
A Fast, General System for Buffered 
Persistent Data Structures

Haosen Wen*, Wentao Cai*,

Mingzhe Du, Louis Jenkins, Benjamin Valpey

and Michael L. Scott

University of Rochester

ICPP '21

*Equal contributions



Background

• Non-volatile memory (NVM) offers the possibility of keeping 
pointer-rich data structures across program runs and even 
crashes:
• Correct persistence order is needed for crash consistency

• Volatile caches mean that stores may reach memory out of 
program order; explicit write-back and fence instructions are 
necessary

• Durable linearizability [Izraelevitz et al., DISC'16] necessitates high latency in 
every operation—ops must persist before returning

• Buffered durable linearizability might reduce this latency, but all 
known implementations are ad-hoc

2



Montage

• First general-purpose system for buffered durably 
linearizable data structures

• Excellent performance, makes good use of NVM by:

• Persisting periodically (every 1 – 10ms, or whenever sync() is 
called) rather than per-operation

• Persisting only abstract data

3



Persistence Order: Durable Linearizability

• Durable Linearizability[Izraelevitz et al., DISC'16] : 
• Intuitive correctness criterion: operations persist before return

• Enforced by writes-back (for persistence) and fences (for ordering) 
on every happens-before relationship on persistent data

• Significant overhead

4



Buffered Durable Linearizability

• Buffered Durable Linearizability [Izraelevitz et al., DISC'16] : 
• After a crash, drop not-fully-persisted suffix of the history

• Just make sure if 𝑂1 happens before 𝑂2 and 𝑂2 is persisted, 𝑂1
must be persisted

• Agrees with persistency models of databases and file systems

• Reduces the overhead of persistence ordering
• Avoid the need to write back and fence each op 

before returning & on each happens-before relationship

5



Montage: Periodic Persistence

• Inspired by Dalí[Nawab et al., DISC'17], Montage implements buffered
durable linerizability by dividing time into epochs, and

epoch 𝑂1 < epoch 𝑂2 ⇒ ¬(𝑂2 ≺ℎ𝑏 𝑂1)

• Each operation is marked with one epoch

• Operations in the same epoch persist together, atomically

6



Montage: Periodic Persistence

7

𝑊1: 𝐸1

𝐸1 𝐸2

• Design:
• Write operations are assigned epoch numbers

• All writes of an operation are marked with the same epoch

TIME



Montage: Periodic Persistence

8

𝑊1: 𝐸1

𝐸1 𝐸2

𝑊1: 𝐸2

TIME

• Design:
• Write operations are assigned epoch numbers

• All writes of an operation are marked with the same epoch



Montage: Periodic Persistence

9

𝐸1 𝐸2

𝑊1: 𝐸1

TIME

• Design:
• Write operations are assigned epoch numbers

• All writes of an operation are marked with the same epoch



Montage: Periodic Persistence
• Design:

• Before 𝑒 → 𝑒 + 1, operations in 𝑒 − 1 are finished and persisted

10

𝑒 − 1 𝑒

𝑊2

𝑊3
𝑊6

𝑊5

𝑊4

𝑒 + 1

𝑊1

TIME



Montage: Periodic Persistence
• Design:

• Before 𝑒 → 𝑒 + 1, operations in 𝑒 − 1 are finished and persisted

11

𝑊2

𝑊3

𝑊5

𝑊4𝑊1

𝑊6

TIME

𝑒 − 1 𝑒 𝑒 + 1



Montage: Periodic Persistence
• Design:

• If we crash in 𝑒, all operations in 𝑒 − 1 and 𝑒 are discarded
• The boundary between 𝑒 − 2 and 𝑒 − 1 is chosen as the consistent cut

• No in-place updates of blocks from old epochs – copy to preserve history

12

𝑊2

𝑊3

𝑊5

𝑊4𝑊1

𝑊6

TIME

𝑒 − 2 𝑒 − 1 𝑒



Montage: Periodic Persistence
• Design:

• If we crash in 𝑒, all operations in 𝑒 − 1 and 𝑒 are discarded
• The boundary between 𝑒 − 2 and 𝑒 − 1 is chosen as the consistent cut

