
gem5+RTL: A Framework to
Enable RTL Models Inside a

Full-System Simulator

Author: Guillem López Paradís
Co-Authors: Miquel Moretó and Adrià Armejach

10/August/2021 50th International Conference on Parallel Processing (ICPP) August 9-12,
2021 in Virtual Chicago, IL

INTERNATIONAL

CONFERENCE ON
PARALLEL

PROCESSING

Heritage of Moore’s law

2

Source: jj.github.io

• Y-axis  CPU performance
in a logarithmic scale

• X-axis  Time in years

https://sites.google.com/site/alexandrutopirceanu/research/networks-on-chips

Heritage of Moore’s law

3

Source: jj.github.io

• Moore’s law and Dennard
scaling ruled an exponential
phase (green) and created a
whole industry

• These golden “rules” stop
delivering the same speed-up in
performance in early 2000 (blue)

• Last 20 years (blue, grey, red
phase), we have added more
hardware modules into the SoC

• Red phase curve is flat!

https://sites.google.com/site/alexandrutopirceanu/research/networks-on-chips

Heritage of Moore’s law

4

Source: jj.github.io

• Moore’s law and Dennard
scaling ruled an exponential
phase (green) and created a
whole industry

• These golden “rules” stop
delivering the same speed-up in
performance in early 2000 (blue)

• Last 20 years (blue, grey, red
phase), we have added more
hardware modules into the SoC

• Red phase curve is flat!

https://sites.google.com/site/alexandrutopirceanu/research/networks-on-chips

Heritage of Moore’s law

5

Source: jj.github.io

• Moore’s law and Dennard
scaling ruled an exponential
phase (green) and created a
whole industry

• These golden “rules” stop
delivering the same speed-up in
performance in early 2000 (blue)

• Last 20 years (blue, grey, red
phase), we have added more
hardware modules into the SoC

• Red phase curve is flat!

https://sites.google.com/site/alexandrutopirceanu/research/networks-on-chips

Heritage of Moore’s law

6

Source: jj.github.io

• Moore’s law and Dennard
scaling ruled an exponential
phase (green) and created a
whole industry

• These golden “rules” stop
delivering the same speed-up in
performance in early 2000 (blue)

• Last 20 years (blue, grey, red
phase), we have added more
hardware modules into the SoC

• Red phase curve is flat!

https://sites.google.com/site/alexandrutopirceanu/research/networks-on-chips

Current Situation

7

Source: www.techdesignforums.com

http://www.techdesignforums.com/

Current Situation

8

Source: www.techdesignforums.com

http://www.techdesignforums.com/

Current Situation

9

Source: www.techdesignforums.com

http://www.techdesignforums.com/

Motivation

• Boom in fabricating new chips

10Sources: riscv.org , lowrisc.org and graphcore.ai

http://www.riscv.org/
http://www.lowrisc.org/
http://www.app.emaze.com/

Motivation

• Boom in fabricating new chips

• Multiple and heterogeneous hardware modules on the same SoC
requires complex integration and verification processes

11

Motivation

• Boom in fabricating new chips

• Multiple and heterogeneous hardware modules on the same SoC
requires complex integration and verification processes

• Improve the tools to verify large-scale hardware designs

12

Outline

• Introduction and Motivation

•Gem5+RTL: A Full-System RTL Simulation Infrastructure

•Use-case and Evaluation: NVDLA

•Conclusions and Future Work

13

Gem5+RTL Design Objectives

• Provide a framework that enables easy integration of existing RTL
hardware blocks within a SoC for full-system simulations

14

Gem5+RTL Design Objectives

• Provide a framework that enables easy integration of existing RTL
hardware blocks within a SoC for full-system simulations

• Deliver a comprehensive hardware/software ecosystem where all the
main components of the SoC are present with a complete software stack

15

Gem5+RTL Design Objectives

• Provide a framework that enables easy integration of existing RTL
hardware blocks within a SoC for full-system simulations

