Automatic Generation of High-Performance Inference Kernels for Graph Neural Networks on Multi-Core Systems

Qiang Fu

H. Howie Huang

The George Washington University

Graph is Everywhere

Graph Neural Networks (GNNs)

- GNNs take as input graph and initial embedding.
- Go through a series of convolution layers.
- Output new embeddings incorporating graph structure information.
- Successful application in social network mining, recommender system, molecule analysis etc.

Computation in Each Layer of GNNs

- Each vertex computes a new embedding by aggregating features (messages) from its neighbors.
- Example: Graph Convolution Network (GCN)

$$h_v^{(l+1)} = \sigma(\sum_{u \in N(v)} \frac{1}{\sqrt{d_v \cdot d_u}} h^{(l)} W^{(l)})$$

Motivations

- Graph Processing Systems
 - Hard to programming GNNs
- GNN Frameworks
 - Suffer from poor performance
- We propose our GIN framework
 - A compiler-based approach generating highperformance kernels while offering easy-touse APIs.

GIN Framework

- ACG programming model
- Dataflow Graph IR
- Code generator
- Optimizations

ACG Programming Model

- Apply:
 - Operations on feature matrices of vertices or edges before traversing the graph.
- In GCN:

$$h_v^{(l+1)} = \sigma(\sum_{u \in N(v)} \frac{1}{\sqrt{d_v \cdot d_u}} h^{(l)} W^{(l)})$$

Code:

```
Apply() {
   vdata.H = MatMul(vdata.H, vars.W);
}
```


ACG Programming Model

- Compute
 - Operations defined on each edge to calculate the message.
- In GCN:

$$h_v^{(l+1)} = \sigma(\sum_{u \in N(v)} \frac{1}{\sqrt{d_v \cdot d_u}} h^{(l)} W^{(l)})$$

Code:

```
Compute(edge) {
   ret = edge.src.deg * edge.dst.deg;
   ret = Rsqrt(ret);
   ret = ret * edge.src.H;
   return ret;
}
```


ACG Programming Model

- Gather
 - How to aggregate messages.
- In GCN:

$$h_v^{(l+1)} = \sigma(\sum_{u \in N(v)} \frac{1}{\sqrt{d_v \cdot d_u}} h^{(l)} W^{(l)})$$

Code:

```
Gather(messages[]) {
  ret = Sum(messages);
  return Relu(ret)
}
```


Dataflow Graph IR

Code Generator

- Start with a C++ code template
 - Graph traversal.
 - Blank code blocks corresponding to the three functions in the interface.
- Code generating
 - Iterate the nodes of the IR in topological order.
 - Emit C++ codes executing the computation represented by the IR.

```
Tensor Kernel_name (/* Input tensors list */) {
   /* Code block 1 to initialize memory of intermediate
     and output tensors. */
  /* Code block 2 to execute the computation in Appy
     function. */
    parallel for each vertex v in graph {
       for each edge e in v's incoming edge list {
          /* Code block 3 to execute the computation
           defined by Compute function, calculating
              the message on edge e. */
       /* Code block 4 to execute the computation defined
       in Gather function, merging all message from
          neighbors and updating features on vertex v. */
   return output_tensor; // Returning the result
```


Optimizations

- Memory usage reduction
 - Delta-based updating on aggregating results
 - In-place operations such as activation function relu.
- Dynamic workload assignment
 - Each thread dynamically request workload of vertices from the task pool to avoid the workload imbalance.

Experiment Setups

- GNN models
 - CommNet, GCN, GGCN, GAT
- Datasets
- Baselines
 - DGL, Tensorflow, Pytorch-geometrics
- Computing environment
 - 2.6 GHz Intel Xeon(R) Gold 6126 processor (24 cores)
 - I.5TB DRAM
 - Centos 7

Graph (Abbr.)	Vertex	Edge	Avg.degree
Pubmed (PD)	19.7K	108.4K	5
Youtube (YB)	I.IM	5.9M	6
Orkut (OT)	3.3M	117.1M	39
Twitter-www (TW)	41.6M	1.4B	34
Twitter-mpi (TM)	52.5M	1.9B	37
Friendster (FS)	65.6M	3.6B	56

Speedup over Baselines

Overall speedups: I0.81x over DGL, I0.21x over Tensorflow, 71.64x over Pytorch-geo

Memory Usage

• Average memory reduction: 86% over DGL, 72% over Tensorflow, 92% over Pytorch-geo

Conclusion

- Existing solutions for GNN inference are suffering from poor performance or high programming complexity.
- We propose GIN, a compiler-based framework for high-performance GNN inference.
- Average 31.44x speedup over existing solutions.

Thank You

