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Graph is Everywhere
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Graph Neural Networks (GNNs)

GNNs take as input graph and initial embedding.

Go through a series of convolution layers.

Output new embeddings incorporating graph structure information.

Successful application in social network mining, recommender system, molecule analysis etc.
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Computation in Each Layer of GNNs

* Each vertex computes a new embedding by
aggregating features (messages) from its
neighbors.

* Example: Graph Convolution Network (GCN)
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* Graph Processing Systems

* We propose our GIN framework

* Hard to programming GNNs

GNN Frameworks

* Suffer from poor performance

* A compiler-based approach generating high-
performance kernels while offering easy-to-

use APIs.

Motivations
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GIN Framework

ACG programming model
Dataflow Graph IR
Code generator

Optimizations
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ACG Programming Model

* Apply:

* Operations on feature matrices of vertices
or edges before traversing the graph.

* |In GCN:
RO — o Z h(l)Wa);)
uEN(v) """""
* Code:
Apply() {
vdata.H = MatMul(vdata.H, vars.W);

)
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ACG Programming Model

* Compute

* Operations defined on each edge to
calculate the message.

* |In GCN:
, 0
RO — o Z ; ROW O}
UEN (V) __6?7_7_._ fi_lf _________ i
* Code:

Compute(edge) {
ret = edge.src.deg * edge.dst.deg;
ret = Rsqrt(ret);
ret = ret * edge.src.H;
return ret;

)

Compute

message;
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ACG Programming Model

Gather

* How to aggregate messages.

- -

Gather(messages|[]) {
ret = Sum(messages);
return Relu(ret)

)
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Dataflow Graph IR

weight. W

Apply() { |

vdata.H = MatMul(vdata.H, vars.W); 4 datal =  MatMul —> data. H
) vaata. atMu vdata.
Compute(edge) { ste.deg

ret = edge.src.deg * edge.dst.deg; ‘

ret = Rsqrt(ret); —) dstdeg =» Mul =—» Rsqit =—>

ret = ret * edge.src.H;

return ret;
}
Gather(messages|]) { . —

ret — Sum(messages); - messages Sum Relu

return Relu(ret)

}
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Code Generator

 Start with a C++ code template

Graph traversal.

Blank code blocks corresponding to the
three functions in the interface.

* Code generating

Iterate the nodes of the IR in topological
order.

Emit C++ codes executing the computation
represented by the IR.

11

Tensor Kernel_name (/* Input tensors list */) {

/* Code block 1 to initialize memory of intermediate
and output tensors. */

/* Code block 2 to execute the computation in Appy
function. */

parallel for each vertex v in graph {

for each edge ¢ in v’s incoming edge list {
/* Code block 3 to execute the computation
defined by Compute function, calculating
the message on edge e. */
}
/* Code block 4 to execute the computation defined
in Gather function, merging all message from
neighbors and updating features on vertex v. */

}

return output_tensor; //

}
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Optimizations

* Memory usage reduction
* Delta-based updating on aggregating results

* In-place operations such as activation function relu.

* Dynamic workload assignment

* Each thread dynamically request workload of vertices from the task pool to avoid the workload
imbalance.
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Experiment Setups

GNN models

CommNet, GCN, GGCN, GAT

Datasets

Baselines

DGL, Tensorflow, Pytorch-geometrics

Computing environment

2.6 GHz Intel Xeon(R) Gold 6126 processor
(24 cores)

|.5TB DRAM

Centos 7

Graph (Abbr.) |Vertex| |Edge| Avg.degree
Pubmed (PD) 19.7K 108.4K 5
Youtube (YB) 1.IM 5.9M 6
Orkut (OT) 3.3M 117.1M 39
Twitter-www (TW) 41.6M .48 34
Twitter-mpi (TM) 52.5M .98 37
Friendster (FS) 65.6M 3.6B 56
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Speedup over Baselines
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* Overall speedups: 10.81x over DGL, 10.21x over Tensorflow, 71.64x over Pytorch-geo
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Memory Usage
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Average memory reduction: 86% over DGL, 72% over Tensorflow, 92% over Pytorch-geo
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Conclusion

Existing solutions for GNN inference are suffering from poor performance or high
programming complexity.

We propose GIN, a compiler-based framework for high-performance GNN
inference.

Average 31.44x speedup over existing solutions.
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Thank You
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