
Dual-KV : Improving Performance of Key-value 
Caching Systems on Non-volatile Memory

Zong-Ming Ke, Yun-Ze Li, Da-Wei Chang
National Cheng Kung University

Operating	Systems	and	Embedded	Systems	Lab



In-Memory Key-value Cache System
Server

Database User

Key-value Cache
2



In-Memory Key-value Cache System
Server

Database User

Key-value Cache
2



In-Memory Key-value Cache System
Server

Database User

Key-value Cache
2



In-Memory Key-value Cache System
Server

Database User

Key-value Cache
2



In-Memory Key-value Cache System
Server

Database User

Key-value Cache
2



In-Memory Key-value Cache System
Server

Database User

Key-value Cache
2



In-Memory Key-value Cache System
Server

Database User

Key-value Cache
2



Emerging Non-volatile Memory

• Phase Change Memory (PCM), Resistive RAM (R-RAM) …

• Byte addressable

• Comparable performance (especially read) to DRAM

• Larger capacity and non-volatile

Registers

Caches

DDR DRAM

NAND SSD

HDD

NVM

3



Dual Retention of Phase Change Memory (PCM) Cells

read threshold
Probability

Resistance

R.-S. Liu et al., ‘‘NVM duet: Unified working memory and persistent store architecture,’’ ACM SIGARCH Comput. Archit. 
News, vol. 42, no. 1, pp. 455–470, 2014

01 11 10 00

4



Dual Retention of Phase Change Memory (PCM) Cells

read threshold
Probability

Resistance

R.-S. Liu et al., ‘‘NVM duet: Unified working memory and persistent store architecture,’’ ACM SIGARCH Comput. Archit. 
News, vol. 42, no. 1, pp. 455–470, 2014

01 11 10 00

4



Dual Retention of Phase Change Memory (PCM) Cells

read threshold
Probability

Resistance

R.-S. Liu et al., ‘‘NVM duet: Unified working memory and persistent store architecture,’’ ACM SIGARCH Comput. Archit. 
News, vol. 42, no. 1, pp. 455–470, 2014

01 11 10 00

4



Dual Retention of Phase Change Memory (PCM) Cells

read threshold
Probability

Resistance

R.-S. Liu et al., ‘‘NVM duet: Unified working memory and persistent store architecture,’’ ACM SIGARCH Comput. Archit. 
News, vol. 42, no. 1, pp. 455–470, 2014

target band
01 11 10 00

4



Dual Retention of Phase Change Memory (PCM) Cells

read threshold
Probability

Resistance

R.-S. Liu et al., ‘‘NVM duet: Unified working memory and persistent store architecture,’’ ACM SIGARCH Comput. Archit. 
News, vol. 42, no. 1, pp. 455–470, 2014

target band

target band

01 11 10 00

4



Dual Retention of Phase Change Memory (PCM) Cells

read threshold
Probability

Resistance

R.-S. Liu et al., ‘‘NVM duet: Unified working memory and persistent store architecture,’’ ACM SIGARCH Comput. Archit. 
News, vol. 42, no. 1, pp. 455–470, 2014

target band

target band

01 11 10 00

4



Dual Retention of Phase Change Memory (PCM) Cells

read threshold
Probability

Resistance

R.-S. Liu et al., ‘‘NVM duet: Unified working memory and persistent store architecture,’’ ACM SIGARCH Comput. Archit. 
News, vol. 42, no. 1, pp. 455–470, 2014

target band

target bandretention time

01 11 10 00

4



Dual Retention of Phase Change Memory (PCM) Cells

read threshold
Probability

Resistance

R.-S. Liu et al., ‘‘NVM duet: Unified working memory and persistent store architecture,’’ ACM SIGARCH Comput. Archit. 
News, vol. 42, no. 1, pp. 455–470, 2014

target band

target bandretention time

01 11 10 00

4

write latency



Dual Retention of Phase Change Memory (PCM) Cells

read threshold
Probability

Resistance

R.-S. Liu et al., ‘‘NVM duet: Unified working memory and persistent store architecture,’’ ACM SIGARCH Comput. Archit. 
News, vol. 42, no. 1, pp. 455–470, 2014

target band

target bandretention time

01 11 10 00

4

write latency



Dual Retention of PCM Cell : 
Retention Time vs. Write Latency

R.-S. Liu et al., ‘‘NVM duet: Unified working memory and persistent store architecture,’’ ACM SIGARCH Comput. Archit. 
News, vol. 42, no. 1, pp. 455–470, 2014

