[INTERNATIONAL ac@) T
CONFERENCE ON
/ | PARALLEL / sighppc

PROCESSING [ICPP/2021/CHICAGO/USA AUGUST9-12,20821

FastPSO: Towards Efficient Swarm
Intelligence Algorithm on GPUs

Hanfeng Liu!, Zeyi Wen?, Wei Cai'

The Chinese University of Hong Kong, Shenzhen, China
’The University of Western Australia

zeyi.wen@uwa.edu.au

mailto:zeyi.wen@uwa.edu.au

THE UNIVERSITY OF

AOA WESTERN
Outline s AUSTRALIA

* Background

* Our proposed techniques
* Experimental results

* Conclusion

N\ 2
acm) in-Cooperation

Vv sighpc

BE THE UNIVERSITY OF
. ¥ WESTERN
Swarm Intelligence “a=# AUSTRALIA

* mimics behaviors of social animals (e.g., ants and bees),

» exploits Information exchanges among individuals Iin the
group to achieve intelligence.

Ant Colony Optimization The Bee Algorithm

3
acm) in-Cooperation

Vv sighpc

¥ WESTERN
Particle Swarm Optimization (PSO) %= AUSTRALIA

* A type of swarm intelligence; simple but effective
* Wide range of applications (e.g., neural architecture search)

* The update of the swarm can be extremely slow
= dealing with high dimensional problems
" having to use a large number of particles

Bees, ants, migratory birds, ... | 2@ n-cooperation
Vv sighpc

Research papers with PSO

0

Figure 1: Number of publications of PSO in recent years

10K 20k 30k
Number of publications

40k

THE UNIVERSITY OF

WESTERN

& AUSTRALIA

N\ 5
acm) in-Cooperation

sighpc

.ge:y |HE UNIVERSITY OF

N WESTERN
‘ Local best position of each ant AUSTRAL]A

>< Visited positions - Ant 3

A Current global best position

Im‘

Pal 6
acC ITI) In-Cooperation

Vv sighpc

Key Steps of PSO

e swarm initialization

* swarm evaluation

* pbest and gbest update
e swarm update

ra. [HE UNIVERSITY OF

Yoy WESTERN
“am? AUSTRALIA

BE

N\ 7
acm)) in-Cooperatio

hd ﬂghpc

.ge:y |HE UNIVERSITY OF

A WESTERN
Bottleneck of PSO—Breakdown “as? AUSTRALIA

Sphere s Easom
o4 EER Griewank KX ThreadConf

(sec).;

= U
» O

o
\\

time elapsed
o O
w ul
\
\\\\

8
acm) in-Cooperation

Vv sighpc

THE UNIVERSITY OF

The PSO Algorithm Y PESTERN

* The goal is to find the global optimum by the particles.

e Each particle has a (v;) and a (p;).
v; = wv; + ¢ ;O(pbest; - e — p;) + c,gO(gbest; - e — p;) (1)
pi =D t+V; (2)
pbest;

o w: particle momentum

o €1,¢5 € (0,1): random weight vector

o l;, g;: preference to explore locally/globally
oce=/[11,..,1] € R?

;i v Swarm influence
A 9
Figure 1: Updating position and velocity of i-th particle ac\n}) In-Cocperation

sighpc

THE UNIVERSITY OF

Potential GPU Acceleration Y b erl

* One GPU thread per particle [SYNASC’16]

* GPU for swarm update and CPUs for the rest [TPDS’17]
"one GPU thread per particle

* One GPU thread for a dimension of a particle [ours]

A 10
acm) in-Cooperation

Vv sighpc

THE UNIVERSITY OF

AOA WESTERN
Outline s AUSTRALIA

* Background

* Our proposed techniques
* Experimental results

* Conclusion

A 11
acm) in-Cooperation

Vv sighpc

THE UNIVERSITY OF

AOA WESTERN
Overview of Our Method “ms? AUSTRALIA

Y

pa'rtfclel pa'rti'clez partfclen
b t1 T .
—_— Swarm initialization
E— N ' v |
1 —T Evaluation «
v v '
GPU 1 sarallel reduction phbestl pbest, pbest,
gbest * i l J’
number generation——» Swarm update
element-wise operations >
no

Pat 12
acm) in-Cooperation

optimal swarm Vv sighpc

THE UNIVERSITY OF

¥¥ WESTERN
Swarm Initialization %s? AUSTRALIA
* Initialization of multiple d x n matrices

" |nitialization of position (p)

" |nitialization of velocity (v)

" |nitialization of / and g
e Each particle has a (v;) and a (p;).
v; = wv; + ¢, [;O(pbest; - e — p;) + c,gO(gbest; - e — p;) (1)

p; = Di + v; (2) acln:)fn-(?ooperatilo?;

Vv sighpc

THE UNIVERSITY OF

AOA WESTERN
Swarm Evaluation on GPUs “a? AUSTRALIA

* One GPU thread evaluates the fitness of a particle
* 3 schema to customize swarm evaluation functions

template<typename L>
__global__ void evaluation_kernel(int dim, L lambda){
for(int 1 = blockIdx.x * blockDim.x + threadIdx.x;
1 < dim; 1 += blockDim.x * gridDim.x) {
lambda(1);
X
}

Figure 2: Swarm evaluation schema

Pat 14
acm) in-Cooperation

Vv sighpc

Element-wise Operations

Vi1
V21

Vnl

El1
821

. 8n1
- gbest
gbest

| gbest

Vid
V2d

Vnd

81d
82d
. s &

8nd
gbest |
gbest

gbest

[pir - Pid 1 I
Pp1 v P2d
. . 1 E —
_ Pn1 " Pnd ’
[pbest; --- pbest; |
pbest, --- pbest;
| pbest, --- pbest, |
* Each particle has a (v;)and a

v; = wv; + c;;O(pbest; - e — p;) + c;gO(gbest; - e — p;)

p; = p; +v;

