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Heritage of Moore’s law
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Source: jj.github.io

• Y-axis  CPU performance 
in a logarithmic scale

• X-axis  Time in years 

https://sites.google.com/site/alexandrutopirceanu/research/networks-on-chips
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Motivation

• Boom in fabricating new chips

10Sources: riscv.org , lowrisc.org and graphcore.ai

http://www.riscv.org/
http://www.lowrisc.org/
http://www.app.emaze.com/


Motivation

• Boom in fabricating new chips

• Multiple and heterogeneous hardware modules on the same SoC
requires complex integration and verification processes
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Motivation

• Boom in fabricating new chips

• Multiple and heterogeneous hardware modules on the same SoC
requires complex integration and verification processes

• Improve the tools to verify large-scale hardware designs
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Outline

• Introduction and Motivation

•Gem5+RTL: A Full-System RTL Simulation Infrastructure

•Use-case and Evaluation: NVDLA

•Conclusions and Future Work
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Gem5+RTL Design Objectives

• Provide a framework that enables easy integration of existing RTL 
hardware blocks within a SoC for full-system simulations
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Gem5+RTL Design Objectives

• Provide a framework that enables easy integration of existing RTL 
hardware blocks within a SoC for full-system simulations

• Deliver a comprehensive hardware/software ecosystem where all the 
main components of the SoC are present with a complete software stack

• Enable testing the implemented functionality of these hardware blocks 
and also, the expected performance they will provide on an existing SoC
design
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Framework Design
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1. We use Verilator and GHDL to obtain a C++ model from an RTL 
model written in Verilog/SystemVerilog and VHDL

2. We provide a wrapper to interact with it and gem5. Then, the 
wrapper and the C++ model are combined into a shared library

3. In gem5, a generic framework is provided to ease the integration of 
a wide range of potential hardware designs: generic RTLObject class
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Use Cases: NVDLA
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• NVDLA is the NVDIA Deep Learning Accelerator

• Open Source  on GitHub, good documentation

• Jetson Family of Products have some of these units in the SoC

• Perform a Design Space Exploration of which type of main memory is 
suitable



Evaluation NVDLA: GoogleNet
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• Evaluation of NVDLA 
performed by executing 
traces of real applications 
provided by NVIDIA

• Parameters for the design 
space exploration (x-axis)

• Performance (y-axis) is 
normalized to an ideal 1 
cycle memory latency



Evaluation NVDLA: GoogleNet

24

• Evaluation of NVDLA 
performed by executing 
traces of real applications 
provided by NVIDIA

• Parameters for the design 
space exploration (x-axis)

• Performance (y-axis) is 
normalized to an ideal 1 
cycle memory latency



Evaluation NVDLA: GoogleNet

25

• Evaluation of NVDLA 
performed by executing 
traces of real applications 
provided by NVIDIA

• Parameters for the design 
space exploration (x-axis)

• Performance (y-axis) is 
normalized to an ideal 1 
cycle memory latency



Evaluation NVDLA: GoogleNet

26

• Using several memory 
configurations

• Different number of 
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nvdla’s configurations
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• Some memory configs
cannot deliver enough bw
for 2 and 4 nvdlas

• We recommend HBM or 
GDDR5 when more than 2 
NVDLAs are in the system
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Conclusions

• We provide an infrastructure able to integrate RTL models inside a full system 
simulator
• Boots unmodified Linux
• Complete software stack
• Models interactions will all the SoC components

• We provide two relevant use-cases evaluation
• Debugging
• Performance

• We believe our tool is suitable for SoC designers to make informed design 
decisions 
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Future Work

• Improving the connectivity of the NVDLA with gem5, using an IOMMU

• Adding more RTL models and explore, for example, interesting re-
programmable hardware that can be placed on the pipeline

• Add more features to the framework, for example, allow checkpointing
of RTL models connected to the regular checkpoints of gem5
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Check it out!
https://gitlab.bsc.es/glopez/gem5-rtl

guillem.lopez@bsc.es
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Use Cases: PMU
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• PMU is Performance Monitor Unit: Takes statistics of the core

• Developed in Verilog at BSC
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• PMU is Performance Monitor Unit: Takes statistics of the core