• Deliver a comprehensive hardware/software ecosystem where all the
main components of the SoC are present with a complete software stack

• Enable testing the implemented functionality of these hardware blocks
and also, the expected performance they will provide on an existing SoC
design

16

Framework Design

17

1. We use Verilator and GHDL to obtain a C++ model from an RTL
model written in Verilog/SystemVerilog and VHDL

2. We provide a wrapper to interact with it and gem5. Then, the
wrapper and the C++ model are combined into a shared library

3. In gem5, a generic framework is provided to ease the integration of
a wide range of potential hardware designs: generic RTLObject class

Framework Design

18

1. We use Verilator and GHDL to obtain a C++ model from an RTL
model written in Verilog/SystemVerilog and VHDL

2. We provide a wrapper to interact with it and gem5. Then, the
wrapper and the C++ model are combined into a shared library

3. In gem5, a generic framework is provided to ease the integration of
a wide range of potential hardware designs: generic RTLObject class

Framework Design

19

1. We use Verilator and GHDL to obtain a C++ model from an RTL
model written in Verilog/SystemVerilog and VHDL

2. We provide a wrapper to interact with it and gem5. Then, the
wrapper and the C++ model are combined into a shared library

3. In gem5, a generic framework is provided to ease the integration of
a wide range of potential hardware designs: generic RTLObject class

Outline

• Introduction and Motivation

•Gem5+RTL: A Full-System RTL Simulation Infrastructure

•Use-case and Evaluation: NVDLA

•Conclusions and Future Work

20

Use Cases: NVDLA

21

• NVDLA is the NVDIA Deep Learning Accelerator

• Open Source  on GitHub, Good Documentation

Use Cases: NVDLA

22

• NVDLA is the NVDIA Deep Learning Accelerator

• Open Source  on GitHub, good documentation

• Jetson Family of Products have some of these units in the SoC

• Perform a Design Space Exploration of which type of main memory is
suitable

Evaluation NVDLA: GoogleNet

23

• Evaluation of NVDLA
performed by executing
traces of real applications
provided by NVIDIA

• Parameters for the design
space exploration (x-axis)

• Performance (y-axis) is
normalized to an ideal 1
cycle memory latency

Evaluation NVDLA: GoogleNet

24

• Evaluation of NVDLA
performed by executing
traces of real applications
provided by NVIDIA

• Parameters for the design
space exploration (x-axis)

• Performance (y-axis) is
normalized to an ideal 1
cycle memory latency

Evaluation NVDLA: GoogleNet

25

• Evaluation of NVDLA
performed by executing
traces of real applications
provided by NVIDIA

• Parameters for the design
space exploration (x-axis)

