

sRouting: Towards a Better Flow Size Estimation Performance through Routing and Sketch Configuration

Yang Shi (时洋) and Mei Wen National University of Defense Technology August 12, 2021

- Motivation
- sRouting Overview
- Offline Part
- Online Part
- Evaluation

Motivation

- sRouting Overview
- Offline Part
- Online Part
- Evaluation

Motivation

- Sketches are widely used for flow size estimation
 - Emerging programmable switches
 - Small amount of memory
 - Fine-grained statistics
- Adopting sketches in real-life facing practical issues
 - Partial deployment of programmable devices
 - Unique characteristics and objectives in different networks

How to improve the performance of sketches ?

Analysis of sketches

- Accuracy of sketches
 - Using ARE (Average Relative Error)
 - In theory: $\hat{f}_i \leq f_i + \epsilon \|f\|_1$
 - Testing results of different sketches
 - Can be approximated well with linear functions

Example

- Accuracy sketch-based measurement can be improved
 - using routing and sketch configuration

Sketch measurement in networks

22.000.000.2014	Action	
Flow Key	Next Hop	Sketch
f_1	D	0
f_2	D	1

Routing	table i	n sw	itch D

Match	Action	
Flow Key	Next Hop	Sketch
f_1	-	1
f_2	-	0
f_3	1	1
f_4	-	1

Routing table in switch C and D

- Motivation
- sRouting Overview
- Offline Part
- Online Part
- Evaluation

sRouting

- Two parts:
 - Offline part, making strategies on the base of long-term information
 - Online part, adjusting strategies when facing dynamic changes

- Motivation
- sRouting Overview
- Offline Part
- Online Part
- Evaluation

Network and sketch models

- Network
 - Flow, flowset, macroflow
 - Flows in a flowset shares one routing path
- Sketch
 - Partial deployment of programmable switches (sketches)
 - Different measurement importance values
- Makes sRouting Practical and general

Offline problem formulation

• ILP model for offline scenario

(0) $\min \sum_{\gamma_i \in \Gamma} u(\gamma_i) q_{\gamma_i}$	(2)
s.t. $\sum_{p \in P_{i}} x_{\gamma_i}^p = 1, \qquad \forall \gamma_i \in \Gamma$	(3)
$\sum_{\gamma_{i}\in P} y_{\gamma_{i}}^{k} = x_{\gamma_{i}}^{p}, \qquad \forall \gamma_{i}\in \Gamma$	(4)
$\sum_{Y_i \in \Gamma} \sum_{e \in p: p \in P_i} f_{Y_i} \le c(e), \qquad \forall e \in E$	(5)
$\sum_{\gamma_i \in \Gamma} \sum_{p \in P} x_{\gamma_i}^p I_p^k \le c(t), \qquad \forall v_k \in V$	(6)
$N_{\upsilon_k} = \sum_{\nu_i \in \Gamma} y_{\gamma_i}^k N_{\gamma_i}, \qquad \forall \upsilon_k \in V$	(7)
$q_{\upsilon_k} = (1 - Z_k)T + Z_k(\alpha_s N_{\upsilon_k} + \beta_s), \qquad \forall \upsilon_k \in V$	(8)
$q_{\gamma_i} = \sum_{\upsilon_k} y_{\gamma_i}^k q_{\upsilon_k}, \qquad \forall \gamma_i \in \Gamma$	(9)

Randomized Rounding Algorithm

- Two steps:
 - Solving a relaxed LP model
 - Obtain integer solutions
- With proven performance
 - Both constraints and measurement performance

Algorithm 1: Randomized Rounding Algorithm for Offline sRouting

Input: ILP formulation with integer variables $x_{Y_i}^p, y_{Y_i}^k \in \{0, 1\}$ **Output:** Solutions $\{\hat{x}_{\gamma_i}^p, \hat{y}_{\gamma_i}^k\}$ of the original problem 1: Step 1: Solving the relaxed LP problem 2: Obtain the solutions $\widetilde{x}_{Y_i}^p$, $\widetilde{y}_{Y_i}^k$ of the optimization problem by relaxing all integer variables Step 2: Deciding the routing path and measurement strategies for flowset y_i do Generate a value $\lambda_1 \in (0, 1)$ 5: for $p \in P_{y_i}$ do 6: $\lambda_1 = \lambda_1 - \widetilde{x}_{V_i}^p$ 7: if $\lambda_1 < 0$ then 8: $\hat{x}_{Y_i}^p = 1$ 9: Generate a value $\lambda_2 \in (0, 1)$ 10: for $v_k \in p$ do 11: $\lambda_2 = \lambda_2 - \widetilde{y}_{Y_i}^k$ 12: if $\lambda_2 < 0$ then 13: $\hat{y}_{\gamma_i}^k = 1$ 14: break 15: break 16: 17: **Return** $\{\hat{x}_{y_i}^p, \hat{y}_{y_i}^k\}$

- Motivation
- sRouting Overview
- Offline Part
- Online Part
- Evaluation

Online part of sRouting

- Main challenge in online scenario
 - Deployed strategies already in the network
- Formulated as a multi-objective problem
 - O1, minimal modification in deployed strategies
 - O2, maximize the network throughput
 - O3, minimize the measurement error

(01) min
$$\sum_{\gamma_i \in \Gamma} \sum_{\psi \in \Psi_{\gamma_i}} z_{\gamma_i}^{\psi} g(\psi_{\gamma_i}', \psi)$$