• Developed in Verilog at BSC

• Has programmability features to trigger thresholds

• Debug functionally the hardware block 



Evaluation PMU: IPC 

43

• Comparison stats gem5 vs 
PMU: 
• Every 1k cycles, compare 

IPC stats (y-axis)
• X-axis Time in ms

• Executed three sorting 
algorithms
• 3k elements for QuickSort
• 30k elements rest

• Separated with a sleep     
call of 1 ms
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Our Solution

• gem5+RTL framework: a flexible infrastructure that enables easy 
integration of existing RTL models with the popular full-system gem5
simulator
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Our Solution

• gem5+ RTL framework: a flexible infrastructure that enables easy 
integration of existing RTL models with the popular full-system gem5 
simulator

• Enables to perform functional testing and design space exploration 
studies of existing RTL models on a full-system environment that 
models an entire SoC

• We show two different use-cases and evaluate their performance
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Problem

• Existing Systems-on-Chip (SoCs) have become incredibly complex, 
incorporating a large number of hardware blocks in their designs.
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complex SoC with a complete software stack.
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Problem

• Existing Systems-on-Chip (SoCs) have become incredibly complex, 
incorporating a large number of hardware blocks in their designs.

• Current tools do not model all the potential interactions and 
restrictions that may arise when the hardware block is integrated into a 
complex SoC with a complete software stack.

• Need for tools that enable testing the functionality these hardware 
blocks, but also in terms of the expected performance they will provide 
on an existing SoC design.
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NVDLA Use Case
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PMU Use Case



Evaluation PMU: Timing
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• Evaluated the timing 
overhead of the gem5+RTL 
(PMU) against gem5 alone 
with different array sizes

• On avg. 20% overhead

• Tracing a waveform has a 
huge overhead as expected
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Software Infrastructure

Full-System Simulator

• Widely used on Academia and Industry
• Multiple ISA’s such as Armv8, x86_64, 

and RISC-V
• Multi-level cache hierarchies and 

different memory technologies.
• Support an Operating System (OS) like 

a Linux kernel and run multi-threaded 
and multi-process applications

59
Logo obtained from https://www.gem5.org/

https://www.gem5.org/


Software Infrastructure

Full-System Simulator HDL Simulator

• Widely used on Academia and Industry
• Multiple ISA’s such as Armv8, x86_64, 

and RISC-V
• Multi-level cache hierarchies and 

different memory technologies.
• Support an Operating System (OS) like a 

Linux kernel and run multi-threaded 
and multi-process applications

• Used both in Academia and Industry
• High speed by compiling synthesizable 

Verilog to multi-threaded C++/SystemC
• Good level of performance when 

compared to the commercial solutions

60
Logos obtained from https://www.gem5.org/ and https://www.veripool.org/wiki/verilator

https://www.gem5.org/
https://www.veripool.org/wiki/verilator


Extra ch2: State Of Art



Related Work

1. Bridge between Full-System Simulators and Verilator

1. Gem5+Verilator focusing on FPGA  PAAS

2. Muli2Sim+Verilator focusing on FPGA

2. SynFull: Synthetic traces made with gem5
1. Markov Chains

2. Clustering techniques to group phases of applications
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Extra ch3: Methodology



Methodology Second Part
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Evaluation NVDLA: Sanity3
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• Same evaluation like before 
but with a more memory 
intensive app (also shorter)

• Maximum number of 
requests is the key 
parameter again

• Same situation of DDR4-1ch 
that cannot handle enough 
bw (also DDR4-2ch)
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Conclusions: gem5+RTL

• Challenging Compilation, NVDLA:
• NVDLA design is large (1 Million LUTS)

• Needs more than 24 GB of RAM to create the C++ Model (300MB)

• Depending on the optimization level, takes several hours

• Tool suitable for SoC designers to make informed design decisions 

• Increase the knowledge of Verilator
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Future Work: gem5+RTL

• Improving the connectivity of the NVDLA with gem5, making use of a 
IOMMU

• Adding more RTL models and explore, for example, interesting re-
programmable hardware that can be placed on the pipeline

• Add more features to the framework, for example, allow checkpointing
of RTL models connected to the regular checkpoints of gem5

• Make a better study of which optimizations can be applied to Verilator to 
improve the final performance of the generated C++ model