• Performance (y-axis) is
normalized to an ideal 1
cycle memory latency

Evaluation NVDLA: GoogleNet

26

• Using several memory
configurations

• Different number of
maximum requests from
NVDLA to main memory

• Different number of nvdla
in the system: 1, 2 and 4
nvdla’s configurations

Evaluation NVDLA: GoogleNet

27

• Using several memory
configurations

• Different number of
maximum requests from
NVDLA to main memory

• Different number of nvdla
in the system: 1, 2 and 4
nvdla’s configurations

Evaluation NVDLA: GoogleNet

28

• Using several memory
configurations

• Different number of
maximum requests from
NVDLA to main memory

• Different number of nvdla
in the system: 1, 2 and 4
nvdla’s configurations

4 nvdla

2 nvdla

1 nvdla

Evaluation NVDLA: GoogleNet

29

• Maximum number of
requests affects dramatically

• Some memory configs
cannot deliver enough bw
for 2 and 4 nvdlas

• We recommend HBM or
GDDR5 when more than 2
NVDLAs are in the system

Evaluation NVDLA: GoogleNet

30

• Maximum number of
requests affects dramatically

• Some memory configs
cannot deliver enough bw
for 2 and 4 nvdlas

• We recommend HBM or
GDDR5 when more than 2
NVDLAs are in the system

Evaluation NVDLA: GoogleNet

31

• Maximum number of
requests affects dramatically

• Some memory configs
cannot deliver enough bw
for 2 and 4 nvdlas

• We recommend HBM or
GDDR5 when more than 2
NVDLAs are in the system

Outline

• Introduction and Motivation

•Gem5+RTL: A Full-System RTL Simulation Infrastructure

•Use-case and Evaluation: NVDLA

•Conclusions and Future Work

32

Conclusions

• We provide an infrastructure able to integrate RTL models inside a full system
simulator
• Boots unmodified Linux
• Complete software stack
• Models interactions will all the SoC components

• We provide two relevant use-cases evaluation
• Debugging
• Performance

• We believe our tool is suitable for SoC designers to make informed design
decisions

33

Conclusions

• We provide an infrastructure able to integrate RTL models inside a full system
simulator
• Boots unmodified Linux
• Complete software stack
• Models interactions will all the SoC components

• We provide two relevant use-cases evaluation
• Debugging
• Performance

• We believe our tool is suitable for SoC designers to make informed design
decisions

34

Conclusions

• We provide an infrastructure able to integrate RTL models inside a full system
simulator
• Boots unmodified Linux
• Complete software stack
• Models interactions will all the SoC components

• We provide two relevant use-cases evaluation
• Debugging
• Performance

• We believe our tool is suitable for SoC designers to make informed design
decisions

35

Future Work

• Improving the connectivity of the NVDLA with gem5, using an IOMMU

• Adding more RTL models and explore, for example, interesting re-
programmable hardware that can be placed on the pipeline

• Add more features to the framework, for example, allow checkpointing
of RTL models connected to the regular checkpoints of gem5

36

Future Work

• Improving the connectivity of the NVDLA with gem5, using an IOMMU

• Adding more RTL models and explore, for example, interesting re-
programmable hardware that can be placed on the pipeline

• Add more features to the framework, for example, allow checkpointing
of RTL models connected to the regular checkpoints of gem5

37

Future Work

• Improving the connectivity of the NVDLA with gem5, using an IOMMU

• Adding more RTL models and explore, for example, interesting re-
programmable hardware that can be placed on the pipeline

• Add more features to the framework, for example, allow checkpointing
of RTL models connected to the regular checkpoints of gem5

38

Check it out!
https://gitlab.bsc.es/glopez/gem5-rtl

guillem.lopez@bsc.es

INTERNATIONAL

CONFERENCE ON
PARALLEL

PROCESSING

Outline

• Introduction and Motivation

• Gem5+RTL: A Full-System RTL Simulation Infrastructure

• Use-case and Evaluation: PMU

• Use-case and Evaluation: NVDLA

• Conclusions and Future Work

40

Use Cases: PMU

41

• PMU is Performance Monitor Unit: Takes statistics of the core

• Developed in Verilog at BSC

Use Cases: PMU

42

• PMU is Performance Monitor Unit: Takes statistics of the core

• Developed in Verilog at BSC

• Has programmability features to trigger thresholds

• Debug functionally the hardware block

Evaluation PMU: IPC

43

• Comparison stats gem5 vs
PMU:
• Every 1k cycles, compare

IPC stats (y-axis)
• X-axis Time in ms

• Executed three sorting
algorithms
• 3k elements for QuickSort
• 30k elements rest

• Separated with a sleep
call of 1 ms

Evaluation PMU: IPC

44

• Comparison stats gem5 vs
PMU:
• Every 1k cycles, compare

IPC stats (y-axis)
• X-axis Time in ms

• Executed three sorting
algorithms
• 3k elements for QuickSort
• 30k elements rest