Retention Time 
(sec) Write Speedup Average Write 

Iterations
107 Baseline (1,425 ns) 5.7
106 1.2 x 5.7/1.2
105 1.5 x 5.7/1.5
104 1.7 x 5.7/1.7
103 1.9 x 5.7/1.9
102 2.1 x 5.7/2.1

• NVM data retention time/write speed tradeoff

5



Dual Retention of PCM Cell : 
Retention Time vs. Write Latency

R.-S. Liu et al., ‘‘NVM duet: Unified working memory and persistent store architecture,’’ ACM SIGARCH Comput. Archit. 
News, vol. 42, no. 1, pp. 455–470, 2014

Retention Time 
(sec) Write Speedup Average Write 

Iterations
107 Baseline (1,425 ns) 5.7
106 1.2 x 5.7/1.2
105 1.5 x 5.7/1.5
104 1.7 x 5.7/1.7
103 1.9 x 5.7/1.9
102 2.1 x 5.7/2.1

slow write

fast write

• NVM data retention time/write speed tradeoff

5



Key-value Cache System on NVM

• Pros
• Lower system warm up cost
• Lower hardware cost
• Higher capacity density -> higher hit rate

• Cons
• Performance decline due to longer write latency

6



The Hotspot Issue of Key-value Cache Systems
• According to the previous studies, in many real life workloads in key-value cache, 

only a small portion of items are accessed frequently

7



Dual-KV : Main Idea

• We introduce Dual-KV, which

• Identify frequently-updated hot items

• Speedup hot items writes using fast writes

8



Contributions

• Single-threaded and 16-threaded YCSB workloads
• 43% and 83% throughput improvement respectively
• 30% and 45% request latency reduction respectively

• Based on our interface, Dual-KV can be easily integrated into existing KV cache 
systems
• Only about 30 LoC insertions/modifications to be embedded 

into Memcached

9



Dual-KV Model

• Dual-KV can be embedded into an 
existing key-value cache system
• Dual-KV interface

• Hot item predictor

• Log structure allocator

• Reclamation and eviction manager
Fast Write 

Region Slow Write Region

Software

NVM
Hardware

Dual-KV Interface

Log
Structure 
Allocator

Hot Item 
Predictor

Reclamation 
and Eviction 

Manager

Modified Key-value Cache System

10



Fast Write 
Region Slow Write Region

Software

NVM
Hardware

Dual-KV Interface

Log
Structure 
Allocator

Hot Item 
Predictor

Reclamation 
and Eviction 

Manager

Modified Key-value Cache System

Hot Item Predictor

• Calculate the “hotness” of each item and 
determine the write mode (fast/slow)

11



Hot Item Predictor 
update 

commands

old item 
exists in 

the cache?

use slow write

use fast write

write 
frequency 

>
hot 

threshold
YES

NO

YES

NO

hot threshold : 1 write/100 sec in our work

12



Fast Write 
Region Slow Write Region

Software

NVM
Hardware

Dual-KV Interface

Log
Structure 
Allocator

Hot Item 
Predictor

Reclamation 
and Eviction 

Manager

Modified Key-value Cache System

Managing NVM
• The NVM is divided into

• Fast write region : managed by our
log structure allocator

• Slow write region : managed by the 
original Memcached slab allocator

64MB by default

13



Memcached Slab Allocator : Problem

A Slab of 
Slab class #1

A Slab of 
Slab class #2

A Slab of 
Slab class #6

…

14



Memcached Slab Allocator : Problem
• Slab: pre-divided 1MB pages

A Slab of 
Slab class #1

A Slab of 
Slab class #2

A Slab of 
Slab class #6

…

14



Memcached Slab Allocator : Problem
• Slab: pre-divided 1MB pages

• A page is further cut into chunks based on the slab class it belongs to

A Slab of 
Slab class #1

A Slab of 
Slab class #2

A Slab of 
Slab class #6

…

14



Memcached Slab Allocator : Problem
• Slab: pre-divided 1MB pages

• A page is further cut into chunks based on the slab class it belongs to
• Chunks are the allocation unit for items