(02) max $\sum_{\gamma_i \in \Gamma} \sum_{\psi \in \Psi_{\gamma_i}} z_{\gamma_i}^{\psi} f_{\gamma_i}$
(03) min $\sum_{\gamma_i \in \Gamma} u(\gamma_i) q_{\gamma_i}$

Greedy algorithm for online sRouting

• Detailed in Algorithm 2

PROCESSING

- Step 1, finding the flowsets which need adjustment
- Step 2, finding the new scheme for important flowsets
- Step 3, trying to accept more important floesets through replacing others

Algorithm 2: Online Algorithm in sRouting	19: //Step 3: Trying to accept more important flowsets
Input: Γ , C_{max} , Ψ_{γ_i} , $u(\gamma_i)$, ψ'_{γ_i}	20: for γ_i in Γ_r do
Output: ψ_{γ_i} for $\gamma_i \in \Gamma$	21: $\Gamma_i = \{\gamma \psi_\gamma \neq , u(\gamma) < u(\gamma_i), \gamma \text{ and } \gamma_i \text{ belong to the same } \}$
1: //Step 1: Finding the flowsets which need adjustment	macroflow}
2: Sort Γ in a decreasing order of $u(\gamma_i)$	22: for $\psi_m \in \Psi_{Y_i}$ do
3: for γ_i in sorted Γ do	23: for $\gamma_i \in \Gamma_i$ do
4: if ψ'_{γ_i} is still available then	$24: 1/_{24} =$
5: $\psi_{\gamma_i} = \psi'_{\gamma_i}$	\mathbf{f}_{ij}
6: else	25: If ψ_m is available for ψ_{γ_i} and
7: $\Gamma_r \leftarrow \Gamma_r \cup \{\gamma_i\}$	$C_{max} \geq g(\psi'_{\gamma_i}, \psi_m) + g(\psi'_{\gamma_i}, \psi_{\gamma_j})$ then
8: $\psi_{\gamma_i} =$	26: $\psi_{\mathbf{Y}_i} = \psi_m$
9: $C_{max} = C_{max} - g(\psi'_{\gamma_i}, \psi_{\gamma_i})$	27: $\Gamma_r \leftarrow \Gamma_r \setminus \{v_i\}$
10: //Step 2: Finding new scheme for $\gamma_i \in \Gamma_r$	$\Gamma \leftarrow \Gamma \sqcup \{y_i\}$
11: for γ_i in Γ_r do	$\mathbf{r} \leftarrow \mathbf{r} \cup \{\gamma\}$
12: Sort Ψ_{γ_i} in an increasing order of q_{ψ}	$C_{max} = C_{max} - g(\psi'_{\gamma_i}, \psi_{\gamma_i}) - g(\psi'_{\gamma_j}, \psi_{\gamma_j})$
13: for $\psi_m \in \Psi_{\gamma_i}$ do	30: break
14: if ψ_m is available and $C_{max} \ge g(\psi'_{\gamma_i}, \psi_m)$ then	31: $\psi_{\mathcal{V}} = \psi'_{\mathcal{V}}$
15: $\psi_{\gamma_i} = \psi_m$	$\frac{1}{10} \frac{1}{10} \frac$
16: $\Gamma_r \leftarrow \Gamma_r \setminus \{\gamma_i\}$	32: If $\psi_{\gamma_i} \neq$ then
17: $C_{max} = C_{max} - g(\psi_{Y_i}', \psi_{Y_i})$	33: break
18: break	34: Return $\{\psi_{\gamma_i}\}$
50th Int	nternational Conference on Parallel Processing (ICPP)

- Motivation
- sRouting Overview
- Offline Part
- Online Part
- Evaluation

Evaluation

- Simulation settings
 - Topology: FatTree with 80 switches and Monash with 50 switches
 - Sketch: Count-Min sketch, 600 KB
 - Trace: CAIDA network trace
 - Flowset: each macroflow is divided into 10 flowsets
- Metrics and baselines
 - Metrics: ARE, TCR (traffic cover ratio) and throughput
 - Baselines: Optimal, ECMP and TPmax

Offline scenario

In-Cooperation

• TCR

PARALLEL

PROCESSING

- FatTree (sketch = 8,16), 1.62 2.27x more traffic than ECMP and TPmax
- close to Optimal
- schedule significantly more traffic across sketches

Offline scenario

- ARE
 - 40.5% and 26.3% that of ECMP and TPmax respectively
 - sRouting can achieve a much lower ARE
 - use as many sketches as possible to record the flows

Offline scenario

- heavy hitter detection
 - a higher value of F1 represents more accurate heavy hitter detection
 - F1 scores are improved by ratios of 31.5% and 62.7% (FatTree)
 - verify the effectiveness in improving the performance of other tasks

Online scenario

• Dynamic events in online evaluation

Event	Details
E_1	Remove five links from the topology
E_2	Double the traffic rates of all flows
E_3	Deploy five more sketches in the network
E_4	Exchange the traffic rate of 50% of elephant flows
	with the same number of mice flows
E_5	Change the importance value of 5% of elephant
	flows with the same number of mice flows

Online evaluation

• TCR and ARE

INTERNATIONAL

CONFERENCE ON

PARALLEL

PROCESSING

- sRouting has a great effect on keeping the TCR at a high level
- a small increase in the ARE of sRouting, much lower than others

Online scenario

Throughput

CONFERENCE ON

PARALLEL

PROCESSING

- TPmax achieves the highest throughput in most intervals
- sRouting can achieve similar throughput to TPmax
- with a maximum difference of about 2.9%

Thank you! 谢谢!

