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Background
Data Transmission in Distributed Deep Learning

> In each training iteration, amounts of data (e.g., gradients/parameters,

intermediate data) should be transferred across devices.
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TensorFlow
» Parameter Server, a centralized communication architecture is typically used for
data parallelism.
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Background
Bottleneck and Related Works

» The communication can block the computation of Workers.

» Several related works design priority-based communication scheduling strategies.

» e.g., P3is dedicated to overlapping the backward propagation with the gradient

p us h p rocess. Receive gradient n

data from each . “

worker, and update ! Parameter Server

parameters : over.\'qpping -
V i '
A1} B1 a

PULL from PS m Worker 1
I |
A2 | L

| INTERNATIONAL / PaN
CONFERENCE ON PULL from PS m aCim ) In-Cooperation
/ | PARALLEL Worker 2 > P

PROCESSING | bt sighpc




Motivation
Existing Problems of Related Works

» The GPU utilization is still low in some situations.
» the GPU utilization can dramatically decrease to zero (i.e., totally idle) during

the pull operation of model parameters.
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Motivation
Existing Problems of Related Works

» Non-negligible performance overhead of state-of-the-art priority-based

communication scheduling strategies.
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Motivation
Stepwise Pattern

» Communication characteristic of gradient transfer follows a stepwise pattern
over time.

» The gradient data requires aggregation before 0
transmission, which can be considered as the main a 120
cause of stepwise pattern. E 90

> Such a pattern is independent of the DDNN training E 60
frameworks, DNN models, datasets, and hardware 30
architectures. 0
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Motivation
Prophet

» The core idea of Prophet is that: It predicts the transferred gradient data size by

profiling the time interval between blocks and the available network bandwidth
during model training.

» Prophet ensures that each gradient can be transferred by greedily utilizing the
network bandwidth resources without blocking the higher-priority gradients,
so that the critical gradients (e.g., gradient 0) can be transferred as fast as

possible, and with negligible runtime overhead.
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Motivation

An lllustrative Example conp
» Default MXNet transmits gradients with the pull
default FIFO order;
» P3slices the gradients into small partitions to

MXNet

P3

comp

push 0 0
L0 0

ensure a timely preemption, but with non-

pull
negligible overhead; ByteScheduler
» ByteScheduler configures the credit sizeto comp
avoid the partition overhead, while keeping a push
relatively high preemption rate; pull
» Prophet introduces the concept of gradient
blocks by identifying the stepwise pattern for comp
DDNN training, greedily transferring the push
pull

gradient data through a lightweight job profiling.

*The nomn’onl indicates the start time of forward propagation
* The notation ] denotes the assembled gradients that are transferred at a time
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Modeling
lllustration of DDNN Training Time

the total idle time of GPU resources
/ during the entire training process
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Modeling
lllustration of DDNN Training Time

GPUs are in the working state during the backward
/ propagation until gradient 0 is generated at cp
(H(O) _ C(O))

\ GPUs are back to the working state when gradient 0 updates
its parameters at u

completion time] completion time

of parameter of forward _
update propagation o max{p('_l),u(’)} + T};} when i# 0,
i) _
: : b= G T(ﬂ) when i=0
part of GPU idle time fp '
* the network communication of timely transferred . . i :
gradients actually overlaps Withfthe fo)rlward ! gradient x(i) can start its forward propagation
o only when the previous gradient x(i-1) finishes
Z g;/; 7\?:;’2,2 gﬁ"’ u“’; pe-y), and thus we only use the the forward propagation and x(i) completes its
() — M(i-1)

parameter update process
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Modeling
Problem Formulation

» How to schedule the gradient transfer time to minimize Twait (and thus to

minimize Tar) to maximize the GPU resource utilization.
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s.t. [ ;’?' c 7, avoids the concurrent gradient transfer
(g (V1D + EV)T vie X j#i,
tm > t(k), Vk e X < i, when t(l) > c(m.
\ during the forward propagation, un-transmitted gradients
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Modeling
Problem Formulation

» The gradients should be transferred before any higher-priority gradient is
generated in the backward propagation.

¢ 4 g() < c{k}, Vk € X < i, when t(0) < 0

150
This implies that we can take advantage of A 120
the stepwise pattern (e.g., block time interval) 2 90
to find the optimal gradient transfer % 60
&)

30
* Gradients are transferred in the order of priorities 0
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Algorithm Design
Principles

» By leveraging the block time interval and the monitored network bandwidth, we
determine the start time of gradient transfer during both the backward
propagation and forward propagation.

» Take advantage of our observed stepwise pattern.
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Algorithm 1: Prophet: Communication scheduling strategy

A I g O r I t h m D eS I g n for improving resource utilization of workers and minimiz-

ing the DDNN training time.