A Slab of 
Slab class #1

A Slab of 
Slab class #2

A Slab of 
Slab class #6

…

14



Memcached Slab Allocator : Problem
• Slab: pre-divided 1MB pages

• A page is further cut into chunks based on the slab class it belongs to
• Chunks are the allocation unit for items

A Slab of 
Slab class #1

A Slab of 
Slab class #2

A Slab of 
Slab class #6

…

512 KB
chunk

512 KB
chunk

14



Memcached Slab Allocator : Problem
• Slab: pre-divided 1MB pages

• A page is further cut into chunks based on the slab class it belongs to
• Chunks are the allocation unit for items

A Slab of 
Slab class #1

A Slab of 
Slab class #2

A Slab of 
Slab class #6

…

512 KB
chunk

512 KB
chunk

256 KB
chunk

256 KB
chunk

256 KB
chunk

256 KB
chunk

14



Memcached Slab Allocator : Problem
• Slab: pre-divided 1MB pages

• A page is further cut into chunks based on the slab class it belongs to
• Chunks are the allocation unit for items

A Slab of 
Slab class #1

A Slab of 
Slab class #2

A Slab of 
Slab class #6

…

512 KB
chunk

512 KB
chunk

256 KB
chunk

256 KB
chunk

256 KB
chunk

256 KB
chunk

14



Memcached Slab Allocator : Problem
• Slab: pre-divided 1MB pages

• A page is further cut into chunks based on the slab class it belongs to
• Chunks are the allocation unit for items

A Slab of 
Slab class #1

A Slab of 
Slab class #2

A Slab of 
Slab class #6

…

512 KB
chunk

512 KB
chunk

256 KB
chunk

256 KB
chunk

256 KB
chunk

256 KB
chunk

14



Memcached Slab Allocator : Problem
• Slab: pre-divided 1MB pages

• A page is further cut into chunks based on the slab class it belongs to
• Chunks are the allocation unit for items

A Slab of 
Slab class #1

A Slab of 
Slab class #2

A Slab of 
Slab class #6

…

512 KB
chunk

512 KB
chunk

256 KB
chunk

256 KB
chunk

256 KB
chunk

256 KB
chunk

16 KB chunks
14



Memcached Slab Allocator : Problem

A Slab of 
Slab class #1

A Slab of 
Slab class #2

A Slab of 
Slab class #6

…

512 KB
chunk

512 KB
chunk

256 KB
chunk

256 KB
chunk

256 KB
chunk

256 KB
chunk

16 KB chunks
15



Memcached Slab Allocator : Problem
• When an item demands a memory space, the best fitting chunk is selected 

for it

A Slab of 
Slab class #1

A Slab of 
Slab class #2

A Slab of 
Slab class #6

…

512 KB
chunk

512 KB
chunk

256 KB
chunk

256 KB
chunk

256 KB
chunk

256 KB
chunk

16 KB chunks
15



Memcached Slab Allocator : Problem
• When an item demands a memory space, the best fitting chunk is selected 

for it

A Slab of 
Slab class #1

A Slab of 
Slab class #2

A Slab of 
Slab class #6

…

512 KB
chunk

512 KB
chunk

256 KB
chunk

256 KB
chunk

256 KB
chunk

256 KB
chunk

16 KB chunks
15

510 KB item



Memcached Slab Allocator : Problem
• When an item demands a memory space, the best fitting chunk is selected 

