Automatic Generation of High-Performance Inference
Kernels for Graph Neural Networks on Multi-Core
Systems

Qiang Fu H. Howie Huang

The George Washington University

[INTERNATIONAL
/ CONFERENCE ON / acm) in-Cooperation

| PARALLEL
PROCESSING | b SIghpC

Graph is Everywhere

R
)
A
)
c
o
7}
Q=
Eu
@ o
c
au
£33

United States

%1 o |«
AR S
> > L I >
L > 5 N
-)
) het]
I3
R
“~ X
St *
[0}
0 N
Moo~ -~
pn I 1 I~
(O >
n = N
iV
v P a
— o -
s X X R O]
o ~—
O 4+
L= (ol S
o N -
T
-
O
D - —~

Graph Neural Networks (GNNs)

GNNs take as input graph and initial embedding.

Go through a series of convolution layers.

Output new embeddings incorporating graph structure information.

Successful application in social network mining, recommender system, molecule analysis etc.

Layer Layer 4

‘Input graph Output
with embeddings GNN layers new embeddings

GW

Computation in Each Layer of GNNs

* Each vertex computes a new embedding by
aggregating features (messages) from its
neighbors.

* Example: Graph Convolution Network (GCN)

h(l+1) e Z

uEN(v)

h(oW(z))

GW

* Graph Processing Systems

* We propose our GIN framework

* Hard to programming GNNs

GNN Frameworks

* Suffer from poor performance

* A compiler-based approach generating high-
performance kernels while offering easy-to-

use APIs.

Motivations

Vs

Low-level APIs

-

v

Vs

Code Template
Libraries

S
Compiling ‘
p

High-performance
Kernel

-

~N

(a) Graph Processing Systems

High-level APIs

~N

J

v

Deep Learning
Frameworks

~N

J
* Invoking
N

Precompiled

General Kernels

1

~
High-level APIs

—

.
GIN Framework

J
‘ Compiling
N

(b) GNN Frameworks

High-performance
Kernel

(c) GIN

GW

GIN Framework

ACG programming model
Dataflow Graph IR
Code generator

Optimizations

GW

ACG Programming Model

* Apply:

* Operations on feature matrices of vertices
or edges before traversing the graph.

* |In GCN:
RO — o Z h(l)Wa);)
uEN(v) """""
* Code:
Apply() {
vdata.H = MatMul(vdata.H, vars.W);

)

GW

ACG Programming Model

* Compute

* Operations defined on each edge to
calculate the message.

* |In GCN:
, 0
RO — o Z ; ROW O}
UEN (V) __6?7_7_._ fi_lf _________ i
* Code:

Compute(edge) {
ret = edge.src.deg * edge.dst.deg;
ret = Rsqrt(ret);
ret = ret * edge.src.H;
return ret;

)

Compute

message;

GW

ACG Programming Model

Gather

* How to aggregate messages.

- -

Gather(messages|[]) {
ret = Sum(messages);
return Relu(ret)

)

GW

Dataflow Graph IR

weight. W

Apply() { |

vdata.H = MatMul(vdata.H, vars.W); 4 datal = MatMul —> data. H
) vaata. atMu vdata.
Compute(edge) { ste.deg

ret = edge.src.deg * edge.dst.deg; ‘

ret = Rsqrt(ret); —) dstdeg =» Mul =—» Rsqit =—>

ret = ret * edge.src.H;

return ret;
}
Gather(messages|]) { . —

ret — Sum(messages); - messages Sum Relu

return Relu(ret)

}

10

src. H

—

v

Mul

=P message

result

GW

Code Generator

 Start with a C++ code template

Graph traversal.

Blank code blocks corresponding to the
three functions in the interface.

* Code generating

Iterate the nodes of the IR in topological
order.

Emit C++ codes executing the computation
represented by the IR.

11

Tensor Kernel_name (/* Input tensors list */) {

/* Code block 1 to initialize memory of intermediate
and output tensors. */

/* Code block 2 to execute the computation in Appy
function. */

parallel for each vertex v in graph {

for each edge ¢ in v’s incoming edge list {
/* Code block 3 to execute the computation
defined by Compute function, calculating
the message on edge e. */
}
/* Code block 4 to execute the computation defined
in Gather function, merging all message from
neighbors and updating features on vertex v. */

}

return output_tensor; //

}

GW

Optimizations

* Memory usage reduction
* Delta-based updating on aggregating results

* In-place operations such as activation function relu.

* Dynamic workload assignment

* Each thread dynamically request workload of vertices from the task pool to avoid the workload
imbalance.

12 GW

Experiment Setups

GNN models

CommNet, GCN, GGCN, GAT

Datasets

Baselines

DGL, Tensorflow, Pytorch-geometrics

Computing environment

2.6 GHz Intel Xeon(R) Gold 6126 processor
(24 cores)

|.5TB DRAM

Centos 7

Graph (Abbr.) |Vertex| |Edge| Avg.degree
Pubmed (PD) 19.7K 108.4K 5
Youtube (YB) 1.IM 5.9M 6
Orkut (OT) 3.3M 117.1M 39
Twitter-www (TW) 41.6M .48 34
Twitter-mpi (TM) 52.5M .98 37
Friendster (FS) 65.6M 3.6B 56

13

GW

Speedup over Baselines

mDGL ®Tensorflow M Pytorch-geo
128

64
32
16
8
4
o
|
PD YB oT T™W ™ FS

* Overall speedups: 10.81x over DGL, 10.21x over Tensorflow, 71.64x over Pytorch-geo

1 GW

Speedup running GCN (log scale)

Memory Usage

BGIN mDGL m®Tensorflow M Pytorch-geo

40
35
30
25
20
I5
10

Memory Usage (GB)

_J
PD YB

700
600
500
400
300
200
100

B GIN mDGL m®Tensorflow ™ Pytorch-geo

Average memory reduction: 86% over DGL, 72% over Tensorflow, 92% over Pytorch-geo

15

GW

Conclusion

Existing solutions for GNN inference are suffering from poor performance or high
programming complexity.

We propose GIN, a compiler-based framework for high-performance GNN
inference.

Average 31.44x speedup over existing solutions.

16

GW

Thank You

17

GW

