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* mimics behaviors of social animals (e.g., ants and bees),

» exploits Information exchanges among individuals Iin the
group to achieve intelligence.

Ant Colony Optimization The Bee Algorithm
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Particle Swarm Optimization (PSO) %= AUSTRALIA

* A type of swarm intelligence; simple but effective
* Wide range of applications (e.g., neural architecture search)

* The update of the swarm can be extremely slow
= dealing with high dimensional problems
" having to use a large number of particles

Bees, ants, migratory birds, ... | 2@ n-cooperation
Vv sighpc



Research papers with PSO
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Figure 1: Number of publications of PSO in recent years
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Key Steps of PSO

e swarm initialization

* swarm evaluation

* pbest and gbest update
e swarm update
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The PSO Algorithm Y PESTERN

* The goal is to find the global optimum by the particles.

e Each particle has a (v;) and a (p;).
v; = wv; + ¢ ;O(pbest; - e — p;) + c,gO(gbest; - e — p;) (1)
pi =D t+V; (2)
pbest;

o w: particle momentum

o €1,¢5 € (0,1): random weight vector

o l;, g;: preference to explore locally/globally
oce=/[11,..,1] € R?

;i v Swarm influence
A 9
Figure 1: Updating position and velocity of i-th particle ac\n}) In-Cocperation
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Potential GPU Acceleration Y b erl

* One GPU thread per particle [SYNASC’16]

* GPU for swarm update and CPUs for the rest [TPDS’17]
"one GPU thread per particle

* One GPU thread for a dimension of a particle [ours]
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* Initialization of multiple d x n matrices

" |nitialization of position (p)

" |nitialization of velocity (v)

" |nitialization of / and g
e Each particle has a (v;) and a (p;).
v; = wv; + ¢, [;O(pbest; - e — p;) + c,gO(gbest; - e — p;) (1)

p; = Di + v; (2) acln:)fn-(?ooperatilo?;
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* One GPU thread evaluates the fitness of a particle
* 3 schema to customize swarm evaluation functions

template<typename L>
__global__ void evaluation_kernel(int dim, L lambda){
for(int 1 = blockIdx.x * blockDim.x + threadIdx.x;
1 < dim; 1 += blockDim.x * gridDim.x) {
lambda(1);
X
}

Figure 2: Swarm evaluation schema
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Element-wise Operations
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Workload Allocation %E%?EE&
&4 AUSTRALIA

Each thread in the GPU is responsible for the update of a particle
value, the GPU thread workload of FastPSO as follows.

nxd

mem
where n denotes to the number of particles, d is the particle
dimension and mem is the GPU memory

tw =

The velocity and particle update is constrained by the follow equation

( .
lower_bound;; it vjj < lower_bound;;

vjj = yupper_bound;j; if vj; > upper_bound;;
A

0 l_] Otherwise ac\n}) fn-Co?peration
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Shared Memory and Tensor Cores  %=# AUSTRALIA

* The velocity/position matrix may be too large.
" segmented into multiple sub-matrices, copied to shared
memory
* Making use of Tensor Cores
" assigned to the fragment of tenser cores

* Using memory caching to reduce GPU memory allocation

* Two approaches to support multiple GPUs
" Each GPU is responsible for a subset of particles

" Each GPU is responsible for a tiled sub-matrix N
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e 2 Xeon E5-2640v4 10 core CPUs, a Tesla V100 16G GPU
* CUDA-C and compiled with -O3 option
e 2000 particles, 2000 iterations, 200 dimensions

* Search problems
= Sphere: f(x) = Y%x?,x € (—5.12,5.12)

" Griewank: f(x) = ——¥%x? — [1{ cos (f) +1,x € (=600, 600)

= Easom: f(x) = —(=1)*([1{ cos®(x;))expl-X{ (x; — m)?], x € (—2m, 2m)
* TheadConf: Optimize the block configuration for a GPU program
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Experimental Setup “am? AUSTRALIA

* Baselines
= pyswarms: a PSO algorithm implemented in Python
= scikit-opt: a toolkit of swarm intelligence algorithms in Python
" gpu-pso [SYNASC’16]: a GPU based PSO implementation

» hgpu-pso [TPDS’17]: a heterogeneous multi-core implementation

e Our implementations
" fastpso-seq: CPU based sequential PSO

®» fastpso-omp: CPU based multi-threads PSO using OpenMP
" fastpso: GPU based PSO implementation
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Table 1: Overall comparison of FastPSO against other implementations

Overall Comparison

elapsed time (sec) speedup
problem pyswarms scikit-opt|/gpu-pso hgpu-pso fasst::o— fa(s)tri):o— fastpso |pyswarms scikit-opt|gpu-pso hgpu-pso fas;t::o— fa(s)tri):o—
Sphere | 129.67 88.98 490| 6.01 11.56 8.74 0.67 | 194.41 | 133.40 @ 7.34 9.01 17.33 13.10
Griewank = 80.94 172.17| 5.08| 7.32 13.78 9.58 0.66 | 123.38 | 262.46 | 7.74 @ 11.16 21.00 14.60
Easom 126.89 12.77 5.07 | 7.22 33.91 24.71 0.87 | 146.35 | 14.72 5.85 8.33 39.11 28.50
TheadConf| 117.670 | 81.320 4.498| 5.477 11.459 6.736 0.47 | 251.97 174.13 | 9.63 11.73 24.54 14.42

Table 2: Errors to the optimal values

implementation Sphere Griewank Easom
pyswarms 1031.99 2965.27 0.00
scikit-opt 2483.61 8892.36 0.00
gpu-pso 23.72 0.69 0.00
hgpu-pso 15.06 0.31 0.00
fastpso-seq 26.98 0.66 0.00

fastpso-omp 22.01 0.72 0.00 N\ 21
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* Much higher throughput than other GPU implementations.
* GFLOPs: similar on different implementations.

Table 3: FLOPs and memory bandwidth

metrics dram read throughput (GB/s) GFLOPS

gpu-pso 61.83 1.19
hgpu-pso 57.41 0.97
fastpso 106.94 8.68 N\ 22
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* We present FastPSO which is 5-7 times faster than its GPU-
based counterparts and is two orders of magnitude faster
than the existing CPU-based libraries.

* We located the bottleneck of PSO and investigated different
techniques to accelerate PSO on GPUs.

* Varieties of experiments were conducted to study the

efficiency of our techniques. ~
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Thanks!
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