for it

A Slab of 
Slab class #1

A Slab of 
Slab class #2

A Slab of 
Slab class #6

…

512 KB
chunk

512 KB
chunk

256 KB
chunk

256 KB
chunk

256 KB
chunk

256 KB
chunk

16 KB chunks
15

510 KB item

253 KB item



Memcached Slab Allocator : Problem
• When an item demands a memory space, the best fitting chunk is selected 

for it

A Slab of 
Slab class #1

A Slab of 
Slab class #2

A Slab of 
Slab class #6

…

512 KB
chunk

512 KB
chunk

256 KB
chunk

256 KB
chunk

256 KB
chunk

256 KB
chunk

16 KB chunks
15

510 KB item

253 KB item



Memcached Slab Allocator : Problem
• When an item demands a memory space, the best fitting chunk is selected 

for it
• Most hot items are small items -> slabs with big chunks have low utilities

A Slab of 
Slab class #1

A Slab of 
Slab class #2

A Slab of 
Slab class #6

…

512 KB
chunk

512 KB
chunk

256 KB
chunk

256 KB
chunk

256 KB
chunk

256 KB
chunk

16 KB chunks
15

510 KB item

253 KB item



Memcached Slab Allocator : Problem
• When an item demands a memory space, the best fitting chunk is selected 

for it
• Most hot items are small items -> slabs with big chunks have low utilities

A Slab of 
Slab class #1

A Slab of 
Slab class #2

A Slab of 
Slab class #6

…

512 KB
chunk

512 KB
chunk

256 KB
chunk

256 KB
chunk

256 KB
chunk

256 KB
chunk

16 KB chunks
15

`

510 KB item

253 KB item



Memcached Slab Allocator : Problem
• When an item demands a memory space, the best fitting chunk is selected 

for it
• Most hot items are small items -> slabs with big chunks have low utilities

A Slab of 
Slab class #1

A Slab of 
Slab class #2

A Slab of 
Slab class #6

…

512 KB
chunk

512 KB
chunk

256 KB
chunk

256 KB
chunk

256 KB
chunk

256 KB
chunk

16 KB chunks
15

`

510 KB item

253 KB item



Memcached Slab Allocator : Problem
• When an item demands a memory space, the best fitting chunk is selected 

for it
• Most hot items are small items -> slabs with big chunks have low utilities

A Slab of 
Slab class #1

A Slab of 
Slab class #2

A Slab of 
Slab class #6

…

512 KB
chunk

512 KB
chunk

256 KB
chunk

256 KB
chunk

256 KB
chunk

256 KB
chunk

16 KB chunks
Class #6 out of memory -> evict items 15

`

510 KB item

253 KB item



Memcached Slab Allocator : Problem
• When an item demands a memory space, the best fitting chunk is selected 

for it
• Most hot items are small items -> slabs with big chunks have low utilities
• Slabs with low utility are NOT reclaimable -> unaffordable waste

A Slab of 
Slab class #1

A Slab of 
Slab class #2

A Slab of 
Slab class #6

…

512 KB
chunk

512 KB
chunk

256 KB
chunk

256 KB
chunk

256 KB
chunk

256 KB
chunk

16 KB chunks
Class #6 out of memory -> evict items 15

`

510 KB item

253 KB item



Memcached Slab Allocator : Problem
• When an item demands a memory space, the best fitting chunk is selected 

for it
• Most hot items are small items -> slabs with big chunks have low utilities
• Slabs with low utility are NOT reclaimable -> unaffordable waste

A Slab of 
Slab class #1

A Slab of 
Slab class #2

A Slab of 
Slab class #6

…

512 KB
chunk

512 KB
chunk

256 KB
chunk

256 KB
chunk

256 KB
chunk

256 KB
chunk

16 KB chunks
Class #6 out of memory -> evict items

Can’t be reclaimed, unaffordable waste

15

`

510 KB item

253 KB item



Log Structure Allocator
• The fast write region is organized as linked 1MB segments

segment 
0

segment 
1

segment 
2 … segment 

N-1
1MB

segment 
3

free_segments_list

segment 
N-2

16



Log Structure Allocator

• Items are sequentially appended to the segment

segment 
0

segment 
1

segment 
2 … segment 

N-1
1MB

segment 
3

free_segments_list

segment 
N-2

append

17



Fast Write Region Slow Write Region

Software

Hardware

NVM

Dual-KV Interface

Log
Structure 
Allocator

Hot Item 
Predictor

Reclamation 
and Eviction 

Manager

Modified Key-value Cache System

Managing the Fast Write Region
• Reclaim fast write region space 

when the free segments # is low

• Evict the out-of-date data
• Since the data in the fast write 

region have limited retention time
(i.e., 100 seconds in our research)

