
CERES: Container-Based Elastic Resource
Management System for Mixed Workloads

Jinyu Yu, Dan Feng, Wei Tong, Pengze Lv and Yufei Xiong

Huazhong University of Science and Technology

Outline

• Background and Motivation

• CERES

• Evaluation

• Conclusion

Workload Deployment Method
• Widespread use of emerging technologies

− Increased difficulty in resource management
• Dedicated Cluster or Resource Reservation

− Low resource utilization
− High operation and maintenance costs

• Mixed Workload Deployment (MWD)
− Deploy multiple workloads in one cluster
− Widespread use

○ Alibaba, Bing, Google.
□ Latency-Sensitive Services (LSSs) & Batch jobs

− Workload characteristics
○ Resource requirements
○ QoS

Details of Workload Processing
• Job

− The logical entity of a workload
− A job is handled by multiple tasks

• Task
− The basic unit that does the actual work
− The lifecycle

○ Task Scheduling Latency
□ Swollen task

⌂ Surplus resources
□ Few idle/allocable resources

⌂ Newly coming tasks queuing for resources
○ Task Running Time

□ Task dependency
□ Straggler task

⌂ Inter-task interferences or insufficient resources
⌂ Block the progress of tasks that depend on it

• How to guarantee the QoS of LSSs in MWD
Cluster?

Queuing Running Finished
Request Schedule Kill, Fail, Finish

Kill, Fail

Placed
Initialize

Kill, Fail

Scheduling Stage Running Stage

A. The lifecycle of a task

Task1

Task2

Task3

Task4

Task5

B. Task dependencies

Related Work
• Solutions to guarantee the task scheduling latency

−Preempt the resources of batch jobs
○ PerfIso, BIG-C

−Preempt resources without considering surplus resources
• Solutions to eliminate straggler tasks

−Task Replicas
−Loss of task progress, increase in resource consumption

Goals and Challenges

• Goals
• Enough allocable resources to

avoid long scheduling latency

• Minimize the performance
impact of straggler tasks

• Minimize the performance loss
to batch jobs

• Challenges
• Accurate identification of swollen

tasks and on-demand resource
reclamation

• Accurately identify and eliminate
straggler tasks

• Reduce resource preemptions

Resource Management Mechanism for MWD

CERES
• Application Status Store (ASS)

− Task Status Collector & Time-series Database
− collecting, processing, and storing task status data

• Adaptive Policy Builder (APB)
− Task Filter

○ screen out swollen tasks and straggler tasks;
− Adaptive Policy Generator

○ make adaptive resource decisions
• Node Task Manager (NTM)

− Adaptive Policy Executor
○ execute task resource adjustments;

− Task Status Monitor
○ obtain task status data on the node;

Task Filter
• Swollen tasks from batch jobs

−Get task resource limits and the maximum used resources
−Compute the actual maximum resource utilization
−Determine whether the task is swollen or not

• Straggler task from latency-sensitive services
−Get the monitoring data of the last three monitoring time points
−Compute the current and previous processing speed
−Estimate the task completion time
−Determine whether the task is a straggler or not

Adaptive Policy Generator

• Adaptive Policy Generator
−Get cluster idle resources;
−Count the total resource requirements of new latency sensitive tasks

and straggler tasks;
− Idle resources cannot meet task resource requirements

○ Reclaim resources from swollen tasks;
○ Preempt resources from other batch tasks;

−When there are enough allocable resources
○ If straggler tasks exist, expand resources for them;
○ If there are no reclaiming or preempting operations, restore resources for

preempted tasks.

Node Task Manager

• Adaptive Policy Executor
−Receive adaptive policies;
−Perform the policies on tasks

○ Call the Docker Engine API based on Cgroups;
○ Achieve container migration with CRIU;

• Task Status Monitor
−Obtain task status information

○ Resource usage, processing process, running time, etc.
−Report the monitoring data to ASS;

Evaluation Setup
• Cluster

− Composed of 26 servers

○ One manager node, 25 worker nodes;

○ 32 CPU cores, 128GB memory, 12Gbps
Ethernet

• Metrics
− Task Scheduling Latency (TSL)

− Task Running Time (TRT)

− Task Completion Time (TCT)

− Job Completion Time (JCT)

− Cluster Resource Utilization (CRU)

• Baselines
− CS-DP: Capacity Scheduler with resource preemption

disabled
• CS-EP: Capacity Scheduler with resource preemption

enabled
• BIG-C: A container-based preemption solution

• Workloads
− Latency-sensitive services

○ Spark-SQL is used to generate queries as
latency-sensitive services (LSSs)

− Batch jobs
○ Select batch jobs from HiBench and

BigDataBench, such as wordcount, terasort;
− Batch jobs account for 10% of the mixed workloads.

Performance of LSSs

• Average task scheduling latency
− Compared with

○ CS-DP: decreased by 50.87%;
○ CS-EP: decreased by 32.99%;
○ BIG-C: decreased by 16.90%;

• 99𝑡𝑡ℎ percentile task scheduling
latency
− Compared with

○ BIG-C: decreased by 30.42%;

• 95𝑡𝑡ℎ percentile task running time
− Compared with

○ CS-DP: decreased by 36.23%;
○ CS-EP: decreased by 28.04%;
○ BIG-C: decreased by 16.41%;

• 99𝑡𝑡ℎ percentile task running time
− Compared with

○ BIG-C: decreased by 18.91%;

• Average task completion time
− Compared with

○ CS-DP: decreased by 22.42%
○ CS-EP: decreased by 18.00%
○ BIG-C: decreased by 14.07%

• 99𝑡𝑡ℎ percentile task completion
time
− Compared with

○ BIG-C: decreased by 20.77%

Figure A Figure B Figure C

Completion Time of Batch Jobs

• Compared with
−CS-DP: at most increased by 15.46%
−CS-EP: at most reduced by 26.06%
−BIG-C: at most reduced by 17.7%

Resource Utilization of the Cluster

• Cluster resource utilization reached 53.73%;
• Average resource utilization

−Compared with BIG-C, promoted by 27.06%;

Conclusion
• Problems of MWD

−Resource contentions and inter-task Interferences lead to severe QoS
losses to LSSs

−Existing solutions guarantee the QoS of LSSs by preempting resources
from batch tasks
○ Performance loss to batch jobs

−Tasks do not fully utilize the allocated resources
• We propose CERES to guarantee the QoS with surplus resources

−Accurate task filters
−Adaptive resource adjustment policies

• CERES can guarantee the QoS of LSSs and reduce the
performance penalty for batch jobs.

Thanks! Q&A
Email: yujinyu@hust.edu.cn

	CERES: Container-Based Elastic Resource Management System for Mixed Workloads
	Outline
	Workload Deployment Method
	Details of Workload Processing
	Related Work
	Goals and Challenges
	CERES
	Task Filter
	Adaptive Policy Generator
	Node Task Manager
	Evaluation Setup
	Performance of LSSs
	Completion Time of Batch Jobs
	Resource Utilization of the Cluster
	Conclusion
	Thanks! Q&A ��Email: yujinyu@hust.edu.cn

