INTERNATIONAL ac@m_c@pmﬁon
CONFERENCE ON .
PARALLEL SlghpC
PROCESSING ICPP/2021/CHICAGO/USA AUGUST9-12,2021

Ascetic: Enhancing Cross-lterations Data Efficiency in

Out-of-Memory Graph Processing on GPUs

Ruiqgi Tang, Ziyi Zhao, Wenwen Wang Pen-Chung Yew
Kailun Wang, Jin
Zhang, Xiaoli Gong* University of Georgia University of Minnesota

Nankai University
AR

&y M ®
HEVS{IS{IEI(K UNIVERSITY OF MINNESOTA
Driven to Discover*
| INTERNATIONAL N\
/ c;ogﬁ/;f?/cﬂf ON/ / at:\rg) In-Cooperation
PROCESSING __| SIghpC

Introduction Optimization Results

Out-of-GPU-Memory Processing In Graph Processing

CPU Side GPU Side

— | a
o~ 5|
e

GPU

Global
Memory

* Limited GPU memory

: |
I
° perR : Calculate by iteration
* GPU high throughput ~— it | \——
* PCle is bottleneck |
[] [] a
How to transfer data efficiently? 202 .
@' ® e Global
An input graph :@ Memang @
exceeds the GPU <:||:I vl b _
\\Timow capafi_t_\'r/ | l\ Calculate \rrteratln:_m/
| INTERNATIONAL I. : /N
/CONFERENC'E ON/ / Transfer data during Graph processing acm) in-Cooperation
| PARALLEL V 5
PROCESSING | SlghpC

Introduction Design Optimization

Partition-Based Graph Processing

Common methods CPU Side

e Partition dataset

BEE -
Drawback: S '
* Sparse data accesses in partitions
“/ much redundant data !
GPU Side

* No reuse
Need Pa Need Pb Need Pc

Partitioned Graph

not fityi

e Data thrashing

Example:

* Keeping Pa in GPU across iterations 5 .
* Data transfer reduced by 26% - CPU Side

Key take-away: . i
y takE-away : , Set Static =) GPU Side
* Re-using data across iterations
can cut down data transfer Need Pa NeedPb Need Pc
PaisIn!
| INTERNATIONAL N\
/ c;ogﬁlzf?/cﬂf ON/ / ac\rg) In-Cooperation
PROCESSING | SIghpC

Introduction

Access Pattern

Conclusion
UVM-based LRU policy not suitable
* Same reuse patterns on entire dataset

Optimization

Typical Memory Access Patterns

Long reuse distance
No hot spots

Sparse access

| INTERNATIONAL

/

CONFERENCE ON/

| PARALLEL

PROCESSING

)

1

500 t

400 =

300 jm

ChunllD

200 jm

100 j=

4.4 million

4.0 million jm

4.2 million |m

4.1 million jm

>

o 100 200 300 400 500 700
Chunkld

Results

/N

ac m) In-Cooperation

A4

sighpc

Introduction Optimization Results

Fine-Grained Data Transfer

CPU Side GPU Side
) ' (5) |
6 Give an

@ opportunity!

VO vl w2 V3 vd V5 wE w7 Transfer CSR format

TR -
. Memory
sl sl 3]3]e| s 7 s *

1 2 0 2 0 1

A small portion

N Space Usage @
——
Transfer subgraph ea.ch iteration
| e / (1) Sparse usage per iteration | | A
/ Coaiter (2) Keep some memory for cross-iteration reuse b i
PROCESSING SIghpC

Introduction Optimization Results

Ascetic Framework

CPU Side ! GPU Side
[
I L
Request|Data f \
V7 '* On-demand Regiong Static Region

<<
N
<
()]

V2 V6 V7

SVC i AL lobal e
() ' OEOnn
Rey© ™ OEEmEm = (7

Transfe r:Data

Check Bitmap

Organize On-demand Data

Key Features:
* Partition GPU memory into Static Region and On-demand Region
 Static region - storing data for cross-iteration reuse

| INTERNATIONAL ° - i - i i -1 i A\ n
/co,\mmgo,v/ / On-demand region - storing data for intra-iteration usage L.

