
Junhong Liu, Dongxu Yang and Junjie Lai

08/12/2021

ICPP21

OPTIMIZING WINOGRAD-
BASED CONVOLUTION 
WITH TENSOR CORES



2

Background

NVIDIA Tensor Cores and Winograd convolution 

Our Winograd Convolution Methods

Input transformation and batched matrix multiplication

Evaluation 

Accuracy and performance results 

AGENDA



3

BACKGROUND



4

BACKGROUND

❖ Specialized hardware execution units

❖ Tensor Cores perform matrix instructions: multiplication between matrix of elements at a time

❖ Tensor Cores for 16-bit formats

❖ Products are computed without loss of precision, accumulated in FP32

❖ For Ampere architecture 16×8×8, and 16×8×16 (𝑚×𝑛×𝑘) matrix shapes are supported for FP16 matrix instructions

❖ Accelerate math- and memory-limited operations

What are GPU Tensor Cores?



5

BACKGROUND

Winograd convolution:  𝐹 (m×m, r×r), 𝑚 × m is output tile 

size; r × r is filter size;  (m + r - 1) × (m + r - 1) is input tile size

1. Filter transformation: 

2. Input transformation:

3. Element-wise multiplication:

4. Output transformation: 

Basics of Winograd convolution 

④ ① ③ ②

F(6x6, 3x3) Winograd convolution



6

MOTIVATION

❖Existing Winograd convolution implementations limited to small tiles

❖𝐹 (2 × 2, 3 × 3) and 𝐹 (4 × 4, 3 × 3) 

❖Smaller reduction of arithmetic complexity than F(6x6, 3x3)

❖Existing Winograd convolution implementations mostly limited to single precision data

❖Consumes more memory and computes slower than that of half precision data

❖Do not use Tensor Cores for all of four parts of Winograd convolution 

❖We focus on mixed precision F(6x6, 3x3) Winograd convolution using Tensor Cores

❖Pro: larger reduction of arithmetic complexity, up to 5.06x reduction

❖Con: lower numeric precision



7

OUR METHODS



8

INPUT TRANSFORMATION

❖Input transformation computing :

❖𝓑 is transformation matrix with fixed 8x8 size for F(6x6, 3x3) 

❖ is an input tensor tile  with shape of 8x8 for F(6x6, 3x3) 

❖16×8×8 (𝑚×𝑛×𝑘) matrix shapes supported for Tensor Cores on Ampere GPU

❖To  efficiently use Tensor Cores:

F(6x6, 3x3) Winograd convolution 



9

INPUT TRANSFORMATION

❖The process of input transformation                           is divided into 4 steps:

❖Load input tensor from global memory to registers 

❖Coalesced memory access of global memory 

❖Use vector loads to increase bandwidth utilization and decrease instructions 

❖Reorganize register data layout using shuffle instructions 

❖As elements in each thread is not right data for Tensor Cores matrix instructions 

❖Perform the input transformation using Tensor Cores:                              

❖Matrix transpose using shuffle instructions:

❖Store the results back to global memory

F(6x6, 3x3) Winograd convolution 



10

ELEMENT WISE MULTIPLICATION

❖The element wise multiplication can be converted to batched matrix multiplication
(GEMM)

❖Using Tensor Cores to implement batched GEMM

❖On Ampere architecture, the data in global memory can be loaded to shared memory 
directly without using intermediate registers, using 𝑚𝑒𝑚𝑐𝑝𝑦_𝑎𝑠𝑦𝑛𝑐 API

❖Load and compute are pipelined to hide memory latency 

F(6x6, 3x3) Winograd convolution 



11

EVALUATIONS



12

EVALUATIONS

❖Hardware: NVIDIA Ampere A100

❖Software: NVCC 11.2

❖Baseline: cuDNN 8.1.0

❖Network: VGG & FusionNet

Experiment setup



13

ACCURACY

Maximum and average element error on different network layers on A100. Ground truth was computed by direct convolution using single precision.

FP32 VGG FP16 VGG Ours VGG

71.22% 71.23% 71.24%

Accuracy of VGG using different data types



14

PERFORMANCE



15

CONCLUSIONS

❖We propose an optimized mixed precision 𝐹 (6×6, 3×3) Winograd convolution 
implementation on NVIDIA Ampere GPUs using Tensor Cores. 

❖ Our experiments show that the accuracy of mixed precision 𝐹 (6 × 6, 3 × 3) Winograd 
convolution is sufficient to infer the convolutional neural networks. 

❖Our method achieves up to 15.71x and 2.41x speedup on NVIDIA Ampere A100, 
compared with the state of the art Winograd based convolution and GEMM based 
convolution in cuDNN 8.1.0, respectively.