• Add more memory models like scratchpads to offer more flexibility

• Add support for VHDL, the other well-known RTL language used in 
industry
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Evaluation PMU: MPKI
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Extra ch5: NVDLA



Use Cases: PMU Connection
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Use Cases: NVDLA Connection

77



NVDLA inside gem5

NVDLA 
Object 
gem5

NVDLA

IRQ

CSB

DBBIF

SRAMIF

AXI 
Respo
nder

Trace 
Loader

DRAM 
gem5

gem5

RTL

C++

78



NVDLA inside gem5

NVDLA 
Object 
gem5

NVDLA

IRQ

CSB

DBBIF

SRAMIF

AXI 
Respo
nder

Trace 
Loader

DRAM 
gem5

gem5

validationvalidation
1 Read a binary trace into memory

2 Call startAccelerator (start @, # of bytes)
3 Wait to finish

1 Get all the 
data through 

memory 
petitions

2 Load the trace 
into the 

Traceloader
3 When there is 
an AXI write to 

DRAM, do it 
atomicly or 
functioanly

79



NVDLA Testbench Verilator

Trace.bin NVDLA

IRQ

CSB

DBBIF

SRAMIF

AXI 
Respo
nder

Trace 
Loader

malloc (memory 
in nvdla.cpp)

RTL

nvdla.cpp
80



Extra ch5: NVDLA 
Verilator Optimization



Optimizing NVDLA Verilator Model

82

Traces (Os) Cycles Sim time Sim speed

Sanity3 10k 18.5 s 541.1 Hz

GoogleNet 49k 103 s 472.9 Hz

AlexNet 158k 363 s 458 Hz

Trace (No optz) Cycles Sim time Sim speed

Sanity3 10k 46.18 s 217.39 Hz

GoogleNet 49k 392.08 s 124.97 Hz

AlexNet 158k 1459.79 s 108.23 Hz

Compilation time Baseline: ~30 min
Compilation Time Os : ~2h 
Compilation Time O3: It failed needing more than 16 GB, TODO



Optimizing NVDLA Verilator Model
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Traces (Os) Cycles Sim time Sim speed

Sanity3 10k 18.5 s 541.1 Hz

GoogleNet 49k 103 s 472.9 Hz

AlexNet 158k 363 s 458 Hz

Can we do better?
• O3  High compilation time and RAM requirements > 16GB
• Threads option in Verilator
• Verilator is very sensitive to UNOPT and warnings, code of NVDLA has lots of 

warnings

However
• NVDLA needs 2M LUTS, only fits on the highest FPGA in the market by Xilinx, 

which takes up to 82% of capacity of VU-440 (2018)
• Meaning NVDLA is huge.
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AVAILABLE TRACES

• Basic sanity tests
• sanity0 - basic register write and compare read-back value
• sanity1 - memory copy test using bdma (dbb to dbb), test ends using register polling
• sanity2 - sanity1 waiting on interrupts instead of register polling
• sanity3 - convolution test, test ends using register polling and compares output mem region to 

determine passing
• sanity3_cvsram - convolution test, uses cvsram path instead of dbb, test ends using register polling 

and compares output mem region to determine passing

• Short single function tests using dbb
• conv_8x8_fc_int16
• pdp_max_pooling_int16
• sdp_relu_int16

• Long layer tests
• googlenet_conv2_3x3_int16 - uses cvsram, 30 min runtime
• cc_alexnet_conv5_relu5_int16_dtest_cvsram - uses cvsram, 156 min runtime
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Extra ch5: NVDLA Spec
from NVIDIA Documentation



NVDLA

• CSB: Commands
• IRQ: When a task finishes interrupt
• DBB: System memory

Image taken from [1]
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NVDLA Internal Block Diagram

• Each Block/Engine is separate and independently 
configurable

• Scheduling operations for each unit are delegated to a 
co-processor or CPU

Image taken from  [2]
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Software

• NVDIA offers two tools:

• Compilations tool: Convert existing models into a NVDLA usable model.

• Runtime environment: Run-time software to load and execute networks on NVDLA.

Image taken from  [5]
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NVDLA real situation

Images taken from  [2]

IOMMU

KERNEL
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