dataflow
parallelism in the code.

G MICHIGAN STATE UNIVERSITY

Introduction

= Recently, using the AMT model in OpenMP has been shown to
offer important advantages over its BSP model within the
DeepSparse framework.

= DeepSparse [4] automatically generates and expresses the
entire computation as a task dependency graph (TDG) and
relies on OpenMP for the execution of this TDG.

= We aimed to discern how OpenMP, HPX and Regent compare

as well as what they offer over BSP models by providing
= 3 task-parallel implementation Lanczos and LOBPCG using the HPX and Regent
= an evaluation of AMT models on multicore and manycore architectures

G MICHIGAN STATE UNIVERSITY

Implementation

= |n all three frameworks (DeepSparse, HPX and Regent), tasks
are defined based on the decomposition of sparse matrices.

= \We adapt a 2D partitioning scheme using Compressed Sparse
Block (CSB) [5] representation of the sparse matrix, which also
dictates the decomposition of other data structures involved.

= Consider the following code snippet:

1 || SPMM(A, X, Y, m, n); // A*X =Y
2||cblas_dgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans,
| m, n, n, 1.0, Y, n, Z, n, @, Q, n); // Y*Z = Q
||cblas_dgemm(CblasRowMajor, CblasTrans, CblasNoTrans, n,
|| n, m, 1.0, Y, n, Q, n, @, P, n); // Y'xQ =P

G MICHIGAN STATE UNIVERSITY

b b b
b b
b N b

A Y X nl z = | Qq

n n
SpMM Kernel Linear Combination Kernel (XY)
cblas_dgemm call on block vector Partial result buffer reduction
n

y []

=
Q == —

+

]
n

Inner Product Kernel (XTY) 6

G MICHIGAN STATE UNIVERSITY

DeepSparse Overview
gSI\EIM(Hpsi, H, psi) 0000
dot(E, psi, psi)

0) 0
daxpy(Epsi, E, psi) \ D: Data E&)

daxpy(R, Hpsi,Epsi)
dot(W,Tinv, R)

5
5]

10
©

} while(lconverged) Corel pd Data

B
0000 ‘ @
\ odom]| Lolowl)
(bl
0000 -

O Out
L) \ e B
Primitive Conversion Unit (PCU) Task Executor 7

[4]

HPX Overview

HPX attains
asynchronous
parallelism through
asynchronous function
execution and future
instances.

A dataflow object
triggers a predefined
function when a set of
futures become ready

G MICHIGAN STATE UNIVERSITY

1||std::vector<hpx::shared_future<void>> Y(np);
2||std::vector<hpx::shared_future<void>> Q(np);
3 || std::vector<hpx::shared_future<void>> P_prtl_ftr(np);
4 || hpx::shared_future<void> P_rdcd_ftr;
5|/ // np (number of partitions) = ceil(m/blocksize)
6 || for(int i = @; i != np; ++i)
7| Y_ftr[i] = hpx::make_ready_future();
8 || // to unwrap futures passed to functions
9 || auto OpSpMM = hpx::util::unwrapping (&SpMM);
10 || auto OpDGEMV = hpx::util::unwrapping(&f_dgemm);
11 || auto OpDGEMV_T = hpx::util::unwrapping(&f_dgemm_t);
12 || auto OpRed = hpx::util::unwrapping(&reduce_buf);
1B||// Y =A*X
14 || for(i = @; i != np; ++i)
15 || for(int j = @; j != np; ++j)
16 || if(A[i * np + jl.nnz > 0)
17 || Y_ftr[i] = hpx::dataflow(hpx::launch::async
|| , OpSpMM, Y_ftr[il, A, X, Y, i, j);
18|77 Q=Y *2Z
19 || for(i = 0; i != np; ++i)
20 || Q_ftr[i] = hpx::dataflow(hpx::launch::async,
|| OpDGEMV, Y_ftr[i], Y, Z, Q, 1);
21 || 77 P =YY" % Q
22 || for(i = @; i != np; ++i)
23 || P_prtl_ftr[i] = dataflow(hpx::launch::async,
|| OpDGEMV_T, Y_ftr[i], Q_ftr[i], Y, Q, Pbuf, i);
24 || P_rdcd_ftr = dataflow(hpx::launch::async, OpRed,
|

P_prtl_ftr, Pbuf, P);

Regent Overview

= Regent exerts implicit dataflow
parallelism through two key
abstractions: tasks and regions

= Privileges describe how tasks
interact with regions(read, write...)