| PARALLEL

PROCESSING] Vv sighpc

Introduction Optimization Results

Computation overlap

Organize Data Map

GPU — Computing
Baseline i
CPU Gather Data Transfer Data
- Organize Data Map
GPU Static Computing Cé’;r:‘;:‘t‘:‘:gd
Ascetic g : ;
CPU Gather Data Transfer Data | Static Update

 Avoid CPU/GPU idle

* Overlapping of Static Processing and CPU Gathering
| INTERNATIONAL . o . Pa
/CONFERENCEON/ / * Overlapping of Static Update and On-demand Processing acm) in-Cooperation
| PARALLEL N i
PROCESSING __] SlghpC

Optimization

Data Replacement Mechanism

GPU Side

Fragment 1

Access count: 1000 .
Nothing to reuse

Fragment 2

Access count: 900 Nothing to reuse

Fragment 3

Access count: 950 .
Nothing to reuse

CPU Side

Fragment 1 Fragment 2

Access count: 100 Access count: 80

Fragment 3

Fragment 4

Access count: 65 Access count: 70

Fragment 5 Fragment 6

Access count: 85 Access count: 57

Static Region

e Static data will become stale
 Count the accessed times in each block
| INTERNATIONAL / * Replace stale chunks with new updated blocks A n

/ CONFERENCE ON/ acm)) in-Cooperation

| PARALLEL
PROCESSING | h 2 SIghpC

Introduction

| INTERNATIONAL

/

CONFERENCE ON/

| PARALLEL

PROCESSING

)

Speedup relative to

Subway

L B e L L L e ¥ T =]

T T T T

Performance and Data Transfer

Optimization

1.2
1.0
0.8
0.6 |um
04 |

Data Transfer volume
relative to Subway

0.2

IIIIII_®_. |
<k & \}4:- <+ 2 \:‘}_ s &
% 3

Comparison with state-of-the-art
* On average 2x Speedups
* Average data transfer reduces by 61%

ac m) In-Cooperation

Vv sighpc

Introduction ' Optimization

Why UVM Does Not Work

" 6 o 1.2

g 5 (\ 55 10

= o =

L5 4 .2 08

@ 3 5e

g:} 3 EE 0.6 |m

s 2 cw 04 L

T I a 02 |a I I

0 o -
‘{"—‘ Q‘*‘ ‘i \Z)q"h s qu- SO F K . &
L (5-* Qj;-} q}‘:\‘ q;a:’ &{gﬁ N L(J (_E"'x {5""“ qg:'_.'r {é\-}b

Comparison with UVM UVM Drawback
* On average 6.2x Speedups * Frequent data transfers via paging

* Average data transfer reduces by 73% * LRU policy not suitable
* High overheads in demand paging -
| INTERNATIONAL

CONFERENCE ON,
/ | PARALLEL / / ac\n}) In-Cooperation
PROCESSING | Slghpc

Introduction

| INTERNATIONAL

/

CONFERENCE ON/
| PARALLEL

PROCESSING

)

Optimization Results

Conclusion

 We provide a comprehensive analysis on the access
patterns of graph analytic applications

 We propose Ascetic, a novel graph processing framework
to exploit data reuse across iterations.

 We have implemented a prototype of Ascetic with CUDA.

e Ascetic can achieve average 2.0x speedup over a state-of-
the-art graph processing approach

N\

acm)) in-Cooperation

A4

sighpc

/\
acm) In-Cooperation

INTERNATIONAL -

A4
CONFERENCE ON M
raracte. R [| | sighpc
PROCESSING ICPP/2021/CHICAGO/USA AUGUST9-12,2821

| INTERNATIONAL /

CONFERENCE ON 50th International Conference on Parallel Processing (ICPP) HCI'I'I> In-Cooperation
| PARALLEL

PROCESSING | August 9-12, 2021 in Virtual Chicago, IL A4 Slghpc