• No in-place updates of blocks from old epochs – copy to preserve history

13

𝑊2

𝑊3

𝑊1

TIME

𝑒 − 2



Montage: Periodic Persistence

14

𝐸1 𝐸2

𝑂1 = 𝑊1

update
payload

• Design:
• If we crash in 𝑒, all operations in 𝑒 − 1 and 𝑒 are discarded

• The boundary between 𝑒 − 2 and 𝑒 − 1 is chosen as the consistent cut

• No in-place updates of blocks from old epochs – copy to preserve history

𝑊1



Montage: Periodic Persistence

15

𝐸1 𝐸2

𝑂1 = 𝑊6

update
payload

• Design:
• If we crash in 𝑒, all operations in 𝑒 − 1 and 𝑒 are discarded

• The boundary between 𝑒 − 2 and 𝑒 − 1 is chosen as the consistent cut

• No in-place updates of blocks from old epochs – copy to preserve history

𝑊6

𝑊1

update
payload



Montage: Periodic Persistence

16

𝐸1

• Design:
• If we crash in 𝑒, all operations in 𝑒 − 1 and 𝑒 are discarded

• The boundary between 𝑒 − 2 and 𝑒 − 1 is chosen as the consistent cut

• No in-place updates of blocks from old epochs – copy to preserve history

𝑊1



Montage: Periodic Persistence

17

𝐸1 𝐸2

𝑂1 = 𝑊1

update
payload

• Design:
• If we crash in 𝑒, all operations in 𝑒 − 1 and 𝑒 are discarded

• The boundary between 𝑒 − 2 and 𝑒 − 1 is chosen as the consistent cut

• No in-place updates of blocks from old epochs – copy to preserve history

𝑊1



Montage: Periodic Persistence

18

𝐸1 𝐸2

• Design:
• If we crash in 𝑒, all operations in 𝑒 − 1 and 𝑒 are discarded

• The boundary between 𝑒 − 2 and 𝑒 − 1 is chosen as the consistent cut

• No in-place updates of blocks from old epochs – copy to preserve history

𝑂1 = 𝑊1

update
payload

𝑂1′ = 𝑊6

copy

𝑊6

𝑊1



Montage: Periodic Persistence
• Design:

• Data structure must ensure each operation linearizes in the epoch 
of its writes
• Operation in 𝐸1 seeing blocks from 𝐸2 > 𝐸1 suggests there might be a 

problem. Montage (optionally) raises an exception to help

19

𝐸1 𝐸2

𝑂1 = 𝑊6

𝑊6

𝑊1

(trying to)
update
payload

happens-before



Montage: Periodic Persistence
• Design:

• Data structure must ensure each operation linearizes in the epoch 
of its writes
• Operation in 𝐸1 seeing blocks from 𝐸2 > 𝐸1 suggests there might be a 

problem. Montage (optionally) raises an exception to help

20

𝐸1 𝐸2

𝑂1 = 𝑊6

𝑊6

𝑊1

(trying to)
update
payload

𝑊6 is from 𝐸2!
Are you sure?



Montage: Persisting Abstract Data Only

• Inspired by NV-Tree[Yang et al., FAST'15] , FPTree[Oukid et al., SIGMOD'16], Ralloc[Cai et al., 

ISMM'20], and Pronto[Memaripour et al., ASPLOS'20], among others, data structures 
can be rebuilt from abstract data after a crash
• Sets/maps: keys (and values)

• Queues: values and order

• Graphs: vertices and edges

• Abstract data may comprise the majority of data structure's memory

• Can always persist more than abstract data for faster recovery

21



{"A", "1"} {"B", "2"} {"C", "3"} {"D", "4"}Only persist 
abstract data

(Node)

(Node) (Node)

(Node)

Root

Montage Persistent Mapping

22



Montage: Implementation

• Use Ralloc[Cai et al., ISMM'20] as NVM allocator

• Montage provides (C++) API to:
• track reads and writes ((de-)allocations, updates) from/to persistent payloads. 

• identify the boundaries of each operation to ensure writes are marked with 
the same epoch for an operation

23



Montage: Implementation

• Persisting writes, buffering reclamations:
• clwb right after each write messes up cache locality on current machines, 

while buffering unbounded writes brings overhead and stretches epochs

• Bounded buffers for to-be-persisted writes

• Reclamations must be buffered for 2 epochs – cannot be undone after crash

• Only need those containers for 4 epochs: reuse containers from 3 epochs ago

24



Montage: Implementation

• Epoch advances and sync()
• Epoch advances every 1 – 10 ms, automatically
• Epoch 𝑒 gets persisted in 𝑒 + 2, so sync() asks epoch to advance twice 

immediately
• sync() blocks until all returned operations persists, for safe external 

communication
• All sync() participants help write-back, coordinated under tree-structured mechanism

• A background epoch advancer thread, before advancing to 𝑒 + 1:
• Reclaim payloads from 𝑒 − 2
• Complete writes-back for 𝑒 − 1
• sfence
• Advance epoch
• If sync() ongoing, repeat until all sync() goals are met

• Superior performance even with sync() after every operation
25

ease the burden of worker threads



Hash map performance (y log scale)

26

Hash Maps: 90% lookups, 10% updates

transient



Conclusion

• Montage reduces the persistence overhead of recoverable data 
structures by:
• Reducing cost of persist ordering
• Reducing the amount of persistent data

• Suitable for both lock-based and nonblocking data structures
• Unprecedented performance
• Successor: Fast Nonblocking Persistence for Concurrent Data 

Structures, DISC’21
• Future work: Atomic composition of operations on multiple data 

structures
• Artifact: https://github.com/urcs-sync/Montage

27

https://github.com/urcs-sync/Montage

