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Background

Data Transmission in Distributed Deep Learning

➢ In each training iteration, amounts of data (e.g., gradients/parameters, 

intermediate data) should be transferred across devices.

➢ Parameter Server, a centralized communication architecture is typically used for 

data parallelism.
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Background

Bottleneck and Related Works

➢ The communication can block the computation of Workers.

➢ Several related works design priority-based communication scheduling strategies.

➢ e.g., P3 is dedicated to overlapping the backward propagation with the gradient 

push process.
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Motivation
Existing Problems of Related Works

➢ The GPU utilization is still low in some situations.

➢ the GPU utilization can dramatically decrease to zero (i.e., totally idle) during 

the pull operation of model parameters.

The slow network transmission makes the 
GPUs fail to timely acquire the model 
parameters and thus delays the computation 
(i.e., forward propagation).
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Motivation
Existing Problems of Related Works

➢ Non-negligible performance overhead of state-of-the-art priority-based 

communication scheduling strategies.

The smaller size of partitions dramatically 
decreases the DDNN training rate

The training rate of the ResNet50 model 
fluctuates rapidly
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Motivation
Stepwise Pattern

➢ Communication characteristic of gradient transfer follows a stepwise pattern 

over time.

➢ The gradient data requires aggregation before 

transmission, which can be considered as the main 

cause of stepwise pattern.

➢ Such a pattern is independent of the DDNN training 

frameworks, DNN models, datasets, and hardware 

architectures.
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Motivation
Prophet

➢ The core idea of Prophet is that: It predicts the transferred gradient data size by 

profiling the time interval between blocks and the available network bandwidth 

during model training.

➢ Prophet ensures that each gradient can be transferred by greedily utilizing the 

network bandwidth resources without blocking the higher-priority gradients, 

so that the critical gradients (e.g., gradient 0) can be transferred as fast as 

possible, and with negligible runtime overhead.
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Motivation
An Illustrative Example

➢ Default MXNet transmits gradients with the 

default FIFO order;

➢ P3 slices the gradients into small partitions to 

ensure a timely preemption, but with non-

negligible overhead;

➢ ByteScheduler configures the credit size to 

avoid the partition overhead, while keeping a 

relatively high preemption rate;

➢ Prophet introduces the concept of gradient 

blocks by identifying the stepwise pattern for 

DDNN training, greedily transferring the 

gradient data through a lightweight job profiling.
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Modeling
Illustration of DDNN Training Time

the time cost for 
backward 
propagation

the time cost for 
forward 
propagation

the total idle time of GPU resources 
during the entire training process
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Modeling
Illustration of DDNN Training Time

completion time 
of parameter 
update

completion time 
of forward 
propagation

part of GPU idle time

* the network communication of timely transferred 
gradients actually overlaps with the forward 
propagation (i.e., u(i) < p(i−1)), and thus we only use the 
positive part of u(i) − p(i−1)

GPUs are in the working state during the backward
propagation until gradient 0 is generated at c(0)

GPUs are back to the working state when gradient 0 updates 
its parameters at u(0)

gradient x(i) can start its forward propagation 
only when the previous gradient x(i−1) finishes 
the forward propagation and x(i) completes its 
parameter update process
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Modeling
Problem Formulation

➢ How to schedule the gradient transfer time to minimize Twait (and thus to 

minimize Tall) to maximize the GPU resource utilization.

can only be pushed after it is generated

avoids the concurrent gradient transfer

during the forward propagation, un-transmitted gradients 
should be transmitted in the order of priority
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Modeling
Problem Formulation

➢ The gradients should be transferred before any higher-priority gradient is 

generated in the backward propagation.

This implies that we can take advantage of 
the stepwise pattern (e.g., block time interval) 
to find the optimal gradient transfer

* Gradients are transferred in the order of priorities 
in the forward propagation
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Algorithm Design
Principles

➢ By leveraging the block time interval and the monitored network bandwidth, we 

determine the start time of gradient transfer during both the backward 

propagation and forward propagation.

➢ Take advantage of our observed stepwise pattern.



INTERNATIONAL

CONFERENCE ON
PARALLEL

PROCESSING

Algorithm Design
Pseudocode

assemble the gradient into a gradient block

greedily assemble each gradient if it can be transmitted
before any higher-priority gradient is generated

ensure critical gradients are 
transferred as fast as possible

determine the start time of gradient transfer during 
both the backward and forward propagation

gradients are transferred in the order of priority in 
forward propagation
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Algorithm Design
Implementation of Prophet

➢ Prophet is implemented based on the abstraction layer of BytePS.

➢ designed to support multiple frameworks

pre-trains the DNN 
model to obtain the 
gradient information

periodically acquires the 
available network bandwidth

leverages the gradient and network bandwidth information to 
find the optimal start time of gradient transfer
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Evaluation
Experimental Setup & Metrics

➢ Eight g3.8xlarge instances (i.e., 1 PS and 

7 worker nodes) in Amazon EC2
➢ 32 vCPUs (2.7 GHz Intel Xeon E5-2686 v4 Broadwell)

➢ 2 GPUs (NVIDIA Tesla M60 GPU, each is equipped with 2048 

parallel processing cores and 8 GB GPU memory)

➢ 244 GB memory

➢ varying network bandwidth from 1 Gbps to 10 Gbps.

➢ Four representative DNN models

➢ ResNet18

➢ ResNet50

➢ ResNet152

➢ Inception-v3 

➢ Three evaluation metrics

➢ The model training rate

➢ The GPU utilization and network uplink/downlink throughput

➢ The wait time of each gradient data and start time of the forward propagations 
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Evaluation
Effectiveness of Prophet

➢ Prophet can significantly improve the training rate by 10% – 40% compared with 

ByteScheduler, for different DNN models and batch sizes.
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Evaluation
Effectiveness of Prophet

➢ Prophet can significantly reduce 

both the wait time of gradient 

transfer and the transfer time of 

gradients.
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Evaluation
Robustness of Prophet

➢ Under different batch sizes:

a larger mini-batch takes a longer time to 
compute the gradients, which inevitably makes 

the stepwise pattern more obvious and thus 
prolongs the time interval among blocks

➢ Under different bandwidth conditions:

Prophet achieves relatively higher DDNN training 
performance by 11.7% - 39.1% compared with 
default MXNet and P3.

➢ In heterogeneous environments:

Both Prophet and ByteScheduler outperform the 
default MXNet in heterogeneous environments.

Prophet slightly improves the training performance by
2.3% compared with ByteScheduler in heterogeneous 
environments.
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➢ Prophet leverages our observed stepwise pattern of gradient transfer start time 

to make the forward propagation start as early as possible to greedily reduce 

the waiting (idle) time of GPU resources during the DDNN training process.

➢ Prophet can improve the DDNN training performance by up to 40% compared 

with the state-of-the-art priority-based communication scheduling strategies, 

yet with negligible runtime performance overhead.

Summary

➢ We design and implement a predictable communication scheduling strategy 

named Prophet to schedule the gradient transfer in an adequate order, with 

the aim of maximizing the GPU and network resource utilization.
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