1 || fspace csb_entry{
2|| {rloc, cloc}: uint16, val: double,
5 [
4 || task SpMM(rA: region(ispace(intld), csb_entry),
5|| rX: region(ispace(intild), double),
6 || rY: region(ispace(intld), double),
7 || s: int, e: int)
8 || where reads(rA, rX), reads writes(rY) do
9 || == ... (SpMM implementation)

|| end
11 || == ... (other tasks)
12 || task main()
13 || == ... np (num partitions) = ceil(m/blksize)
14|| var sparse_matrix_is = ispace(intld, nnz)
15|| var vector_block_is = ispace(intld, m * n)

G MICHIGAN STATE UNIVERSITY

var Alr = region(sparse_matrix_is, csb_entry)
var Xlr = region(vector_block_is, double)

-- ... (other region defs, Alr & blkptrs init)
var part = ispace(intid, np)

var Xlp = partition(equal, Xlr, part)
== ... (Y and Q partitionings, etc.)
==Y = A x X
for i = @, np do
for j = @, np do
if blkptrs[ixnp+j] < blkptrs[i*np+j+1] then
SpMM(Alr, X1p[jl, Ylp[i], blkptrs[ixnp+
j1, blkptrs[i*np+j+1])
end
end
end
- Q=Y x Z
__demand(__index_launch)
for i = @, np do
f_dgemm(Y1lp[i], Zlr, Qlp[il, m, n, blksize, i)
end
== P =Y' % Q
__demand(__index_launch)
for i = @, np do
f_dgemm_t (Y1lp[i], Qlp[i], Plr, m, n, blksize,bi)
end

G MICHIGAN STATE UNIVERSITY

Performance Evaluation

= Test Applications:

= Lanczos - one SpMV and one inner product kernel at each iteration
= LOBPCG - SpMM based complex algorithm with several kernels

= Two systems in HPC Center @ MSU:

= |ntel Broadwell - two 14-core Intel Xeon E5-2680v4 2.4 GHz processors
= AMD EPYC - two 64-core AMD EPYC 7H12 2.6 GHz processors
= Using an entire node — 28 cores on Broadwell and 128 cores on EPYC

= Baseline versions:
= libcsr - CSR storage format + Intel MKL routines.
= libcsb - CSB storage format + Intel MKL routines.

10

Performance Evaluation

Matrices with varying sizes,
sparsity patterns, and
domains.

Performance data from the
solver iteration parts,
averaged over 20 iterations for
Lanczos and 10 for LOBPCG.

Comparison criteria are L1, L2,
LLC (L3) misses and execution
times, normalized wrt libcsr

Results from the experiments
with optimal block size

G MICHIGAN STATE UNIVERSITY

Matrix #Rows #Non-zeros
inlinel 503,712 36,816,170
dielFilterV3real 1,102,824 89,306,020
Flan_ 1565 1,564,794 117,406,044
HV15R 2,017,169 281,419,743
Bump_2911 2,911,419 127,729,899
Queend147 4,147,110 329,499,284
Nm?7 4,985,422 647,663,919
nlpkkt160 8,345,600 229,518,112
nlpkkt200 16,240,000 448,225,632
nlpkkt240 27,993,600 774,472,352
it-2004 41,291,594 1,120,355,761
twitter7 41,652,230 868,012,304
sk-2005 50,636,154 | 1,909,906,755
webbase-2001 118,142,155 | 1,013,570,040
mawi_ 201512020130 128,568,730 270,234,840

Table: Matrices used in our evaluation

11

. & MICHIGAN STATE UNIVERSITY

Lanczos Evaluation

[libcsr M libcsb [DeepSparse [0 HPX [Regent]

adwell Speedup

(Better—)
CORHENNWWE S
oo uwounounowum

—
o

EPYC Speedup Bro
(Better—)
(=] N S (=2} (=]

Figure: Speedup of different Lanczos versions on Broadwell (top) and EPYC (bottom) over libcsr.

= DeepSparse, HPX and Regent achieve up to 2.3x, 4.3x and 2.0x
improvement, respectively, on Broadwell (1.5%, 2.2x and 1.1x on average).

= Even better, they achieve up to 6.5x (DeepSparse), 9.9x (HPX) and 2.7x
(Regent) speedup on EPYC (3.3x, 4.9x and 1.6x speedup on average)

12

G MICHIGAN STATE UNIVERSITY

Lanczos Evaluation

L1 Misses
<~=Better)

‘ libcsr M libcsb 0 DeepSparse [HPX [N Regentl

L2 Misses

= | I I i
A
e ! ; ;
° \Nebbase

5 1 Tl 60 0
565 W15k ol Quee“/M’A N gea®d e

1 ea) .
d\e\v'\\‘e‘\m lan> g

Figure: L1 and L2 misses of different Lanczos versions on EPYC normalized wrt libcsr.

