
An Evaluation of Task-Parallel Frameworks for
Sparse Solvers on Multicore and Manycore

CPU Architectures

Abdullah Alperen†, Md Afibuzzaman†, Fazlay Rabbi†, M. Yusuf Özkaya‡,
Ümit V Çatalyürek‡, Hasan M. Aktulga†

†Computer Science & Engineering, Michigan State University
‡School of ComputaQonal Science & Engineering, Georgia InsQtute of Technology

ICPP ’21, August 9–12, 2021, Lemont, IL, USA

IntroducQon
§ Sparse matrix computations comprise the core component of

a broad base of scientific applications.

§ They become challenging in the presence of large-scale data
due to the memory-bound nature of the computations.

§ These challenges are not well addressed by bulk synchronous
parallel (BSP) approaches where poor cache performance and
high synchronization costs become the limiting factors.

§ This validates the emergence and increased use of
asynchronous many-task (AMT) programming models.

2

3

IntroducQon
§ OpenMP’s task parallelism has been used since 2013 allowing

extracting parallelism via asynchronous execution of fine-
grained tasks [1].

§ HPX [2] is an advanced runtime system and a programming
API that conforms to the C++ standards while supporting
lightweight task scheduling to expose parallelism.

§ Regent [3], a programming language and compiler designed
for HPC. Regent runtime system discovers implicit dataflow
parallelism in the code.

4

Introduction
§ Recently, using the AMT model in OpenMP has been shown to

offer important advantages over its BSP model within the
DeepSparse framework.

§ DeepSparse [4] automaQcally generates and expresses the
enQre computaQon as a task dependency graph (TDG) and
relies on OpenMP for the execuQon of this TDG.

§ We aimed to discern how OpenMP, HPX and Regent compare
as well as what they offer over BSP models by providing
§ a task-parallel implementaQon Lanczos and LOBPCG using the HPX and Regent
§ an evaluaQon of AMT models on mulQcore and manycore architectures

5

Implementation

§ In all three frameworks (DeepSparse, HPX and Regent), tasks
are defined based on the decomposition of sparse matrices.

§ We adapt a 2D partitioning scheme using Compressed Sparse
Block (CSB) [5] representation of the sparse matrix, which also
dictates the decomposition of other data structures involved.

§ Consider the following code snippet:

66

SpMM Kernel Linear Combination Kernel (XY)

Inner Product Kernel (XTY)

Q P

YT

cblas_dgemm call on block vector Partial result buffer reduction

n

n

b bb

n

n

n

n

.

.

.

b

XA

b

b

b bb
b

.

.

.

. . .
b

n
b

n

Y
Q

n
b

Y

n
b

Z

b
b
b

n

n

b
b
b

77

DeepSparse Overview

7

Task Identifier (TI)

do {
SpMM(Hpsi, H, psi)
dot(E, psi, psi)
daxpy(Epsi, E, psi)
daxpy(R, Hpsi,Epsi)
dot(W,Tinv, R)
..
} while(!converged)

TDG Generator

Out
Data

Out
Data

In
Data

In
Data

Out
Data

Out
Data

IIn
Data

SpM
M dot

Core 0

Out
Data

Out
Data

In
Data

In
Data

Out
Data

Out
Data

In
Data

In
Data

SpM
M dot

Core 2

Out
Data

Out
Data

In
Data

In
Data

Out
Data

Out
Data

In
Data

In
Data

SpM
M dot

Core 1

Primitive Conversion Unit (PCU) Task Executor
[4]

88

HPX Overview

§ HPX attains
asynchronous
parallelism through
asynchronous function
execution and future
instances.

§ A dataflow object
triggers a predefined
function when a set of
futures become ready

99

Regent Overview
§ Regent exerts implicit dataflow

parallelism through two key
abstractions: tasks and regions

§ Privileges describe how tasks
interact with regions(read, write…)

1010

Performance EvaluaQon
§ Test Applications:

§ Lanczos - one SpMV and one inner product kernel at each iteration
§ LOBPCG - SpMM based complex algorithm with several kernels

§ Two systems in HPC Center @ MSU:
§ Intel Broadwell - two 14-core Intel Xeon E5-2680v4 2.4 GHz processors
§ AMD EPYC - two 64-core AMD EPYC 7H12 2.6 GHz processors
§ Using an entire node – 28 cores on Broadwell and 128 cores on EPYC

§ Baseline versions:
§ libcsr - CSR storage format + Intel MKL routines.
§ libcsb - CSB storage format + Intel MKL routines.

11

Performance Evaluation
§ Matrices with varying sizes,

sparsity patterns, and
domains.