18



Memory Reclamation : When
• When : The number of free segments falls below a threshold (4 in our research)

segment 0 segment 1 segment 2 … segment N-1

1MB

segment 3

free_segments_list

segment N-2

19



Memory Reclamation : When
• When : The number of free segments falls below a threshold (4 in our research)

segment 0 segment 1 segment 2 … segment N-1

1MB

segment 3

free_segments_list

segment N-2

19



Memory Reclamation : Which and How
• Which : The oldest segment
• How : Drop the live items

segment 0 segment 1 segment 2 … segment N-1

1MB

segment 3

free_segments_list

segment N-2

20



Memory Reclamation : Which and How
• Which : The oldest segment
• How : Drop the live items

tend to contain the fewest live items

segment 0 segment 1 segment 2 … segment N-1

1MB

segment 3

free_segments_list

segment N-2

20



Memory Reclamation : Which and How
• Which : The oldest segment
• How : Drop the live items

tend to contain the fewest live items

segment 0 segment 1 segment 2 … segment N-1

1MB

segment 3

free_segments_list

segment N-2

20



Memory Reclamation : Which and How
• Which : The oldest segment
• How : Drop the live items

tend to contain the fewest live items

segment 0 segment 1 segment 2 … segment N-1

1MB

segment 3

free_segments_list

segment N-2

reclaim

20



Memory Reclamation : Which and How
• Which : The oldest segment
• How : Drop the live items easy for implementation, 

hit rate penalty (but negligible)

tend to contain the fewest live items

segment 0 segment 1 segment 2 … segment N-1

1MB

segment 3

free_segments_list

segment N-2

reclaim

20



Memory Reclamation : Which and How
• Which : The oldest segment
• How : Drop the live items easy for implementation, 

hit rate penalty (but negligible)

tend to contain the fewest live items

segment 0 segment 1 segment 2 … segment N-1

1MB

segment 3

free_segments_list

segment N-2

reclaim

20



Memory Reclamation : Which and How
• Which : The oldest segment
• How : Drop the live items easy for implementation, 

hit rate penalty (but negligible)

tend to contain the fewest live items

segment 0 segment 1 segment 2 … segment N-1

1MB

segment 3

free_segments_list

segment N-2

reclaim

20



Aged Items Eviction

segment 
0

segment 
1

segment 
2 … segment 

N-1
segment 

3
segment 

N-2

93 92 85 82

21



Aged Items Eviction
• Why: The retention time of fast written items are 100 seconds

-> need to be evict before they become out-of-date

segment 
0

segment 
1

segment 
2 … segment 

N-1
segment 

3
segment 

N-2

93 92 85 82

21



Aged Items Eviction
• Why: The retention time of fast written items are 100 seconds

-> need to be evict before they become out-of-date
• How: An eviction thread periodically scans the segments and evicts out-of-date items

• Eviction period: 10 seconds in our work (discussed in the next slide)

segment 
0

segment 
1

segment 
2 … segment 

N-1
segment 

3
segment 

N-2

93 92 85 82

21



Aged Items Eviction
• Why: The retention time of fast written items are 100 seconds

-> need to be evict before they become out-of-date
• How: An eviction thread periodically scans the segments and evicts out-of-date items

• Eviction period: 10 seconds in our work (discussed in the next slide)

segment 
0

segment 
1

segment 
2 … segment 

N-1
segment 

3
segment 

N-2

93 92 85 82

e.g., 
100 – 93 < 10

evict the item 21



Aged Items Eviction
• Why: The retention time of fast written items are 100 seconds