= Lanczos is relatively simple with only few data reuse opportunities so no
improvement in terms of cache misses.

= No consistent reduction on L1 level whereas improvements on L2 level can
be attributed to the CSB format (L3 misses unavailable due to root access).

13

G MICHIGAN STATE UNIVERSITY

Lanczos Evaluation

24 24

20 20
216 Q46
3 F
o 12 3 12
= £
< 8 =

4 4

0 e —— 0

0 0.5 1 1.5 2 0 0.5 1 1.5
Time (Sec.) Time (Sec.)
(a) libcsr on Broadwell (b) DeepSparse on Broadwell

Figure: Execution flow graph of nlpkkt240 from first three iterations of Lanczos.

= We attribute the speedups to the increased parallelism with tasking and
reduced synchronization overheads.

= Task parallel systems can fill the gap resulting from load imbalances of
SpMV with the succeeding tasks 14

(Better—)

O = N WP UL 3 o = N W s wu;

EPYC Speedup Broadwell Speedup
(Better—)

G MICHIGAN STATE UNIVERSITY

LOBPCG Evaluation

1 1 1
2 Q\,\ee“/MA Nee

gumP-

Figure: Speedup of different LOBPCG versions on Broadwell (top) and EPYC (bottom) over libcsr.

= On Broadwell, the speedup numbers are 1.8x - 3.0x for DeepSparse, 1.5x -
4.4x for HPX and 0.8x - 1.9x for Regent (slowdown on smaller matrices).

= They achieve 1.2x - 5.5x (DeepSparse), 1.7x - 7.5x (HPX) and 0.8x — 2.3x
(Regent) speedup on EPYC, improving further compared to Broadwell

15

. & MICHIGAN STATE UNIVERSITY

LOBPCG Evaluation

[--- libcsr I libcsb @@ DeepSparse [HPX I Regent

L1 Misses
(<=Better)

L2 Misses

0.8

LLC Misses
(<=Better)
© o o o
o N B N

e L \ S 1 y| 1 0 Q 0 A Ry | S 3 \
infine- o3¢ F\a“f156 wno® au\'ﬂp«?’g1 Q\,\ee""MA nee \'\\9\4\(“6 0\9\‘\(‘10 “\9\4\4‘25« w200 ot 2200 \Neb‘oase”)’oo maV

d-\e\F'\\t

Figure: L1, L2 and LLC (L3) misses of different LOBPCG versions on Broadwell normalized wrt libcsr.

= LOBPCG requires several vector operations consecutively so plenty data
reuse opportunities.

= Task parallel versions show outstanding cache miss performance. Besides,
they achieve up to 99% L1 hits compared to 85-90% of BSP versions. 16

G MICHIGAN STATE UNIVERSITY

Conclusion

= Several AMT frameworks emerged but there is a lack of
comparative studies in the context of sparse solvers.

= We introduce optimized implementations of LOBPCG and
Lanczos eigensolvers using the task-parallel paradigm in
OpenMP (through DeepSparse), HPX and Regent.

= Future work will be testing AMT models in a distributed case
using large-scale sparse solvers and graph analytics kernels.

= Please refer to the paper for implementation details,
optimization efforts, and for the heuristic to determine the
ideal task granularity through the block size.

G MICHIGAN STATE UNIVERSITY

References

[1] ARB OpenMP. 2013. OpenMP application program interface version 4.0

[2] Hartmut Kaiser, Thomas Heller, Bryce Adelstein-Lelbach, Adrian Serio, and Dietmar
Fey. 2014. Hpx: A task based programming model in a global address space. In
Proceedings of the 8th International Conference on Partitioned Global Address Space
Programming Models. 1-11.

[3] Elliott Slaughter, Wonchan Lee, Sean Treichler, Michael Bauer, and Alex Aiken.2015.
Regent: a high-productivity programming language for HPC with logical regions. In
Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis. 1-12.

[4] Md Afibuzzaman, Fazlay Rabbi, M Yusuf Ozkaya, Hasan Metin Aktulga, and Umit V

Catalylrek. 2019. DeepSparse: A Task-Parallel Framework for Sparse-Solvers on Deep
Memory Architectures. In 2019 IEEE 26th International Conference on High

Performance Computing, Data, and Analytics (HiPC). IEEE, 373—382.

[5] Aydin Bulug, Jeremy T Fineman, Matteo Frigo, John R Gilbert, and Charles E
Leiserson. 2009. Parallel sparse matrix-vector and matrix-transpose-vector multi-
plication using compressed sparse blocks. In Proceedings of the twenty-first annual
symposium on Parallelism in algorithms and architectures. ACM, 233-244,