Vi=w-V4+a - LOE-P)+a-Go(E —P)

hi -+ ha
b1 -+ by
/nl Ind

(pi)-

(2)

3 @Ar

THE UNIVERSITY OF

WESTERN
AUSTRALIA

(3)

(1)
Pat 15
acm) in-Cooperation

Vv sighpc

Workload Allocation %E%?EE&
&4 AUSTRALIA

Each thread in the GPU is responsible for the update of a particle
value, the GPU thread workload of FastPSO as follows.

nxd

mem
where n denotes to the number of particles, d is the particle
dimension and mem is the GPU memory

tw =

The velocity and particle update is constrained by the follow equation

(.
lower_bound;; it vjj < lower_bound;;

vjj = yupper_bound;j; if vj; > upper_bound;;
A

0 l_] Otherwise ac\n}) fn-Co?peration
sighpc

\

N WESTERN
Shared Memory and Tensor Cores %=# AUSTRALIA

* The velocity/position matrix may be too large.
" segmented into multiple sub-matrices, copied to shared
memory
* Making use of Tensor Cores
" assigned to the fragment of tenser cores

* Using memory caching to reduce GPU memory allocation

* Two approaches to support multiple GPUs
" Each GPU is responsible for a subset of particles

" Each GPU is responsible for a tiled sub-matrix N
acm) in-Cooperation

Vv sighpc

THE UNIVERSITY OF

AOA WESTERN
Outline s AUSTRALIA

* Background

* Our proposed techniques
* Experimental results

* Conclusion

Pal 18
acm) in-Cooperation

Vv sighpc

N WESTERN
Experimental Setup “am? AUSTRALIA

e 2 Xeon E5-2640v4 10 core CPUs, a Tesla V100 16G GPU
* CUDA-C and compiled with -O3 option
e 2000 particles, 2000 iterations, 200 dimensions

* Search problems
= Sphere: f(x) = Y%x?,x € (—5.12,5.12)

" Griewank: f(x) = ——¥%x? — [1{ cos (f) +1,x € (=600, 600)

= Easom: f(x) = —(=1)*([1{ cos®(x;))expl-X{ (x; — m)?], x € (—2m, 2m)
* TheadConf: Optimize the block configuration for a GPU program

7\ 19
acm) in-Cooperation

Vv sighpc

¥ WESTERN
Experimental Setup “am? AUSTRALIA

* Baselines
= pyswarms: a PSO algorithm implemented in Python
= scikit-opt: a toolkit of swarm intelligence algorithms in Python
" gpu-pso [SYNASC’16]: a GPU based PSO implementation

» hgpu-pso [TPDS’17]: a heterogeneous multi-core implementation

e Our implementations
" fastpso-seq: CPU based sequential PSO

®» fastpso-omp: CPU based multi-threads PSO using OpenMP
" fastpso: GPU based PSO implementation

Pat 20
acm) in-Cooperation

Vv sighpc

al THE UNIVERSITY OF

WN WESTERN
S AUSTRALIA

Table 1: Overall comparison of FastPSO against other implementations

Overall Comparison

elapsed time (sec) speedup
problem pyswarms scikit-opt|/gpu-pso hgpu-pso fasst::o— fa(s)tri):o— fastpso |pyswarms scikit-opt|gpu-pso hgpu-pso fas;t::o— fa(s)tri):o—
Sphere | 129.67 88.98 490| 6.01 11.56 8.74 0.67 | 194.41 | 133.40 @ 7.34 9.01 17.33 13.10
Griewank = 80.94 172.17| 5.08| 7.32 13.78 9.58 0.66 | 123.38 | 262.46 | 7.74 @ 11.16 21.00 14.60
Easom 126.89 12.77 5.07 | 7.22 33.91 24.71 0.87 | 146.35 | 14.72 5.85 8.33 39.11 28.50
TheadConf| 117.670 | 81.320 4.498| 5.477 11.459 6.736 0.47 | 251.97 174.13 | 9.63 11.73 24.54 14.42

Table 2: Errors to the optimal values

implementation Sphere Griewank Easom
pyswarms 1031.99 2965.27 0.00
scikit-opt 2483.61 8892.36 0.00
gpu-pso 23.72 0.69 0.00
hgpu-pso 15.06 0.31 0.00
fastpso-seq 26.98 0.66 0.00

fastpso-omp 22.01 0.72 0.00 N\ 21

acm) in-Cooperation

fastpso 23.62 0.71 0.00 N/

sighpc

THE UNIVERSITY OF

VN WESTERN
FLOPs and Memory Bandwidth %us? AUSTRALIA

* Much higher throughput than other GPU implementations.
* GFLOPs: similar on different implementations.

Table 3: FLOPs and memory bandwidth

metrics dram read throughput (GB/s) GFLOPS

gpu-pso 61.83 1.19
hgpu-pso 57.41 0.97
fastpso 106.94 8.68 N\ 22

acm) in-Cooperation

Vv sighpc

THE UNIVERSITY OF
2@ WESTERN
Conclusion &4 AUSTRALIA

* We present FastPSO which is 5-7 times faster than its GPU-
based counterparts and is two orders of magnitude faster
than the existing CPU-based libraries.

* We located the bottleneck of PSO and investigated different
techniques to accelerate PSO on GPUs.

* Varieties of experiments were conducted to study the

efficiency of our techniques. ~

acm) in-Cooperation

Vv sighpc

PY¥TY THE UNIVERSITY OF

Yoy WESTERN
The End &4 AUSTRALIA

Thanks!

A 24
acm) in-Cooperatio

hd ﬂghpc

