Automatic Generation of High-Performance Inference Kernels for Graph Neural Networks on Multi-Core Systems

Qiang Fu
H. Howie Huang

The George Washington University
Graph is Everywhere

```c
void foo()
{
    int x = source();
    if (x < MAX)
    {
        int y = 2 * x;
        sink(y);
    }
}
```
Graph Neural Networks (GNNs)

- GNNs take as input graph and initial embedding.
- Go through a series of convolution layers.
- Output new embeddings incorporating graph structure information.
- Successful application in social network mining, recommender system, molecule analysis etc.
Computation in Each Layer of GNNs

- Each vertex computes a new embedding by **aggregating** features (messages) from its neighbors.
- Example: Graph Convolution Network (GCN)

\[
 h_v^{(l+1)} = \sigma \left(\sum_{u \in N(v)} \frac{1}{\sqrt{d_v \cdot d_u}} h_u^{(l)} W^{(l)} \right)
 \]
Motivations

- **Graph Processing Systems**
 - Hard to programming GNNs
- **GNN Frameworks**
 - Suffer from poor performance
- **We propose our GIN framework**
 - A *compiler-based* approach generating high-performance kernels while offering easy-to-use APIs.
GIN Framework

- ACG programming model
- Dataflow Graph IR
- Code generator
- Optimizations
ACG Programming Model

- **Apply:**
 - Operations on feature matrices of vertices or edges before traversing the graph.

- **In GCN:**
 \[
 h_v^{(l+1)} = \sigma \left(\sum_{u \in N(v)} \frac{1}{\sqrt{d_v \cdot d_u}} h_u^{(l)} W_v^{(l)} \right)
 \]

- **Code:**
  ```
  Apply() {
    vdata.H = MatMul(vdata.H, vars.W);
  }
  ```
Compute

Operations defined on each edge to calculate the message.

In GCN:

\[h_v^{(l+1)} = \sigma \left(\sum_{u \in N(v)} \frac{1}{\sqrt{d_v \cdot d_u}} h_v^{(l)} W_v^{(l)} \right) \]

Code:

```c
Compute(edge) {
  ret = edge.src.deg * edge.dst.deg;
  ret = Rsqrt(ret);
  ret = ret * edge.src.H;
  return ret;
}
```
ACG Programming Model

- **Gather**
 - How to aggregate messages.

- **In GCN:**
 \[
 h_v^{(l+1)} = \sigma \left(\sum_{u \in N(v)} \frac{1}{\sqrt{d_v \cdot d_u}} h_w^{(l)} W^{(l)} \right)
 \]

- **Code:**
  ```
  Gather(messages[]) {
    ret = Sum(messages);
    return Relu(ret)
  }
  ```
Apply() {
 vdata.H = MatMul(vdata.H, vars.W);
}

Compute(edge) {
 ret = edge.src.deg * edge.dst.deg;
 ret = Rsqrt(ret);
 ret = ret * edge.src.H;
 return ret;
}

Gather(messages[]) {
 ret = Sum(messages);
 return Relu(ret)
}
Code Generator

- Start with a C++ code template
 - Graph traversal.
 - Blank code blocks corresponding to the three functions in the interface.

- Code generating
 - Iterate the nodes of the IR in topological order.
 - Emit C++ codes executing the computation represented by the IR.

```
Tensor Kernel_name /* Input tensors list */ {  
  /* Code block 1 to initialize memory of intermediate and output tensors. */  
  /* Code block 2 to execute the computation in Apply function. */  
  parallel for each vertex v in graph {  
    for each edge e in v’s incoming edge list {  
      /* Code block 3 to execute the computation defined by Compute function, calculating the message on edge e. */  
    }  
    /* Code block 4 to execute the computation defined in Gather function, merging all message from neighbors and updating features on vertex v. */  
  }  
  return output_tensor; // Returning the result
}
```
Optimizations

- Memory usage reduction
 - Delta-based updating on aggregating results
 - In-place operations such as activation function $relu$.
- Dynamic workload assignment
 - Each thread dynamically request workload of vertices from the task pool to avoid the workload imbalance.
Experiment Setups

- GNN models
 - CommNet, GCN, GGCN, GAT
- Datasets
- Baselines
 - DGL, Tensorflow, Pytorch-geometrics
- Computing environment
 - 2.6 GHz Intel Xeon(R) Gold 6126 processor (24 cores)
 - 1.5TB DRAM
 - Centos 7

| Graph (Abbr.) | |Vertex| |Edge| Avg. degree |
|--------------|-----------------|-----|-----|------------|
| Pubmed (PD) | 19.7K | 108.4K | 5 |
| Youtube (YB) | 1.1M | 5.9M | 6 |
| Orkut (OT) | 3.3M | 117.1M | 39 |
| Twitter-www (TW) | 41.6M | 1.4B | 34 |
| Twitter-mpi (TM) | 52.5M | 1.9B | 37 |
| Friendster (FS) | 65.6M | 3.6B | 56 |
Speedup over Baselines

- Overall speedups: 10.81x over DGL, 10.21x over Tensorflow, 71.64x over Pytorch-geo
Memory Usage

- Average memory reduction: 86% over DGL, 72% over Tensorflow, 92% over Pytorch-geo
Conclusion

- Existing solutions for GNN inference are suffering from poor performance or high programming complexity.
- We propose GIN, a compiler-based framework for high-performance GNN inference.
- Average 31.44x speedup over existing solutions.
Thank You