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Workload Deployment Method
• Widespread use of emerging technologies 

− Increased difficulty in resource management
• Dedicated Cluster or Resource Reservation

− Low resource utilization
− High operation and maintenance costs

• Mixed Workload Deployment (MWD)
− Deploy multiple workloads in one cluster
− Widespread use 

○ Alibaba, Bing, Google.
□ Latency-Sensitive Services (LSSs) & Batch jobs

− Workload characteristics
○ Resource requirements
○ QoS



Details of Workload Processing
• Job

− The logical entity of a workload
− A job is handled by multiple tasks

• Task
− The basic unit that does the actual work
− The lifecycle

○ Task Scheduling Latency 
□ Swollen task

⌂ Surplus resources
□ Few idle/allocable resources

⌂ Newly coming tasks queuing for resources 
○ Task Running Time 

□ Task dependency
□ Straggler task

⌂ Inter-task interferences or insufficient resources
⌂ Block the progress of tasks that depend on it 

• How to guarantee the QoS of LSSs in MWD 
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Related Work
• Solutions to guarantee the task scheduling latency

−Preempt the resources of batch jobs
○ PerfIso, BIG-C

−Preempt resources without considering surplus resources
• Solutions to eliminate straggler tasks

−Task Replicas
−Loss of task progress, increase in resource consumption



Goals and Challenges

• Goals
• Enough allocable resources to 

avoid long scheduling latency

• Minimize the performance 
impact of straggler tasks

• Minimize the performance loss 
to batch jobs

• Challenges
• Accurate identification of swollen 

tasks and on-demand resource 
reclamation

• Accurately identify and eliminate 
straggler tasks

• Reduce resource preemptions

Resource Management Mechanism for MWD



CERES
• Application Status Store (ASS)

− Task Status Collector & Time-series Database 
− collecting, processing, and storing task status data

• Adaptive Policy Builder (APB)
− Task Filter 

○ screen out swollen tasks and straggler tasks;
− Adaptive Policy Generator

○ make adaptive resource decisions
• Node Task Manager (NTM)

− Adaptive Policy Executor
○ execute task resource adjustments;

− Task Status Monitor
○ obtain task status data on the node;



Task Filter
• Swollen tasks from batch jobs

−Get task resource limits and the maximum used resources
−Compute the actual maximum resource utilization
−Determine whether the task is swollen or not

• Straggler task from latency-sensitive services
−Get the monitoring data of the last three monitoring time points
−Compute the current and previous processing speed
−Estimate the task completion time
−Determine whether the task is a straggler or not



Adaptive Policy Generator

• Adaptive Policy Generator
−Get cluster idle resources;
−Count the total resource requirements of new latency sensitive tasks 

and straggler tasks;
− Idle resources cannot meet task resource requirements

○ Reclaim resources from swollen tasks;
○ Preempt resources from other batch tasks;

−When there are enough allocable resources
○ If straggler tasks exist, expand resources for them;
○ If there are no reclaiming or preempting operations, restore resources for 

preempted tasks.



Node Task Manager

• Adaptive Policy Executor
−Receive adaptive policies; 
−Perform the policies on tasks

○ Call the Docker Engine API based on Cgroups;
○ Achieve container migration with CRIU;

• Task Status Monitor
−Obtain task status information 

○ Resource usage, processing process, running time, etc.
−Report the monitoring data to ASS;



Evaluation Setup 
• Cluster

− Composed of 26 servers

○ One manager node,  25 worker nodes;

○ 32 CPU cores, 128GB memory, 12Gbps 
Ethernet

• Metrics
− Task Scheduling Latency (TSL)

− Task Running Time (TRT) 

− Task Completion Time (TCT)

− Job Completion Time (JCT)

− Cluster Resource Utilization (CRU) 

• Baselines
− CS-DP: Capacity Scheduler with resource preemption 

disabled
• CS-EP: Capacity Scheduler with resource preemption 

enabled
• BIG-C: A container-based preemption solution

• Workloads
− Latency-sensitive services

○ Spark-SQL is used to generate queries as 
latency-sensitive services (LSSs)

− Batch jobs
○ Select batch jobs from HiBench and 

BigDataBench, such as wordcount, terasort;
− Batch jobs account for 10% of the mixed workloads.



Performance of LSSs

• Average task scheduling latency
− Compared with 

○ CS-DP: decreased by 50.87%;
○ CS-EP: decreased by 32.99%;
○ BIG-C: decreased by 16.90%;

• 99𝑡𝑡ℎ percentile task scheduling 
latency
− Compared with 

○ BIG-C: decreased by 30.42%;

• 95𝑡𝑡ℎ percentile task running time
− Compared with 

○ CS-DP: decreased by 36.23%;
○ CS-EP: decreased by 28.04%;
○ BIG-C: decreased by 16.41%;

• 99𝑡𝑡ℎ percentile task running time
− Compared with 

○ BIG-C: decreased by 18.91%;

• Average task completion time
− Compared with

○ CS-DP: decreased by 22.42%
○ CS-EP: decreased by 18.00%
○ BIG-C: decreased by 14.07%

• 99𝑡𝑡ℎ percentile task completion 
time
− Compared with

○ BIG-C: decreased by 20.77%
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Completion Time of Batch Jobs

• Compared with 
−CS-DP: at most increased by 15.46%
−CS-EP: at most reduced by 26.06%
−BIG-C: at most reduced by 17.7%



Resource Utilization of the Cluster 

• Cluster resource utilization reached 53.73%; 
• Average resource utilization

−Compared with BIG-C, promoted by 27.06%;



Conclusion 
• Problems of MWD 

−Resource contentions and inter-task Interferences lead to severe QoS 
losses to LSSs

−Existing solutions guarantee the QoS of LSSs by preempting resources 
from batch tasks
○ Performance loss to batch jobs

−Tasks do not fully utilize the allocated resources
• We propose CERES to guarantee the QoS with surplus resources

−Accurate task filters
−Adaptive resource adjustment policies 

• CERES can guarantee the QoS of LSSs and reduce the 
performance penalty for batch jobs.
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