-> need to be evict before they become out-of-date
• How: An eviction thread periodically scans the segments and evicts out-of-date items

• Eviction period: 10 seconds in our work (discussed in the next slide)

segment 
0

segment 
1

segment 
2 … segment 

N-1
segment 

3
segment 

N-2

93 92 85 82

e.g., 
100 – 93 < 10

evict the item 21



Aged Items Eviction
• Why: The retention time of fast written items are 100 seconds

-> need to be evict before they become out-of-date
• How: An eviction thread periodically scans the segments and evicts out-of-date items

• Eviction period: 10 seconds in our work (discussed in the next slide)

segment 
0

segment 
1

segment 
2 … segment 

N-1
segment 

3
segment 

N-2

93 92 85 82

e.g., 
100 – 93 < 10

evict the item 21



Aged Items Eviction
• Why: The retention time of fast written items are 100 seconds

-> need to be evict before they become out-of-date
• How: An eviction thread periodically scans the segments and evicts out-of-date items

• Eviction period: 10 seconds in our work (discussed in the next slide)

segment 
0

segment 
1

segment 
2 … segment 

N-1
segment 

3
segment 

N-2

93 92 85 82

21



Aged Items Eviction
• Why: The retention time of fast written items are 100 seconds

-> need to be evict before they become out-of-date
• How: An eviction thread periodically scans the segments and evicts out-of-date items

• Eviction period: 10 seconds in our work (discussed in the next slide)

segment 
0

segment 
1

segment 
2 … segment 

N-1
segment 

3
segment 

N-2

93 92 85 82

e.g., 
100 – 92 < 10

evict the item 21



Aged Items Eviction
• Why: The retention time of fast written items are 100 seconds

-> need to be evict before they become out-of-date
• How: An eviction thread periodically scans the segments and evicts out-of-date items

• Eviction period: 10 seconds in our work (discussed in the next slide)

segment 
0

segment 
1

segment 
2 … segment 

N-1
segment 

3
segment 

N-2

93 92 85 82

e.g., 
100 – 92 < 10

evict the item 21



Aged Items Eviction
• Why: The retention time of fast written items are 100 seconds

-> need to be evict before they become out-of-date
• How: An eviction thread periodically scans the segments and evicts out-of-date items

• Eviction period: 10 seconds in our work (discussed in the next slide)

segment 
0

segment 
1

segment 
2 … segment 

N-1
segment 

3
segment 

N-2

93 92 85 82

21



Aged Items Eviction
• Why: The retention time of fast written items are 100 seconds

-> need to be evict before they become out-of-date
• How: An eviction thread periodically scans the segments and evicts out-of-date items

• Eviction period: 10 seconds in our work (discussed in the next slide)

segment 
0

segment 
1

segment 
2 … segment 

N-1
segment 

3
segment 

N-2

93 92 85 82

21



Aged Items Eviction
• Why: The retention time of fast written items are 100 seconds

-> need to be evict before they become out-of-date
• How: An eviction thread periodically scans the segments and evicts out-of-date items

• Eviction period: 10 seconds in our work (discussed in the next slide)

segment 
0

segment 
1

segment 
2 … segment 

N-1
segment 

3
segment 

N-2

93 92 85 82

e.g., 
100 – 85 >= 10

leave the item 21



Aged Items Eviction
• Why: The retention time of fast written items are 100 seconds

-> need to be evict before they become out-of-date
• How: An eviction thread periodically scans the segments and evicts out-of-date items

• Eviction period: 10 seconds in our work (discussed in the next slide)

segment 
0

segment 
1

segment 
2 … segment 

N-1
segment 

3
segment 

N-2

93 92 85 82

21



Aged Items Eviction
• Why: The retention time of fast written items are 100 seconds

-> need to be evict before they become out-of-date
• How: An eviction thread periodically scans the segments and evicts out-of-date items

• Eviction period: 10 seconds in our work (discussed in the next slide)

segment 
0

segment 
1

segment 
2 … segment 

N-1
segment 

3
segment 

N-2

93 92 85 82

21



Aged Items Eviction
• Why: The retention time of fast written items are 100 seconds

