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Introduction

* SpMV Graph Analytics
— Updating data of a vertex by considering data of its in-neighbours

— Applications: HITS, Graph Neural Networks, Belief Propagation,...
Edges incident to hubs

Dataset Hubs’ Edges (%)
* Power-law Graphs Twitter 44.4
— Social networks, Web graphs, ... Friendster 239
SK-Domain 77.2
— A very small fraction of vertices (known as hubs), WebCC 60.5
are connected to a large fraction of edges UK-Delis 77.6
. . . . . UK-Uni 73.0
— 1% of vertices with maximum degrees are incident to 23% - 77% e
UK-Domain 45.2
of edges
ClueWeb09 50.4
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Pull Push

SpMV in pull direction

Input: G(V, E) , D!, D!
1 forv e Vdo

SpMV in push direction

Input: G(V, E) ,D'"1, D!
1 forv e Vdo

2 | sum = 0; 2 | forue N} do
3 for u € N, do 3 | D'u] += Do
4 ‘ sum += D' u);
i Push * Random memory accesses:
5 Dto] = sum;

— Updati data (DY) of out-neighb
Random memory accesses: pdating new data (D’) of out-neighbours

- — Cache is dedicated t data of
— Reading old data (D) of in'neighbours daC .e 1S . edicated to new data o
estinations
— Cache is dedicated to old data of source

, * Sequential accesses:
vertices

, — Reading old data of a vertex (D"*)
Sequential accesses:

* Requires protection of the new data (D)

— Writing new data (D') of a vertex from concurrent updates
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Is Pull A Suitable Direction?
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iHTL: in-Hub Temporal Locality

Incoming edges to in-hubs have
— A very large number of source vertices, and
— A small number of destination vertices

Cache cannot satisty the large number of source vertices in this sub-graph

iHTL states that for incoming edges to in-hubs :
— Cache can accommodate the small number of destinations (in-hubs), so
— Cache should be dedicated to destinations , and not source vertices. In other words,

— Push is the cache-compatible direction for processing incoming edges to in-hubs
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iHTL Graph Structure

,_A_\, i

Hubs VWEH  FV

* iHTL divides vertices into 3 types:
— in-Hubs that are identified by investigating graph structure
— Vertices With Edges to in-Hubs (VWEH)
— Fringe Vertices (FV) with no edges to in-hubs

Flipped Block 2

Sparse Block

* iHTL divides graph into 3 major parts: Push Pull

— A number of Flipped Blocks contain incoming edges to in-hubs
— A Sparse Block contains edges to non-hubs

— A Zero Block contains no edges
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SpMV in iHTL

* iHTL process graph in 2 steps:
— Processing flipped blocks in push direction

* Private L2 cache is used as buffer Push
* Flipped blocks are processed in parallel FV{ 0
v .
* Fast buffer merging® as it should be done only for in- — ¥ >
hubs Push Pull
— Processing the sparse block in pull direction Push direction corresponds
to a row-major traversal.
* Improved locality by separating in-hubs Pull direction corresponds

to a column-major traversal.
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4- Roy, Mihailovic, Zwaenepoel, X-Stream: edge-centric graph processing using streaming partitions, SOSP’13.




Evaluation

* Comparison to state-of-the-art graph

5- Sun, Vandierendonck, Nikolopoulos. GraphGrind: Addressing load imbalance of graph partitioning, ICPP’17.
6- Zhang, Yang, Baghdadi, Kamil, Shun, Amarasinghe. Graphlt: A high-performance graph dsl, OOPSLA’18.
7- Nguyen, Lenharth, Pingali, A lightweight infrastructure for graph analytics, SOSP’13.

processing frameworks:
GraphGrind(GGrind)®, Graphlt®, Galois"”

iHTL

GGrind Graphlt | GGrind Graphlt Galois

LvJrnl
Twtrl0
TwtrMpi
Frndstr
SK
WbCe
UKDIs
UU
UKDmn
CIWH9 6,844 6,220 3,405 4,407
Avg. Speedup | 4.8% 9.5x% 1.7x 1.5%

Machine: 2 x 16-core Intel Xeon Gold 6130, 768GB RAM

2,637 1,827

2.4x

9

* Comparison to state-of-the-art locality

optimizing relabeling algorithms:

SlashBurn(SB), GOrder(GO), Rabbit-Order(RO)

Iteration Time (ms) I

Preprocessing Time (s)

SB GO RO
Pull Pull Pull

LvJrnl 44 45
Twtrl0
TwtrMpi
Frndstr

SK

WbCec

UKDIs

UuU

UKDmn
CIWb9

'Avg. Speedup

iHTL SB

410
234
346
399

1.4x

1.3x

GO

RO iHTL
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Conclusion

* In-hub vertices connect to a large fraction of the edges, and incur a higher-than-average miss rate.

* JiHTL states that

— Incoming edges to in-hubs have a large number of source vertices but a very small number of
destinations, so

— Push is the suitable direction for this sub-graph as the small number of destinations can be
accommodated in cache.

* 1HTL creates

— A number of flipped blocks (containing incoming edges to in-hubs) that are processed in
push direction and

— A sparse block that is processed in pull direction.

7 QUEEN'S
] UNIVERSITY
BELFAST

10



Thank You

Have you any question?

Further discussions on our website:
https://blogs.qub.ac.uk/GraphProcessing/Exploiting-in-Hub-Temporal-Locality-in-SpMV

Thrifty Label Propagation: Structure Aware Connected Components
IS COMING...

Next Month, IEEE CLUSTER 21 QUEEN'S
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