
https://blogs.qub.ac.uk/GraphProcessing/

ICPP 2021 / August 9-12

 Exploiting in-Hub
Temporal Locality in
SpMV-based Graph
Processing Mohsen Koohi Esfahani

Peter Kilpatrick

Hans Vandierendonck

mkoohiesfahani01@qub.ac.uk

p.kilpatrick@qub.ac.uk

h.vandierendonck@qub.ac.uk

DOI: 10.1145/3472456.3472462

https://blogs.qub.ac.uk/GraphProcessing/
https://oaciss.uoregon.edu/icpp21/
https://blogs.qub.ac.uk/graphprocessing/exploiting-in-hub-temporal-locality-in-spmv-based-graph-processing/
https://blogs.qub.ac.uk/graphprocessing/exploiting-in-hub-temporal-locality-in-spmv-based-graph-processing/
https://blogs.qub.ac.uk/graphprocessing/exploiting-in-hub-temporal-locality-in-spmv-based-graph-processing/
https://blogs.qub.ac.uk/graphprocessing/exploiting-in-hub-temporal-locality-in-spmv-based-graph-processing/
https://orcid.org/0000-0002-7465-8003
https://orcid.org/0000-0003-0818-8979
https://orcid.org/0000-0001-5868-9259
mailto:mkoohiesfahani01@qub.ac.uk
mailto:p.kilpatrick@qub.ac.uk
mailto:h.vandierendonck@qub.ac.uk
https://doi.org/10.1145/3472456.3472462

2

• Introduction

• Pull vs Push

• Is Pull A Suitable Direction?

• iHTL: in-Hub Temporal Locality

• iHTL Graph Structure

• SpMV in iHTL

• Evaluation

• Conclusion

Outline

3

Introduction

• SpMV Graph Analytics

– Updating data of a vertex by considering data of its in-neighbours

– Applications: HITS, Graph Neural Networks, Belief Propagation,…

• Power-law Graphs

– Social networks, Web graphs, …

– A very small fraction of vertices (known as hubs),
are connected to a large fraction of edges

– 1% of vertices with maximum degrees are incident to 23% - 77%
of edges

Dataset Hubs’ Edges (%)

Twitter 44.4

Friendster 23.9

SK-Domain 77.2

WebCC 60.5

UK-Delis 77.6

UK-Union 73.0

UK-Domain 45.2

ClueWeb09 50.4

Edges incident to hubs

4

Pull Push

• Random memory accesses:

– Reading old data (Di-1) of in-neighbours

– Cache is dedicated to old data of source
vertices

• Sequential accesses:

– Writing new data (Di) of a vertex

• No race conditions, i.e., easy and fast
parallelization

• Random memory accesses:

– Updating new data (Di) of out-neighbours

– Cache is dedicated to new data of
destinations

• Sequential accesses:

– Reading old data of a vertex (Di-1)

• Requires protection of the new data (Di)
from concurrent updates

2
1

5
4

3

Pull

Push

5

Is Pull A Suitable Direction?

• Hubs experience very high cache miss rates

– Even after relabeling by locality-optimizing
reordering algorithms such as SlashBurn1,
GOrder2, and Rabbit-Order3

• A massive amount of vertex data is pulled
into the cache by pull processing of an in-hub
that

– Displaces much of the cache contents and

– Reduces the opportunity for future reuse

2- Wei, Yu, Lu, Lin. 2016. Speedup graph processing by graph ordering. SIGMOD '16.
1- Lim, Kang, Faloutsos, SlashBurn: Graph compression and mining beyond caveman communities, IEEE TKDD, 2014.

3- Arai, Shiokawa, Yamamuro, Onizuka, Iwamura, Rabbit order: Just-in-time parallel reordering for fast graph analysis, IPDPS’16.

https://ieeexplore.ieee.org/document/6807798
https://dl.acm.org/doi/10.1145/2882903.2915220
https://ieeexplore.ieee.org/document/7515998

6

iHTL: in-Hub Temporal Locality

• Incoming edges to in-hubs have

– A very large number of source vertices, and

– A small number of destination vertices

• Cache cannot satisfy the large number of source vertices in this sub-graph

• iHTL states that for incoming edges to in-hubs :

– Cache can accommodate the small number of destinations (in-hubs), so

– Cache should be dedicated to destinations , and not source vertices. In other words,

– Push is the cache-compatible direction for processing incoming edges to in-hubs

7

iHTL Graph Structure

• iHTL divides vertices into 3 types:

– in-Hubs that are identified by investigating graph structure

– Vertices With Edges to in-Hubs (VWEH)

– Fringe Vertices (FV) with no edges to in-hubs

• iHTL divides graph into 3 major parts:

– A number of Flipped Blocks contain incoming edges to in-hubs

– A Sparse Block contains edges to non-hubs

– A Zero Block contains no edges

8

SpMV in iHTL

• iHTL process graph in 2 steps:

– Processing flipped blocks in push direction

• Private L2 cache is used as buffer

• Flipped blocks are processed in parallel

• Fast buffer merging(4) as it should be done only for in-
hubs

– Processing the sparse block in pull direction

• Improved locality by separating in-hubs

Push direction corresponds
to a row-major traversal.

Pull direction corresponds
to a column-major traversal.

Pull

Push

4- Roy, Mihailovic, Zwaenepoel, X-Stream: edge-centric graph processing using streaming partitions, SOSP’13.

9

Evaluation
 • Comparison to state-of-the-art graph
processing frameworks:
GraphGrind(GGrind)(5), GraphIt(6), Galois(7)

• Machine: 2 × 16-core Intel Xeon Gold 6130, 768GB RAM

• Comparison to state-of-the-art locality
optimizing relabeling algorithms:
SlashBurn(SB), GOrder(GO), Rabbit-Order(RO)

5- Sun, Vandierendonck, Nikolopoulos. GraphGrind: Addressing load imbalance of graph partitioning, ICPP’17.
6- Zhang, Yang, Baghdadi, Kamil, Shun, Amarasinghe. GraphIt: A high-performance graph dsl, OOPSLA’18.
7- Nguyen, Lenharth, Pingali, A lightweight infrastructure for graph analytics, SOSP’13.

10

Conclusion

 • In-hub vertices connect to a large fraction of the edges, and incur a higher-than-average miss rate.

• iHTL states that

– Incoming edges to in-hubs have a large number of source vertices but a very small number of
destinations, so

– Push is the suitable direction for this sub-graph as the small number of destinations can be
accommodated in cache.

• iHTL creates

– A number of flipped blocks (containing incoming edges to in-hubs) that are processed in
push direction and

– A sparse block that is processed in pull direction.

11

Thank You

Have you any question?

Further discussions on our website:
https://blogs.qub.ac.uk/GraphProcessing/Exploiting-in-Hub-Temporal-Locality-in-SpMV

Thrifty Label Propagation: Structure Aware Connected Components
IS COMING . . .

Next Month, IEEE CLUSTER’21

https://blogs.qub.ac.uk/graphprocessing/exploiting-in-hub-temporal-locality-in-spmv-based-graph-processing/
https://blogs.qub.ac.uk/GraphProcessing/Exploiting-in-Hub-Temporal-Locality-in-SpMV-based-Graph-Processing/
https://blogs.qub.ac.uk/graphprocessing/thrifty-label-propagation-fast-connected-components-for-skewed-degree-graphs/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

