
INTERNATIONAL
CONFERENCE ON

PARALLEL
PROCESSING

Ascetic: Enhancing Cross-Iterations Data Efficiency in 
Out-of-Memory Graph Processing on GPUs

Ruiqi Tang, Ziyi Zhao, 
Kailun Wang, Jin 

Zhang, Xiaoli Gong*
Nankai University

Pen-Chung Yew

University of Minnesota

Wenwen Wang 

University of Georgia

1



INTERNATIONAL
CONFERENCE ON

PARALLEL
PROCESSING

Introduction Design Optimization Results

2

Introduction

Out-of-GPU-Memory Processing In Graph Processing

• Limited GPU memory

• GPU high throughput

• PCIe is bottleneck

How to transfer data efficiently？

Transfer data during Graph processing



INTERNATIONAL
CONFERENCE ON

PARALLEL
PROCESSING

Introduction Design Optimization Results

Input GraphPb

3

Introduction

Partition-Based Graph Processing
Common methods 
• Partition dataset

Drawback：
• Sparse data accesses in partitions
• No reuse
• Data thrashing

Example:
• Keeping Pa in GPU across iterations
• Data transfer reduced by 26%

Key take-away:
• Re-using data across iterations 

can cut down data transfer

GPU Memory

Pa Pc not fit in memory

Partitioned Graph
CPU Side

GPU Side
Pa Pc

Need Pa Need Pb Need Pc

Pb

PbPa Pc

Pa Pc

Need Pa Need Pb Need Pc

Pb

CPU Side

GPU SideSet Static

much redundant data !



INTERNATIONAL
CONFERENCE ON

PARALLEL
PROCESSING

Introduction Design Optimization Results

4

Introduction

Typical Memory Access Patterns 

• Long reuse distance 

• UVM-based LRU policy not suitable
• Same reuse patterns on entire dataset

• No hot spots
• Sparse access



INTERNATIONAL
CONFERENCE ON

PARALLEL
PROCESSING

Introduction Design Optimization Results

5

Introduction

Fine-Grained Data Transfer 

（1）Sparse usage per iteration 
（2）Keep some memory for cross-iteration reuse

Transfer CSR format

Transfer subgraph each iteration

0

2

1 7

6
5

4 3CPU Side GPU Side

GPU
Memory

0 2 4 6 8 9 11 13

v0 v1 v3 v4 v5

1 2 0 2 0 1 4 5 3 3 6 7 6

4 11 13

0 1 5

7 60 1 5

Space Usage

Unused 
Memory



INTERNATIONAL
CONFERENCE ON

PARALLEL
PROCESSING

Introduction Design Optimization Results

6

Design

Key Features:
• Partition GPU memory into Static Region and On-demand Region
• Static region - storing data for cross-iteration reuse
• On-demand region - storing data for intra-iteration usage

Ascetic Framework
GPU SideCPU Side

Request Data

Organize On-demand Data
Transfer Data

Global Memory

Static RegionOn-demand Region

GPU SideCPU Side

1 1

0 01

0

Check Bitmap



INTERNATIONAL
CONFERENCE ON

PARALLEL
PROCESSING

Introduction Design Optimization Results

7

Computation overlap

• Avoid CPU/GPU idle
• Overlapping of Static Processing and CPU Gathering
• Overlapping of Static Update and On-demand Processing

Baseline

GPU

CPU

Organize Data Map
Computing

Gather Data Transfer Data

Ascetic

GPU

CPU

Organize Data Map

Static Computing

Gather Data Static Update

On-demand 
Computing

Transfer Data

Design



INTERNATIONAL
CONFERENCE ON

PARALLEL
PROCESSING

Introduction Design Optimization Results

8

Optimization

Data Replacement Mechanism

• Static data will become stale
• Count the accessed times in each block
• Replace stale chunks with new updated blocks 

GPU SideCPU Side

Nothing to reuse

Static Region

Fragment 1

Access count: 100

Fragment 2

Access count: 80

Fragment 4

Access count: 70

Fragment 6

Access count: 57

Fragment 3

Access count: 65

Fragment 5

Access count: 85

Fragment 1

Access count: 1000

Fragment 3

Access count: 950

Fragment 2

Access count: 900 Nothing to reuse

Nothing to reuse



INTERNATIONAL
CONFERENCE ON

PARALLEL
PROCESSING

Introduction Design Optimization Results

9

Results

Performance and Data Transfer

• On average 2x Speedups
• Average data transfer reduces by 61%



INTERNATIONAL
CONFERENCE ON

PARALLEL
PROCESSING

Introduction Design Optimization Results

10

Results

Why UVM Does Not Work

• On average 6.2x Speedups
• Average data transfer reduces by 73%

• Frequent data transfers via paging
• LRU policy not suitable
• High overheads in demand paging



INTERNATIONAL
CONFERENCE ON

PARALLEL
PROCESSING

Introduction Design Optimization Results

11

Results

Conclusion

• We provide a comprehensive analysis on the access 
patterns of graph analytic applications

• We propose Ascetic, a novel graph processing framework 
to exploit data reuse across iterations.

• We have implemented a prototype of Ascetic with CUDA.

• Ascetic can achieve average 2.0x speedup over a state-of-
the-art graph processing approach



INTERNATIONAL
CONFERENCE ON

PARALLEL
PROCESSING

50th International Conference on Parallel Processing (ICPP) 
August 9-12, 2021 in Virtual Chicago, IL 