-> need to be evict before they become out-of-date
• How: An eviction thread periodically scans the segments and evicts out-of-date items

• Eviction period: 10 seconds in our work (discussed in the next slide)

segment 
0

segment 
1

segment 
2 … segment 

N-1
segment 

3
segment 

N-2

93 92 85 82

e.g., 
100 – 82 >= 10

leave the item 21



Aged Items Eviction
• Why: The retention time of fast written items are 100 seconds

-> need to be evict before they become out-of-date
• How: An eviction thread periodically scans the segments and evicts out-of-date items

• Eviction period: 10 seconds in our work (discussed in the next slide)

segment 
0

segment 
1

segment 
2 … segment 

N-1
segment 

3
segment 

N-2

93 92 85 82

21



Aged Items Eviction
• Why: The retention time of fast written items are 100 seconds

-> need to be evict before they become out-of-date
• How: An eviction thread periodically scans the segments and evicts out-of-date items

• Eviction period: 10 seconds in our work (discussed in the next slide)

segment 
0

segment 
1

segment 
2 … segment 

N-1
segment 

3
segment 

N-2

93 92 85 82

21



Computation Overhead vs. Hit Rate

eviction period computational overhead

eviction period Items may be evicted 
too early, hit rate penalty

22



Dual-KV Interface

Dual-KV Interface Feature

classify_item_write_mode() Predict appropriate write mode for each item

segment_alloc_item() Allocate memory in the fast write region

segment_free_item() Release memory in the fast write region

• Allow key-value cache systems to take advantage of the dual retention 
write scheme without significant software refactoring

23



Hardware Environment:
Dual Retention Support & Super Capacity

• Hardware support includes

24



Hardware Environment:
Dual Retention Support & Super Capacity

• Hardware support includes
• Dual retention NVM
• Previous studies provided an interface

for dual retention mechanisms

24



Hardware Environment:
Dual Retention Support & Super Capacity

• Hardware support includes
• Dual retention NVM
• Previous studies provided an interface

for dual retention mechanisms

24



Hardware Environment:
Dual Retention Support & Super Capacity

• Hardware support includes
• Dual retention NVM
• Previous studies provided an interface

for dual retention mechanisms R.-S. Liu et al., ‘‘NVM duet: Unified working memory 
and persistent store architecture,’’ ACM SIGARCH 
Comput. Archit. News, vol. 42, no. 1, pp. 455–470, 
2014

M. Zhang, L. Zhang, L. Jiang, Z. Liu, and F. T. Chong, 
“Balancing performance and lifetime of MLC PCM by 
using a region retention monitor,” in Symp. on High-
Performance Computer Architecture (HPCA), 2017, pp. 
385–396

24



Hardware Environment:
Dual Retention Support & Super Capacity

• Hardware support includes
• Dual retention NVM

• Previous studies provided an interface
for dual retention mechanisms

• Supercapacitor
• Supply power to refresh the data 

into NVM with slow writes upon 
a power failure

• Existing NVDIMMs support data refreshing
in DRAM to NAND flash chips upon a 
power failure

R.-S. Liu et al., ‘‘NVM duet: Unified working memory 
and persistent store architecture,’’ ACM SIGARCH 
Comput. Archit. News, vol. 42, no. 1, pp. 455–470, 
2014

M. Zhang, L. Zhang, L. Jiang, Z. Liu, and F. T. Chong, 
“Balancing performance and lifetime of MLC PCM by 
using a region retention monitor,” in Symp. on High-
Performance Computer Architecture (HPCA), 2017, pp. 
385–396

24



Hardware Environment:
Dual Retention Support & Super Capacity

• Hardware support includes
• Dual retention NVM

• Previous studies provided an interface
for dual retention mechanisms

• Supercapacitor
• Supply power to refresh the data 

into NVM with slow writes upon 
a power failure

• Existing NVDIMMs support data refreshing
in DRAM to NAND flash chips upon a 
power failure

