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Introduction Optimization Results

Out-of-GPU-Memory Processing In Graph Processing

CPU Side GPU Side
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Introduction Design Optimization

Partition-Based Graph Processing

Common methods CPU Side

e Partition dataset

BEE -
Drawback: S '
* Sparse data accesses in partitions
“/ much redundant data !
GPU Side

* No reuse
Need Pa Need Pb Need Pc

Partitioned Graph

not fityi

e Data thrashing

Example:

* Keeping Pa in GPU across iterations 5 .
* Data transfer reduced by 26% - CPU Side

Key take-away: . i
y takE-away : , Set Static =) GPU Side
* Re-using data across iterations
can cut down data transfer Need Pa NeedPb Need Pc
PaisIn!
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Introduction

Access Pattern

Conclusion
UVM-based LRU policy not suitable
* Same reuse patterns on entire dataset

Optimization

Typical Memory Access Patterns

Long reuse distance
No hot spots

Sparse access
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Introduction Optimization Results

Fine-Grained Data Transfer

CPU Side GPU Side
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Introduction Optimization Results

Ascetic Framework

CPU Side ! GPU Side
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Key Features:
* Partition GPU memory into Static Region and On-demand Region
 Static region - storing data for cross-iteration reuse

| INTERNATIONAL ° - i - i i -1 i A\ n
/co,\mmgo,v/ / On-demand region - storing data for intra-iteration usage L.

| PARALLEL

PROCESSING ] Vv sighpc




Introduction Optimization Results

Computation overlap

Organize Data Map

GPU — Computing
Baseline i
CPU Gather Data Transfer Data
- Organize Data Map
GPU Static Computing Cé’;r:‘;:‘t‘:‘:gd
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CPU Gather Data Transfer Data | Static Update

 Avoid CPU/GPU idle

* Overlapping of Static Processing and CPU Gathering
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Optimization

Data Replacement Mechanism

GPU Side

Fragment 1

Access count: 1000 .
Nothing to reuse

Fragment 2

Access count: 900 Nothing to reuse

Fragment 3

Access count: 950 .
Nothing to reuse

CPU Side

Fragment 1 Fragment 2

Access count: 100 Access count: 80

Fragment 3

Fragment 4

Access count: 65 Access count: 70

Fragment 5 Fragment 6

Access count: 85 Access count: 57

Static Region

e Static data will become stale
 Count the accessed times in each block
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Comparison with state-of-the-art
* On average 2x Speedups
* Average data transfer reduces by 61%
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Introduction ' Optimization

Why UVM Does Not Work
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Comparison with UVM UVM Drawback
* On average 6.2x Speedups * Frequent data transfers via paging

* Average data transfer reduces by 73% * LRU policy not suitable
* High overheads in demand paging -
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Optimization Results

Conclusion

 We provide a comprehensive analysis on the access
patterns of graph analytic applications

 We propose Ascetic, a novel graph processing framework
to exploit data reuse across iterations.

 We have implemented a prototype of Ascetic with CUDA.

e Ascetic can achieve average 2.0x speedup over a state-of-
the-art graph processing approach
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