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IntroducQon
§ Sparse matrix computations comprise the core component of 

a broad base of scientific applications.

§ They become challenging in the presence of large-scale data 
due to the memory-bound nature of the computations.

§ These challenges are not well addressed by bulk synchronous 
parallel (BSP) approaches where poor cache performance and 
high synchronization costs become the limiting factors.

§ This validates the emergence and increased use of 
asynchronous many-task (AMT) programming models.
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IntroducQon
§ OpenMP’s task parallelism has been used since 2013 allowing 

extracting parallelism via asynchronous execution of fine-
grained tasks [1].

§ HPX [2] is an advanced runtime system and a programming 
API that conforms to the C++ standards while supporting 
lightweight task scheduling to expose parallelism.

§ Regent [3], a programming language and compiler designed 
for HPC. Regent runtime system discovers implicit dataflow 
parallelism in the code.
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Introduction
§ Recently, using the AMT model in OpenMP has been shown to 

offer important advantages over its BSP model within the 
DeepSparse framework. 

§ DeepSparse [4] automaQcally generates and expresses the 
enQre computaQon as a task dependency graph (TDG) and 
relies on OpenMP for the execuQon of this TDG.

§ We aimed to discern how OpenMP, HPX and Regent compare 
as well as what they offer over BSP models by providing
§ a task-parallel implementaQon Lanczos and LOBPCG using the HPX and Regent
§ an evaluaQon of AMT models on mulQcore and manycore architectures
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Implementation

§ In all three frameworks (DeepSparse, HPX and Regent), tasks 
are defined based on the decomposition of sparse matrices.

§ We adapt a 2D partitioning scheme using Compressed Sparse 
Block (CSB) [5] representation of the sparse matrix, which also 
dictates the decomposition of other data structures involved.

§ Consider the following code snippet:
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DeepSparse Overview

7

Task Identifier (TI)

do {
SpMM(Hpsi, H, psi)
dot(E, psi, psi)
daxpy(Epsi, E, psi)
daxpy(R, Hpsi,Epsi)
dot(W,Tinv, R)
..
} while(!converged)

TDG Generator
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HPX Overview

§ HPX attains 
asynchronous 
parallelism through 
asynchronous function 
execution and future 
instances.

§ A dataflow object 
triggers a predefined 
function when a set of 
futures become ready
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Regent Overview
§ Regent exerts implicit dataflow 

parallelism through two key 
abstractions: tasks and regions

§ Privileges describe how tasks 
interact with regions(read, write…)
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Performance EvaluaQon
§ Test Applications:

§ Lanczos - one SpMV and one inner product kernel at each iteration
§ LOBPCG - SpMM based complex algorithm with several kernels

§ Two systems in HPC Center @ MSU:
§ Intel Broadwell - two 14-core Intel Xeon E5-2680v4 2.4 GHz processors
§ AMD EPYC - two 64-core AMD EPYC 7H12 2.6 GHz processors
§ Using an entire node – 28 cores on Broadwell and 128 cores on EPYC

§ Baseline versions:
§ libcsr - CSR storage format  + Intel MKL routines.
§ libcsb - CSB storage format + Intel MKL routines.
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Performance Evaluation
§ Matrices with varying sizes, 

sparsity patterns, and 
domains.

§ Performance data from the 
solver iteration parts, 
averaged over 20 iterations for 
Lanczos and 10 for LOBPCG.

§ Comparison criteria are L1, L2, 
LLC (L3) misses and execution 
times,  normalized wrt libcsr 

§ Results from the experiments 
with optimal block size

Table: Matrices used in our evaluation
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Lanczos EvaluaQon

§ DeepSparse, HPX and Regent achieve up to 2.3x, 4.3x and 2.0x 
improvement, respectively, on Broadwell (1.5x, 2.2x and 1.1x on average).

§ Even better, they achieve up to 6.5x (DeepSparse), 9.9x (HPX) and 2.7x 
(Regent) speedup on EPYC  (3.3x, 4.9x and 1.6x speedup on average)

Figure: Speedup of different Lanczos versions on Broadwell (top) and EPYC (bottom) over libcsr.
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Lanczos Evaluation

§ Lanczos is relaQvely simple with only few data reuse opportuniQes so no 
improvement in terms of cache misses.

§ No consistent reducQon on L1 level whereas improvements on L2 level can 
be asributed to the CSB format (L3 misses unavailable due to root access).

Figure: L1 and L2 misses of different Lanczos versions on EPYC normalized wrt libcsr.
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Lanczos EvaluaQon

§ We attribute the speedups to the increased parallelism with tasking and 
reduced synchronization overheads.

§ Task parallel systems can fill the gap resulting from load imbalances of 
SpMV with the succeeding tasks

Figure: Execution flow graph of nlpkkt240 from first three iterations of Lanczos.



1515

LOBPCG Evaluation

§ On Broadwell, the speedup numbers are 1.8x - 3.0x  for DeepSparse, 1.5x -
4.4x  for HPX and 0.8x - 1.9x for Regent (slowdown on smaller matrices).

§ They achieve  1.2x - 5.5x (DeepSparse), 1.7x - 7.5x (HPX) and 0.8x – 2.3x 
(Regent) speedup on EPYC, improving further compared to Broadwell

Figure: Speedup of different LOBPCG versions on Broadwell (top) and EPYC (bottom) over libcsr.
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LOBPCG Evaluation

§ LOBPCG requires several vector operations consecutively so plenty data 
reuse opportunities.

§ Task parallel versions show outstanding cache miss performance. Besides, 
they achieve up to 99% L1 hits compared to 85-90% of BSP versions.

Figure: L1, L2 and LLC (L3) misses of different LOBPCG versions on Broadwell normalized wrt libcsr.



Conclusion
§ Several AMT frameworks emerged but there is a lack of 

comparaQve studies in the context of sparse solvers.

§ We introduce opQmized implementaQons of LOBPCG and 
Lanczos eigensolvers using the task-parallel paradigm in 
OpenMP (through DeepSparse), HPX and Regent.

§ Future work will be tesQng AMT models in a distributed case 
using large-scale sparse solvers and graph analyQcs kernels.

§ Please refer to the paper for implementaQon details, 
opQmizaQon efforts, and for the heurisQc to determine the 
ideal task granularity through the block size.
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