P S e u d 0 C O d e Input: Current available network bandwidth B of workers, the gradient

generation time ¢'?) and the gradient size s'?) for each gradient i € X.
Output: Start time ¥ of gradient transfer (i.e., the start time to push

determine the start time of gradient transfer during ¢ gradient i € %). L
. 1: Inmitialize: bstimated gradient transmission time — 5
Initialize: Estimated gradi ission time E() « S (by
both the backward and forward Propagatmn Eq. (5) and Eq. (10)), and the expected transfer time interval
(i ; i M - iant i )

hile exists gradients to be scheduled do
p « the highest priority of gradients ready to be scheduled;
if p # gradient @ then

if the current time is in the backward propagation then

greedily assemble each gradient if it can be transmitted
before any higher-priority gradient is generated

A U

while the gradient g can be greedily transferred within the
expected time interval AD T, .qdo
Assemble the gradient g into a gradient block and update
tD — T ooy +cP):
assemble the gradient into a gradient block : Update the used time Tyseq < Tusea + E%5
: Set g as the currently highest-priority gradient that is ready
to be transferred;
end while: // backward propagation.

gradients are transferred in the order of priority in

forward propagation : Set t(P) as the earliest available scheduling time #,¢x:
Update the next available time tpext < thext + EW®);

// forward propagation.

ensure critical gradients are 17: Set 9 as the generation time ¢ of gradient @;
. Update the next available time f,ex; < +© + g,
transferred as fast as possible 10 ethdu
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Algorithm Design
Implementation of Prophet

» Prophet is implemented based on the abstraction layer of BytePS.

» designed to support multiple frameworks

Input
. . . Cluster
- t
pre-trains the DNN training |:> BytePS Core getTask > ~etwork

model to obtain the 92t P ] |
gradient informationt " "*~e,. /

Gradient information \
(gradient size, priority, )

o !
“ea, computation time, e
Tanins b
Profiler i
Gradient Scheduled
Block Queue

Assembler

Training Network (Alg. 1) Gradient blocks (with the
cluster Bandwidth Monitor optimal scheduling time
- i L et® Available bandwidth . of gradient transfer)
periodically acquires the At . Prophet /
available network bandwidth ;
| INTERNATIONAL leverages the gradient and network bandwidth information to
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Evaluation
Experimental Setup & Metrics

» Eight g3.8xlarge instances (i.e., 1 PS and » Four representative DNN models

7 worker nodes) in Amazon EC2 > ResNet18
> 32 vCPUs (2.7 GHz Intel Xeon E5-2686 v4 Broadwell)

> 2 GPUs (NVIDIA Tesla M60 GPU, each is equipped with 2048 » ResNet50
parallel processing cores and 8 GB GPU memory)

> 244 GB memory » ResNet152

> varying network bandwidth from 1 Gbps to 10 Gbps. > Inception v3

» Three evaluation metrics
» The model training rate
» The GPU utilization and network uplink/downlink throughput

» The wait time of each gradient data and start time of the forward propagations
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Evaluation

Effectiveness of Prophet

» Prophet can significantly improve the training rate by 10% — 40% compared with
ByteScheduler, for different DNN models and batch sizes.
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Evaluation
Effectiveness of Prophet
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Evaluation
Robustness of Prophet

» Under different batch sizes: » Under different bandwidth conditions:
o P P Prophet achieves relatively higher DDNN training
and Prophet  ByteScheduler ?erformancet performance by 11.7% - 39.1% compared with
. 1mprovemen
batch size (samples/sec)  (samples/sec) P default MXNet and P3.

ResNet18 (16) 32.46 29.06 11.6%

ResNet18 (64) 153 115 33%

ResNet50 (16) 14.44 14.22 1.5%

ResNet50 (32) 34.8 28.5 22% .

ResNet50 (64) 60 44 367 » In heterogeneous environments:

Both Prophet and ByteScheduler outperform the

a larger mini-batch takes a longer time to

compute the gradients, which inevitably makes default MXNet in heterogeneous environments.
the stepwise pattern more obvious and thus
PO U B I ENED Gl S Prophet slightly improves the training performance by

2.3% compared with ByteScheduler in heterogeneous
environments.

| INTERNATIONAL
/ CONFERENCE ON

N\
acC m) In-Cooperation

Vv sighpc

| PARALLEL
PROCESSING |




Summary

» We design and implement a predictable communication scheduling strategy
named Prophet to schedule the gradient transfer in an adequate order, with

the aim of maximizing the GPU and network resource utilization.

> Prophet leverages our observed stepwise pattern of gradient transfer start time
to make the forward propagation start as early as possible to greedily reduce
the waiting (idle) time of GPU resources during the DDNN training process.

» Prophet can improve the DDNN training performance by up to 40% compared
with the state-of-the-art priority-based communication scheduling strategies,

yet with negligible runtime performance overhead.
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