
Prophet: Speeding up Distributed DNN Training
with Predictable Communication Scheduling

Zhenwei Zhang1, Qiang Qi2, Ruitao Shang3, Li Chen†, Fei Xu*

Email: 110165102154@stu.ecnu.edu.cn * fxu@cs.ecnu.edu.cn
1,2,3,*East China Normal University

†University of Louisiana at Lafayette

mailto:110165102154@stu.ecnu.edu.cn

INTERNATIONAL

CONFERENCE ON
PARALLEL

PROCESSING

Background

Data Transmission in Distributed Deep Learning

➢ In each training iteration, amounts of data (e.g., gradients/parameters,

intermediate data) should be transferred across devices.

➢ Parameter Server, a centralized communication architecture is typically used for

data parallelism.

PS
Workerbroadcast

collection

pull

push

Worker
pull

push

INTERNATIONAL

CONFERENCE ON
PARALLEL

PROCESSING

Background

Bottleneck and Related Works

➢ The communication can block the computation of Workers.

➢ Several related works design priority-based communication scheduling strategies.

➢ e.g., P3 is dedicated to overlapping the backward propagation with the gradient

push process.

INTERNATIONAL

CONFERENCE ON
PARALLEL

PROCESSING

Motivation
Existing Problems of Related Works

➢ The GPU utilization is still low in some situations.

➢ the GPU utilization can dramatically decrease to zero (i.e., totally idle) during

the pull operation of model parameters.

The slow network transmission makes the
GPUs fail to timely acquire the model
parameters and thus delays the computation
(i.e., forward propagation).

INTERNATIONAL

CONFERENCE ON
PARALLEL

PROCESSING

Motivation
Existing Problems of Related Works

➢ Non-negligible performance overhead of state-of-the-art priority-based

communication scheduling strategies.

The smaller size of partitions dramatically
decreases the DDNN training rate

The training rate of the ResNet50 model
fluctuates rapidly

INTERNATIONAL

CONFERENCE ON
PARALLEL

PROCESSING

Motivation
Stepwise Pattern

➢ Communication characteristic of gradient transfer follows a stepwise pattern

over time.

➢ The gradient data requires aggregation before

transmission, which can be considered as the main

cause of stepwise pattern.

➢ Such a pattern is independent of the DDNN training

frameworks, DNN models, datasets, and hardware

architectures.

INTERNATIONAL

CONFERENCE ON
PARALLEL

PROCESSING

Motivation
Prophet

➢ The core idea of Prophet is that: It predicts the transferred gradient data size by

profiling the time interval between blocks and the available network bandwidth

during model training.

➢ Prophet ensures that each gradient can be transferred by greedily utilizing the

network bandwidth resources without blocking the higher-priority gradients,

so that the critical gradients (e.g., gradient 0) can be transferred as fast as

possible, and with negligible runtime overhead.

INTERNATIONAL

CONFERENCE ON
PARALLEL

PROCESSING

Motivation
An Illustrative Example

➢ Default MXNet transmits gradients with the

default FIFO order;

➢ P3 slices the gradients into small partitions to

ensure a timely preemption, but with non-

negligible overhead;

➢ ByteScheduler configures the credit size to

avoid the partition overhead, while keeping a

relatively high preemption rate;

➢ Prophet introduces the concept of gradient

blocks by identifying the stepwise pattern for

DDNN training, greedily transferring the

gradient data through a lightweight job profiling.

INTERNATIONAL

CONFERENCE ON
PARALLEL

PROCESSING

Modeling
Illustration of DDNN Training Time

the time cost for
backward
propagation

the time cost for
forward
propagation

the total idle time of GPU resources
during the entire training process

INTERNATIONAL

CONFERENCE ON
PARALLEL

PROCESSING

Modeling
Illustration of DDNN Training Time

completion time
of parameter
update

completion time
of forward
propagation

part of GPU idle time

* the network communication of timely transferred
gradients actually overlaps with the forward
propagation (i.e., u(i) < p(i−1)), and thus we only use the
positive part of u(i) − p(i−1)

GPUs are in the working state during the backward
propagation until gradient 0 is generated at c(0)

GPUs are back to the working state when gradient 0 updates
its parameters at u(0)

gradient x(i) can start its forward propagation
only when the previous gradient x(i−1) finishes
the forward propagation and x(i) completes its
parameter update process

INTERNATIONAL

CONFERENCE ON
PARALLEL

PROCESSING

Modeling
Problem Formulation

➢ How to schedule the gradient transfer time to minimize Twait (and thus to

minimize Tall) to maximize the GPU resource utilization.

can only be pushed after it is generated

avoids the concurrent gradient transfer

during the forward propagation, un-transmitted gradients
should be transmitted in the order of priority

INTERNATIONAL

CONFERENCE ON
PARALLEL

PROCESSING

Modeling
Problem Formulation

➢ The gradients should be transferred before any higher-priority gradient is

generated in the backward propagation.