• Separated with a sleep
call of 1 ms

QuickSort

SelectionSort

BubleSort

QuickSort

SelectionSort

BubleSort

Evaluation PMU: IPC

45

Sleep 1ms

• Comparison stats gem5 vs
PMU:
• Every 1k cycles, compare

IPC stats (y-axis)
• X-axis Time in ms

• Executed three sorting
algorithms
• 3k elements for QuickSort
• 30k elements rest

• Separated with a sleep
call of 1 ms

Our Solution

• gem5+RTL framework: a flexible infrastructure that enables easy
integration of existing RTL models with the popular full-system gem5
simulator

46

Our Solution

• gem5+ RTL framework: a flexible infrastructure that enables easy
integration of existing RTL models with the popular full-system gem5
simulator

• Enables to perform functional testing and design space exploration
studies of existing RTL models on a full-system environment that
models an entire SoC

47

Our Solution

• gem5+ RTL framework: a flexible infrastructure that enables easy
integration of existing RTL models with the popular full-system gem5
simulator

• Enables to perform functional testing and design space exploration
studies of existing RTL models on a full-system environment that
models an entire SoC

• We show two different use-cases and evaluate their performance

48

Problem

• Existing Systems-on-Chip (SoCs) have become incredibly complex,
incorporating a large number of hardware blocks in their designs.

49

Problem

• Existing Systems-on-Chip (SoCs) have become incredibly complex,
incorporating a large number of hardware blocks in their designs.

• Current tools do not model all the potential interactions and
restrictions that may arise when the hardware block is integrated into a
complex SoC with a complete software stack.

50

Problem

• Existing Systems-on-Chip (SoCs) have become incredibly complex,
incorporating a large number of hardware blocks in their designs.

• Current tools do not model all the potential interactions and
restrictions that may arise when the hardware block is integrated into a
complex SoC with a complete software stack.

• Need for tools that enable testing the functionality these hardware
blocks, but also in terms of the expected performance they will provide
on an existing SoC design.

51

Connectivity Examples

52

Connectivity Examples

53

NVDLA Use Case

Connectivity Examples

54

PMU Use Case

Evaluation PMU: Timing

55

• Evaluated the timing
overhead of the gem5+RTL
(PMU) against gem5 alone
with different array sizes

• On avg. 20% overhead

• Tracing a waveform has a
huge overhead as expected

Evaluation PMU: Timing

56

• Evaluated the timing
overhead of the gem5+RTL
(PMU) against gem5 alone
with different array sizes

• On avg. 20% overhead

• Tracing a waveform has a
huge overhead as expected

Evaluation PMU: Timing

57

• Evaluated the timing
overhead of the gem5+RTL
(PMU) against gem5 alone
with different array sizes

• On avg. 20% overhead

• Tracing a waveform has a
huge overhead as expected

Evaluation PMU: Timing

58

• Evaluated the timing
overhead of the gem5+RTL
(PMU) against gem5 alone
with different array sizes

• On avg. 20% overhead

• Tracing a waveform has a
huge overhead as expected

Software Infrastructure

Full-System Simulator

• Widely used on Academia and Industry
• Multiple ISA’s such as Armv8, x86_64,

and RISC-V
• Multi-level cache hierarchies and

different memory technologies.
• Support an Operating System (OS) like

a Linux kernel and run multi-threaded
and multi-process applications

59
Logo obtained from https://www.gem5.org/

https://www.gem5.org/

Software Infrastructure

Full-System Simulator HDL Simulator

• Widely used on Academia and Industry
• Multiple ISA’s such as Armv8, x86_64,

and RISC-V
• Multi-level cache hierarchies and

different memory technologies.
• Support an Operating System (OS) like a

Linux kernel and run multi-threaded
and multi-process applications

• Used both in Academia and Industry
• High speed by compiling synthesizable

Verilog to multi-threaded C++/SystemC
• Good level of performance when

compared to the commercial solutions

60
Logos obtained from https://www.gem5.org/ and https://www.veripool.org/wiki/verilator

https://www.gem5.org/
https://www.veripool.org/wiki/verilator

Extra ch2: State Of Art

Related Work

1. Bridge between Full-System Simulators and Verilator

1. Gem5+Verilator focusing on FPGA  PAAS

2. Muli2Sim+Verilator focusing on FPGA

2. SynFull: Synthetic traces made with gem5
1. Markov Chains

2. Clustering techniques to group phases of applications

62

Extra ch3: Methodology

Methodology Second Part

64

Extra ch5: Cocnlusions

Evaluation NVDLA: Sanity3

66

• Same evaluation like before
but with a more memory
intensive app (also shorter)