R.-S. Liu et al., ‘‘NVM duet: Unified working memory 
and persistent store architecture,’’ ACM SIGARCH 
Comput. Archit. News, vol. 42, no. 1, pp. 455–470, 
2014

M. Zhang, L. Zhang, L. Jiang, Z. Liu, and F. T. Chong, 
“Balancing performance and lifetime of MLC PCM by 
using a region retention monitor,” in Symp. on High-
Performance Computer Architecture (HPCA), 2017, pp. 
385–396

24



Hardware Environment:
Dual Retention Support & Super Capacity

• Hardware support includes
• Dual retention NVM

• Previous studies provided an interface
for dual retention mechanisms

• Supercapacitor
• Supply power to refresh the data 

into NVM with slow writes upon 
a power failure

• Existing NVDIMMs support data refreshing
in DRAM to NAND flash chips upon a 
power failure

R.-S. Liu et al., ‘‘NVM duet: Unified working memory 
and persistent store architecture,’’ ACM SIGARCH 
Comput. Archit. News, vol. 42, no. 1, pp. 455–470, 
2014

M. Zhang, L. Zhang, L. Jiang, Z. Liu, and F. T. Chong, 
“Balancing performance and lifetime of MLC PCM by 
using a region retention monitor,” in Symp. on High-
Performance Computer Architecture (HPCA), 2017, pp. 
385–396

DDR4 SDRAM NVRDIMM MTA36ASS4G72XF1Z,” 
Micron Technology Inc., 2020. Micron Inc.

24



Evaluation Setup
CPU Intel i7-8700

Main Memory 16GB DDR4 for Main Memory
48GB DDR4 for NVM Emulation

Operating System Linux Kernel 5.4

Default Fast Write Region Size 64MB

NVM Evaluation Latency (ns) Write Iterations Retention Time (sec)
Slow Write 1,425 5.7 107

Fast Write 678 2.7 102

R.-S. Liu et al., ‘‘NVM duet: Unified working memory and persistent store architecture,’’ ACM SIGARCH Comput. Archit. 
News, vol. 42, no. 1, pp. 455–470, 2014 25



Workloads
• Yahoo! Cloud Serving Benchmark (YCSB)
• 10 M operations on 10M items
• Zipfian constant is 0.99 -> most selected items are small

Workload Operation Value Size
A1 read 50%, update 50% 64B ~ 10KB
A2 read 5%, update 95% 64B ~ 10KB
A3 read 50%, update 50% 64B ~ 100KB
F1 read 50%, read-modify-write 50% 64B ~ 10KB
F2 read 5%, read-modify-write 95% 64B ~ 10KB
F3 read 50%, read-modify-write 50% 64B ~ 100KB
C read 100% 64B ~ 10KB

26



Throughput Improvement

1.219
1.341

1.435

1.121
1.214

1.327

0.986

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

A1 A2 A3 F1 F2 F3 C

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Workloads

Baseline Dual-KV

Dual-KV achieves more improvement 
in a write-heavy workload

27



Throughput Improvement

1.219
1.341

1.435

1.121
1.214

1.327

0.986

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

A1 A2 A3 F1 F2 F3 C

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Workloads

Baseline Dual-KV

Fast writes reduce even more queueing delays for the following requests 
when the selected fast write item is large

28



Read Overhead

1.219
1.341

1.435

1.121
1.214

1.327

0.986

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

A1 A2 A3 F1 F2 F3 C

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Workloads

Baseline Dual-KV
29



Operation Ratios
• Most writes are sped up using fast writes

30



Workload Skewness
• Workloads A1, A2, A3 -> different access skewness
• Dual-KV improves up to 49% of throughput under a highly skewed 

workload

31



Scalability (Clients)

83 % improvement

• Workload A3 (read 50%, update 50%, 64B ~ 100KB)
• 4 Memcached worker threads

32



Fast Write Region Size vs. Hit Rate
• Larger fast write region ->
• higher hit rate (less dropped live items)
• but with more hardware cost (larger supercapacitor)

33



Thank You

Q & A

Operating	System	and	Embedded	System	Lab

34