This implies that we can take advantage of
the stepwise pattern (e.g., block time interval)
to find the optimal gradient transfer

* Gradients are transferred in the order of priorities
in the forward propagation

INTERNATIONAL

CONFERENCE ON
PARALLEL

PROCESSING

Algorithm Design
Principles

➢ By leveraging the block time interval and the monitored network bandwidth, we

determine the start time of gradient transfer during both the backward

propagation and forward propagation.

➢ Take advantage of our observed stepwise pattern.

INTERNATIONAL

CONFERENCE ON
PARALLEL

PROCESSING

Algorithm Design
Pseudocode

assemble the gradient into a gradient block

greedily assemble each gradient if it can be transmitted
before any higher-priority gradient is generated

ensure critical gradients are
transferred as fast as possible

determine the start time of gradient transfer during
both the backward and forward propagation

gradients are transferred in the order of priority in
forward propagation

INTERNATIONAL

CONFERENCE ON
PARALLEL

PROCESSING

Algorithm Design
Implementation of Prophet

➢ Prophet is implemented based on the abstraction layer of BytePS.

➢ designed to support multiple frameworks

pre-trains the DNN
model to obtain the
gradient information

periodically acquires the
available network bandwidth

leverages the gradient and network bandwidth information to
find the optimal start time of gradient transfer

INTERNATIONAL

CONFERENCE ON
PARALLEL

PROCESSING

Evaluation
Experimental Setup & Metrics

➢ Eight g3.8xlarge instances (i.e., 1 PS and

7 worker nodes) in Amazon EC2
➢ 32 vCPUs (2.7 GHz Intel Xeon E5-2686 v4 Broadwell)

➢ 2 GPUs (NVIDIA Tesla M60 GPU, each is equipped with 2048

parallel processing cores and 8 GB GPU memory)

➢ 244 GB memory

➢ varying network bandwidth from 1 Gbps to 10 Gbps.

➢ Four representative DNN models

➢ ResNet18

➢ ResNet50

➢ ResNet152

➢ Inception-v3

➢ Three evaluation metrics

➢ The model training rate

➢ The GPU utilization and network uplink/downlink throughput

➢ The wait time of each gradient data and start time of the forward propagations

INTERNATIONAL

CONFERENCE ON
PARALLEL

PROCESSING

Evaluation
Effectiveness of Prophet

➢ Prophet can significantly improve the training rate by 10% – 40% compared with

ByteScheduler, for different DNN models and batch sizes.

INTERNATIONAL

CONFERENCE ON
PARALLEL

PROCESSING

Evaluation
Effectiveness of Prophet

➢ Prophet can significantly reduce

both the wait time of gradient

transfer and the transfer time of

gradients.

INTERNATIONAL

CONFERENCE ON
PARALLEL

PROCESSING

Evaluation
Robustness of Prophet

➢ Under different batch sizes:

a larger mini-batch takes a longer time to
compute the gradients, which inevitably makes

the stepwise pattern more obvious and thus
prolongs the time interval among blocks

➢ Under different bandwidth conditions:

Prophet achieves relatively higher DDNN training
performance by 11.7% - 39.1% compared with
default MXNet and P3.

➢ In heterogeneous environments:

Both Prophet and ByteScheduler outperform the
default MXNet in heterogeneous environments.

Prophet slightly improves the training performance by
2.3% compared with ByteScheduler in heterogeneous
environments.

INTERNATIONAL

CONFERENCE ON
PARALLEL

PROCESSING

➢ Prophet leverages our observed stepwise pattern of gradient transfer start time

to make the forward propagation start as early as possible to greedily reduce

the waiting (idle) time of GPU resources during the DDNN training process.

➢ Prophet can improve the DDNN training performance by up to 40% compared

with the state-of-the-art priority-based communication scheduling strategies,

yet with negligible runtime performance overhead.

Summary

➢ We design and implement a predictable communication scheduling strategy

named Prophet to schedule the gradient transfer in an adequate order, with

the aim of maximizing the GPU and network resource utilization.

Thank You

Prophet: Speeding up Distributed DNN Training
with Predictable Communication Scheduling

Zhenwei Zhang, Fei Xu*

“ECNU-iCloud” Research Group
School of Computer Science and Technology

East China Normal University