• Maximum number of
requests is the key
parameter again

• Same situation of DDR4-1ch
that cannot handle enough
bw (also DDR4-2ch)

Evaluation NVDLA: Sanity3

67

• Same evaluation like before
but with a more memory
intensive app (also shorter)

• Maximum number of
requests is the key
parameter again

• Same situation of DDR4-1ch
that cannot handle enough
bw (also DDR4-2ch)

Evaluation NVDLA: Sanity3

68

• Same evaluation like before
but with a more memory
intensive app (also shorter)

• Maximum number of
requests is the key
parameter again

• Same situation of DDR4-1ch
that cannot handle enough
bw (also DDR4-2ch)

Conclusions: gem5+RTL

• Challenging Compilation, NVDLA:
• NVDLA design is large (1 Million LUTS)

• Needs more than 24 GB of RAM to create the C++ Model (300MB)

• Depending on the optimization level, takes several hours

• Tool suitable for SoC designers to make informed design decisions

• Increase the knowledge of Verilator

69

Conclusions: gem5+RTL

• Challenging Compilation, NVDLA:
• NVDLA design is large (1 Million LUTS)

• Needs more than 24 GB of RAM to create the C++ Model (300MB)

• Depending on the optimization level, takes several hours

• Tool suitable for SoC designers to make informed design decisions

• Increase the knowledge of Verilator

70

Conclusions: gem5+RTL

• Challenging Compilation, NVDLA:
• NVDLA design is large (1 Million LUTS)

• Needs more than 24 GB of RAM to create the C++ Model (300MB)

• Depending on the optimization level, takes several hours

• Tool suitable for SoC designers to make informed design decisions

• Increase the knowledge of Verilator

71

Future Work: gem5+RTL

• Improving the connectivity of the NVDLA with gem5, making use of a
IOMMU

• Adding more RTL models and explore, for example, interesting re-
programmable hardware that can be placed on the pipeline

• Add more features to the framework, for example, allow checkpointing
of RTL models connected to the regular checkpoints of gem5

• Make a better study of which optimizations can be applied to Verilator to
improve the final performance of the generated C++ model

• Add more memory models like scratchpads to offer more flexibility

• Add support for VHDL, the other well-known RTL language used in
industry

72

Extra ch5: PMU

Evaluation PMU: MPKI

74

Extra ch5: NVDLA

Use Cases: PMU Connection

76

Use Cases: NVDLA Connection

77

NVDLA inside gem5

NVDLA
Object
gem5

NVDLA

IRQ

CSB

DBBIF

SRAMIF

AXI
Respo
nder

Trace
Loader

DRAM
gem5

gem5

RTL

C++

78

NVDLA inside gem5

NVDLA
Object
gem5

NVDLA

IRQ

CSB

DBBIF

SRAMIF

AXI
Respo
nder

Trace
Loader

DRAM
gem5

gem5

validationvalidation
1 Read a binary trace into memory

2 Call startAccelerator (start @, # of bytes)
3 Wait to finish

1 Get all the
data through

memory
petitions

2 Load the trace
into the

Traceloader
3 When there is
an AXI write to

DRAM, do it
atomicly or
functioanly

79

NVDLA Testbench Verilator

Trace.bin NVDLA

IRQ

CSB

DBBIF

SRAMIF

AXI
Respo
nder

Trace
Loader

malloc (memory
in nvdla.cpp)