§ Performance data from the
solver iteration parts,
averaged over 20 iterations for
Lanczos and 10 for LOBPCG.

§ Comparison criteria are L1, L2,
LLC (L3) misses and execution
times, normalized wrt libcsr

§ Results from the experiments
with optimal block size

Table: Matrices used in our evaluation

1212

Lanczos EvaluaQon

§ DeepSparse, HPX and Regent achieve up to 2.3x, 4.3x and 2.0x
improvement, respectively, on Broadwell (1.5x, 2.2x and 1.1x on average).

§ Even better, they achieve up to 6.5x (DeepSparse), 9.9x (HPX) and 2.7x
(Regent) speedup on EPYC (3.3x, 4.9x and 1.6x speedup on average)

Figure: Speedup of different Lanczos versions on Broadwell (top) and EPYC (bottom) over libcsr.

1313

Lanczos Evaluation

§ Lanczos is relaQvely simple with only few data reuse opportuniQes so no
improvement in terms of cache misses.

§ No consistent reducQon on L1 level whereas improvements on L2 level can
be asributed to the CSB format (L3 misses unavailable due to root access).

Figure: L1 and L2 misses of different Lanczos versions on EPYC normalized wrt libcsr.

1414

Lanczos EvaluaQon

§ We attribute the speedups to the increased parallelism with tasking and
reduced synchronization overheads.

§ Task parallel systems can fill the gap resulting from load imbalances of
SpMV with the succeeding tasks

Figure: Execution flow graph of nlpkkt240 from first three iterations of Lanczos.

1515

LOBPCG Evaluation

§ On Broadwell, the speedup numbers are 1.8x - 3.0x for DeepSparse, 1.5x -
4.4x for HPX and 0.8x - 1.9x for Regent (slowdown on smaller matrices).

§ They achieve 1.2x - 5.5x (DeepSparse), 1.7x - 7.5x (HPX) and 0.8x – 2.3x
(Regent) speedup on EPYC, improving further compared to Broadwell

Figure: Speedup of different LOBPCG versions on Broadwell (top) and EPYC (bottom) over libcsr.

1616

LOBPCG Evaluation

§ LOBPCG requires several vector operations consecutively so plenty data
reuse opportunities.

§ Task parallel versions show outstanding cache miss performance. Besides,
they achieve up to 99% L1 hits compared to 85-90% of BSP versions.

Figure: L1, L2 and LLC (L3) misses of different LOBPCG versions on Broadwell normalized wrt libcsr.

Conclusion
§ Several AMT frameworks emerged but there is a lack of

comparaQve studies in the context of sparse solvers.

§ We introduce opQmized implementaQons of LOBPCG and
Lanczos eigensolvers using the task-parallel paradigm in
OpenMP (through DeepSparse), HPX and Regent.

§ Future work will be tesQng AMT models in a distributed case
using large-scale sparse solvers and graph analyQcs kernels.

§ Please refer to the paper for implementaQon details,
opQmizaQon efforts, and for the heurisQc to determine the
ideal task granularity through the block size.

References
[1] ARB OpenMP. 2013. OpenMP applicaQon program interface version 4.0
[2] Hartmut Kaiser, Thomas Heller, Bryce Adelstein-Lelbach, Adrian Serio, and Dietmar
Fey. 2014. Hpx: A task based programming model in a global address space. In
Proceedings of the 8th Interna2onal Conference on Par22oned Global Address Space
Programming Models. 1–11.
[3] Ellios Slaughter, Wonchan Lee, Sean Treichler, Michael Bauer, and Alex Aiken.2015.
Regent: a high-producQvity programming language for HPC with logical regions. In
Proceedings of the Interna2onal Conference for High Performance Compu2ng,
Networking, Storage and Analysis. 1–12.
[4] Md Afibuzzaman, Fazlay Rabbi, M Yusuf Özkaya, Hasan MeQn Aktulga, and Ümit V
Çatalyürek. 2019. DeepSparse: A Task-Parallel Framework for Sparse-Solvers on Deep
Memory Architectures. In 2019 IEEE 26th Interna2onal Conference on High
Performance Compu2ng, Data, and Analy2cs (HiPC). IEEE, 373–382.
[5] Aydin Buluç, Jeremy T Fineman, Maseo Frigo, John R Gilbert, and Charles E
Leiserson. 2009. Parallel sparse matrix-vector and matrix-transpose-vector mulQ-
plicaQon using compressed sparse blocks. In Proceedings of the twenty-first annual
symposium on Parallelism in algorithms and architectures. ACM, 233–244.

