

Support Convolution of CNN with Compression Sparse Matrix Multiplication Flow in TVM

Hui-Hsin Liao¹, Chao-Lin Lee¹, Jenq-Kuen Lee¹, Wei-Chih Lai², Ming-Yu Hung², Chung-Wen Huang²

Department of Computer Science,

National Tsing Hua University, Hsinchu, Taiwan¹

MediaTek Inc.²

Outline

- Introduction and Background
- Im2col and GEMM
- Conversion Flow in TVM
- Experiments
- Conclusions

Introduction

- Deep learning is playing an important role nowadays.
- Lots previous researches tend to reduce convolutions overhead.
 - Direct convolution
 - Im2col and GEMM(General Matrix Multiplication)
 - Winograd
 - FFT(Fast Fourier Transformation)
- Our work try to build a general flow for different backends which target to sparse models.

Background – Sparse Model

- We collect sparse models from two different sources
 - ImageNet based model: SparseZoo
 - CIFAR10 based model: Prune with distiller from Intel AILab

Example of pruning schedule

INTERNATIONAL

Background – TVM

- Deep learning inference framework
- Support models with different formats
- Support different target backends
- Two level optimization
 - Relay IR : Computation graph optimization
 - TIR : Decouple algorithm from schedule
 - Algorithm: What is computed
- INTERNATIONAL

 CONFERENCE ON

 PARALLEL

 PROCESSING

ICPP-EMS 2021

Schedule: Where and When and How it's computed

Overview of Our Flow

Im2col and GEMM

Direct convolution

PARALLEL

PROCESSING

Im2col and GEMM – Im2col Operator

- The new shape could be inferred by parameters of convolution.
- Transferred matrix shape

 $transIn_{h} = channel_{in} * k_{h} * k_{w}$ $transIn_{w} = batch_{in} * o_{h} * o_{w}$

• Output shape

$$o_{h} = \lfloor (in_{h} + pad_{h} - ((k_{h} - 1) * dilation_{h} + 1))/stride_{h} \rfloor + 1$$

$$o_{w} = \lfloor (in_{w} + pad_{w} - ((k_{w} - 1) * dilation_{w} + 1))/stride_{w} \rfloor + 1$$

Im2col and GEMM – Compression Format

Α

0

7

- A matrix in which lots of the elements are **zero**.
- Compression Formats :

0

0

(a) CSR

PROCESSING

acm In-Cooperation

Conversion Flow in TVM

Algorithm 1: First conversion of relay graph Input: Original relay graph Output: Transformed relay graph $compress_list = []$ while *Node* != *NULL* do if Node type == Var && weight belongs to conv2d then transform(weight) compress_list.append(weight.name) // replace with the new Var node in transformed weight shape. else if Node type = Call then if Call.op == conv2d() && weight.name in compress_list then $new_Call = []$ new_Call.append(im2col()) new_Call.append(dense()) new_Call.append(reshape()) // replace Call node with new_Call.

ICPP-EMS 2021

PROCESSING

CONFERENCE ON

INTERNATIONAL

Conversion Flow in TVM

Algorithm 2: Second conversion of relay graph

Input: Params, compress_list, compression_format **Output:** New params and relay graph weight_info = []for weight in compress_list do if compression_format == "CSR" then data, indices, indptr = params[weight].to_csr() end else if compression_format == "BSR" then data, indices, indptr = params[weight].to_bsr() end del params[weight] params[weight+"data"] = data params[weight+"indices"] = indices params[weight+"indptr"] = indptr weight_info.append((weight, data.shape, indices.shape, indptr.shape)) end return weight_info

Conversion Flow in TVM

Algorithm 2: Second conversion of relay graph Input: Params, compress_list, compression_format Output: New params and relay graph weight_info = []

```
for weight in compress_list do
    if compression_format == "CSR" then
        | data, indices, indptr = params[weight].to_csr()
    end
    else if compression_format == "BSR" then
        | data, indices, indptr = params[weight].to_bsr()
    end
    del params[weight]
    params[weight+"data"] = data
    params[weight+"indices"] = indices
    params[weight+"indptr"] = indptr
    weight_info.append((weight, data.shape, indices.shape,
        indptr.shape))
end
return weight_info
```

ICPP-EMS 2021

Experiments

- Environment
 - CPU:x86_64 Intel i7-9700K CPU
 - OS : Linux
 - LLVM : 9.0.1
 - TVM : 0.7.0
- Test Model Preparation
 - ImageNet based : SparseZoo
 - Cifar10 based : Pruning with distiller
 - Pruning for every layers of convolution weights
 - Using AGP Pruner

• Retraining for 100 epochs with 0.006 lr.

Experiments – Accuracy Influence

• Model : Cifar-10 based

ResNet20						
Sparsity	0	51.26	65.74	84.11	88.28	91.87
Top-1	91.36	91.18	89.42	87.54	84.98	77.35
Top-5	99.72	99.70	99.59	99.43	99.21	98.65
Vgg16						
Sparsity	0	57.67	72.10	83.07	89.59	94.23
Top-1	90.52	90.44	90.64	89.75	89.49	88.52
Top-5	99.42	99.56	99.57	99.63	99.61	99.56
ResNet56						
Sparsity	0	64.97	79.96	89.94	94.94	97.94
Top-1	92.06	91.84	91.15	90.00	88.06	83.92
Top-5	99.70	99.70	99.65	99.66	99.58	99.32

ICPP-EMS 2021

Experiments – Performance

- Model : ImageNet (SparseZoo)
- Speedups compared dense models (sparsity=0)
 - Base version : run with conv2d()
 - Sparse version: run with im2col() + sparse dense() ۲

ICPP-EMS 2021

Conclusion

- We design a flow for sparse convolution in TVM.
- We create a new operator, im2col, in TVM to support sparse convolution.
- We design a visitor to replace target conv2d to im2col+GEMM.
- The performance of sparse models with compression scheme have at most 16.3x of speedup compared with direct convolution, both are without any TVM optimization.

Thank you for listening.

Q&A

