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Swarm Intelligence 

• mimics behaviors of social animals (e.g., ants and bees),

• exploits information exchanges among individuals in the
group to achieve intelligence.
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Particle Swarm Optimization (PSO)

• A type of swarm intelligence; simple but effective

• Wide range of applications (e.g., neural architecture search)

• The update of the swarm can be extremely slow
dealing with high dimensional problems
having to use a large number of particles

4Bees, ants, migratory birds, …



Research papers with PSO

5



6

Current global best position

Local best position of each ant

Visited positions

𝒗𝑔
𝒗𝑝

Ant 3



Key Steps of PSO

• swarm initialization 

• swarm evaluation

• pbest and gbest update

• swarm update
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Bottleneck of PSO—Breakdown 
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The PSO Algorithm

• The goal is to find the global optimum by the particles.

• Each particle has a velocity (𝒗𝑖) and a position (𝒑𝑖).

𝒗𝑖
′ = 𝜔𝒗𝑖 + 𝑐1𝒍𝒊⨀ 𝑝𝑏𝑒𝑠𝑡𝑖 ⋅ 𝒆 − 𝒑𝑖 + 𝑐2𝒈⨀ 𝑔𝑏𝑒𝑠𝑡𝑖 ⋅ 𝒆 − 𝒑𝑖 (1)

𝒑𝑖
′ = 𝒑𝑖 + 𝒗𝑖

′ (𝟐)
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o 𝜔: particle momentum
o 𝑐1, 𝑐2 ∈ (0, 1): random weight vector
o 𝒍𝒊, 𝒈𝒊: preference to explore locally/globally
o 𝒆 = 1, 1, … , 1 ∈ ℝ𝑑

Figure 1: Updating position and velocity of i -th particle



Potential GPU Acceleration

• One GPU thread per particle [SYNASC’16]

• GPU for swarm update and CPUs for the rest [TPDS’17]
one GPU thread per particle

• One GPU thread for a dimension of a particle [ours]
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Overview of Our Method
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Swarm Initialization

• Initialization of multiple d × n matrices
 Initialization of position (p)
 Initialization of velocity (v)
 Initialization of l and g
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Swarm Evaluation on GPUs

• One GPU thread evaluates the fitness of a particle

• a schema to customize swarm evaluation functions
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Figure 2: Swarm evaluation schema



Element-wise Operations
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Workload Allocation

Each thread in the GPU is responsible for the update of a particle 
value, the GPU thread workload of FastPSO as follows.

𝑡𝑤 =
𝑛×𝑑

𝑚𝑒𝑚

where 𝑛 denotes to the number of particles, 𝑑 is the particle 
dimension and 𝑚𝑒𝑚 is the GPU memory

The velocity and particle update is constrained by the follow equation
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Shared Memory and Tensor Cores

• The velocity/position matrix may be too large.
 segmented into multiple sub-matrices, copied to shared 

memory

• Making use of Tensor Cores
assigned to the fragment of tenser cores

• Using memory caching to reduce GPU memory allocation

• Two approaches to support multiple GPUs
Each GPU is responsible for a subset of particles
Each GPU is responsible for a tiled sub-matrix
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Experimental Setup

• 2 Xeon E5-2640v4 10 core CPUs, a Tesla V100 16G GPU

• CUDA-C and compiled with -O3 option

• 2000 particles, 2000 iterations, 200 dimensions

• Search problems
 Sphere: 𝑓 𝑥 = σ1

𝑑 𝑥𝑖
2 , 𝑥 ∈ (−5.12, 5.12)

 Griewank: 𝑓 𝑥 =
1

4000
σ1
𝑑 𝑥𝑖

2 −ς1
𝑑 𝑐𝑜𝑠

𝑥𝑖

𝑖
+ 1, 𝑥 ∈ (−600, 600)

 Easom: 𝑓 𝑥 = − −1 𝑑(ς1
𝑑 𝑐𝑜𝑠2(𝑥𝑖))exp[-σ1

𝑑 𝑥𝑖 − 𝜋 2], 𝑥 ∈ (−2𝜋, 2𝜋)
 TheadConf: Optimize the block configuration for a GPU program
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Experimental Setup

• Baselines
 pyswarms: a PSO algorithm implemented in Python

 scikit-opt: a toolkit of swarm intelligence algorithms in Python  

 gpu-pso [SYNASC’16]: a GPU based PSO implementation

 hgpu-pso [TPDS’17]: a heterogeneous multi-core implementation  

• Our implementations
 fastpso-seq: CPU based sequential PSO

 fastpso-omp: CPU based multi-threads PSO using OpenMP

 fastpso: GPU based PSO implementation
20



Overall Comparison
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problem

elapsed time (sec) speedup

pyswarms scikit-opt gpu-pso hgpu-pso
fastpso-

seq
fastpso-

omp
fastpso pyswarms scikit-opt gpu-pso hgpu-pso

fastpso-
seq

fastpso-
omp

Sphere 129.67 88.98 4.90 6.01 11.56 8.74 0.67 194.41 133.40 7.34 9.01 17.33 13.10

Griewank 80.94 172.17 5.08 7.32 13.78 9.58 0.66 123.38 262.46 7.74 11.16 21.00 14.60

Easom 126.89 12.77 5.07 7.22 33.91 24.71 0.87 146.35 14.72 5.85 8.33 39.11 28.50

TheadConf 117.670 81.320 4.498 5.477 11.459 6.736 0.47 251.97 174.13 9.63 11.73 24.54 14.42

Table 1: Overall comparison of FastPSO against other implementations

implementation Sphere Griewank Easom

pyswarms 1031.99 2965.27 0.00

scikit-opt 2483.61 8892.36 0.00

gpu-pso 23.72 0.69 0.00

hgpu-pso 15.06 0.31 0.00

fastpso-seq 26.98 0.66 0.00

fastpso-omp 22.01 0.72 0.00

fastpso 23.62 0.71 0.00

Table 2: Errors to the optimal values



FLOPs and Memory Bandwidth

• Much higher throughput than other GPU  implementations.

• GFLOPs: similar on different implementations.
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metrics dram read throughput (GB/s) GFLOPS

gpu-pso 61.83 1.19

hgpu-pso 57.41 0.97

fastpso 106.94 8.68

Table 3: FLOPs and memory bandwidth



Conclusion

• We present FastPSO which is 5-7 times faster than its GPU-
based counterparts and is two orders of magnitude faster
than the existing CPU-based libraries.

• We located the bottleneck of PSO and investigated different
techniques to accelerate PSO on GPUs.

• Varieties of experiments were conducted to study the
efficiency of our techniques.
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The End

Thanks!
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