RTL

nvdla.cpp
80

Extra ch5: NVDLA
Verilator Optimization

Optimizing NVDLA Verilator Model

82

Traces (Os) Cycles Sim time Sim speed

Sanity3 10k 18.5 s 541.1 Hz

GoogleNet 49k 103 s 472.9 Hz

AlexNet 158k 363 s 458 Hz

Trace (No optz) Cycles Sim time Sim speed

Sanity3 10k 46.18 s 217.39 Hz

GoogleNet 49k 392.08 s 124.97 Hz

AlexNet 158k 1459.79 s 108.23 Hz

Compilation time Baseline: ~30 min
Compilation Time Os : ~2h
Compilation Time O3: It failed needing more than 16 GB, TODO

Optimizing NVDLA Verilator Model

83

Traces (Os) Cycles Sim time Sim speed

Sanity3 10k 18.5 s 541.1 Hz

GoogleNet 49k 103 s 472.9 Hz

AlexNet 158k 363 s 458 Hz

Can we do better?
• O3  High compilation time and RAM requirements > 16GB
• Threads option in Verilator
• Verilator is very sensitive to UNOPT and warnings, code of NVDLA has lots of

warnings

However
• NVDLA needs 2M LUTS, only fits on the highest FPGA in the market by Xilinx,

which takes up to 82% of capacity of VU-440 (2018)
• Meaning NVDLA is huge.

Extra ch5: NVDLA Traces

AVAILABLE TRACES

• Basic sanity tests
• sanity0 - basic register write and compare read-back value
• sanity1 - memory copy test using bdma (dbb to dbb), test ends using register polling
• sanity2 - sanity1 waiting on interrupts instead of register polling
• sanity3 - convolution test, test ends using register polling and compares output mem region to

determine passing
• sanity3_cvsram - convolution test, uses cvsram path instead of dbb, test ends using register polling

and compares output mem region to determine passing

• Short single function tests using dbb
• conv_8x8_fc_int16
• pdp_max_pooling_int16
• sdp_relu_int16

• Long layer tests
• googlenet_conv2_3x3_int16 - uses cvsram, 30 min runtime
• cc_alexnet_conv5_relu5_int16_dtest_cvsram - uses cvsram, 156 min runtime

85

Extra ch5: NVDLA Spec
from NVIDIA Documentation

NVDLA

• CSB: Commands
• IRQ: When a task finishes interrupt
• DBB: System memory

Image taken from [1]

87

NVDLA Internal Block Diagram

• Each Block/Engine is separate and independently
configurable

• Scheduling operations for each unit are delegated to a
co-processor or CPU

Image taken from [2]

88

Software

• NVDIA offers two tools:

• Compilations tool: Convert existing models into a NVDLA usable model.

• Runtime environment: Run-time software to load and execute networks on NVDLA.

Image taken from [5]

89

NVDLA real situation

Images taken from [2]

IOMMU

KERNEL

90

Contributions and Publications

• Guillem López-Paradís, Adria Armejach, Miquel Moreto, gem5+RTL: A Framework to
Enable RTL Models Inside a Full-System Simulator, Paper Under Review on DATE 21’

• Guillem López-Paradís, Adria Armejach, Miquel Moreto, Enable RTL models inside the
gem5 simulator, ACACES 19: Advanced Computer Architecture and Compilation for Embedded
Systems 2019 Poster Abstracts, Fiuggi, Italy, 2019

91

Contributions and Publications

• Guillem López-Paradís, Adria Armejach, Miquel Moreto, gem5+RTL: A Framework to
Enable RTL Models Inside a Full-System Simulator, Paper Under Review on DATE 21’

• Guillem López-Paradís, Adria Armejach, Miquel Moreto, Enable RTL models inside the
gem5 simulator, ACACES 19: Advanced Computer Architecture and Compilation for Embedded
Systems 2019 Poster Abstracts, Fiuggi, Italy, 2019

92

