TurboBC: A Memory Efficient and Scalable GPU Based Betweenness Centrality (BC) Algorithm in the Language of Linear Algebra

Oswaldo Artiles and Fahad Saeed

ICPP 2021 DUAC Workshop August 9, 2021

Content

TurboBC Algorithms

Experiments Benchmarks

Experimental Results

The first implementation of a set of memory efficient Brandes' BC algorithms in the language of linear algebra, applicable to unweighted sparse graphs.

Good performance
 High scalability

TurboBC Optimization strategies

Exploiting the sparsity of the frontier and output vector of the top-down BFS algorithms

Improving the performance of the BC algorithms

TurboBC Optimization strategies

Minimizing the number of arrays on the GPU global memory

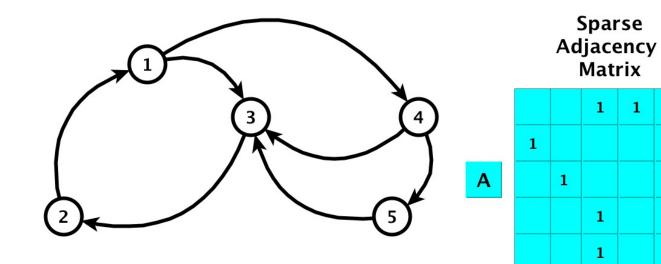
Reducing the memory footprint

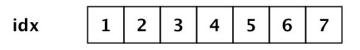
Increasing the memory efficiency and the scalability of the TurboBC algorithms

TurboBC applicable to:

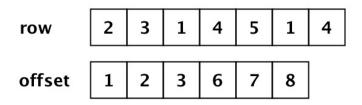
Sparse unweighted graphs represented by binary sparse adjacency matrices in compressed sparse formats.

TurboBC Sparse Compressed Formats





CSC format



COOC format

row	2	3	1	4	5	1	4
col	1	2	3	3	3	4	5

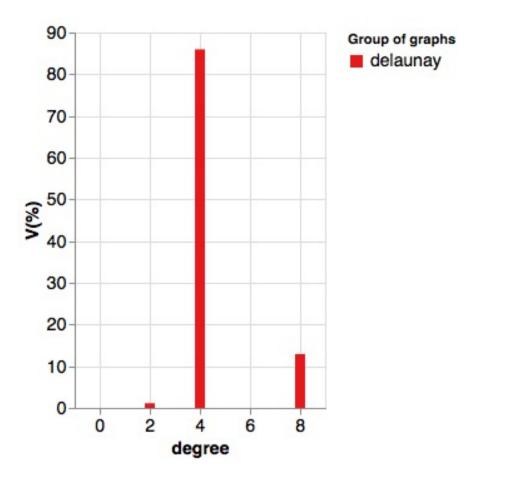
1

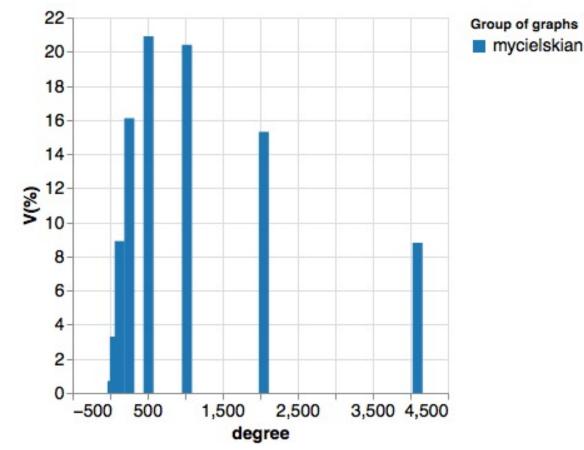
1

1

1

TurboBC Regular and Irregular Graphs





Betweenness centrality of a vertex v of a graph G

$$BC(v) = \sum_{s \neq v \neq t} \sigma_{st}(v) / \sigma_{st} = \sum_{s \neq v \neq t} \delta_{st}(v)$$

One-sided dependences

$$\delta_s(v) = \sum_{t \in V} \delta_{st}(v)$$

Brandes' recurrence relation to compute the one-sided dependences

$$\delta_s(v) = \sum_{w:d(s,w)=d(s,v)+1} \frac{\sigma_{sv}}{\sigma_{sw}} (1 + \delta_s(w))$$

TurboBC Two-stages algorithm

Forward stage: Top-down BFS algorithm to compute the shortest paths/vertex

Backward stage: computation of onesided dependences and update BC/vertex

Forward stage: Top-down BFS algorithm

1: 6	or $s \leftarrow 1, n$ do	▷ s: source vertex of BFS tree
2:	while $f > 0$ do	 BFS stage starts
3:	$f_t \leftarrow A^T f$	
4:	if $\exists \sigma(i) == 0$ then	
5:	$f(i) \leftarrow f_t(i)$	
6:	end if	
7:	if $\exists f(i)! = 0$ then	
8:	$S(i) \leftarrow d$	
9:	$\sigma(i) \leftarrow \sigma(i) + f(i)$	
10:	$c \leftarrow 1$	
11:	end if	
12:	end while	
13: C	nd for	

Backward stage: computation of one-sided dependences and update BC/vertex

```
1: for s \leftarrow 1, n do
                                             ▷ s: source vertex of BFS tree
         while d > 1 do > one-sided dependences vector stage
 2:
             if S(i) == d and \sigma(i) > 0 then
 3:
                 \delta_{ii}(i) \leftarrow (1.0 + \delta(i)) \div \sigma(i)
 4:
             end if
 51
        \delta_{ut} \leftarrow A^T \delta_u
 6:
            if S(i) == d - 1 then
 7:
                 \delta(i) \leftarrow \delta(i) + \delta_{ut}(i) \times \sigma(i)
 8:
            end if
 q-
             d \leftarrow d - 1
10:
        end while
11:
        for v ← 1, n do > updating betweenness centrality bc
12:
             if v ≠ s then
13:
                 bc(v) \leftarrow bc(v) + \delta(v)
14:
             end if
15:
        end for
16:
17: end for
```

Sparse Matrix-Vector Multiplication Regular Graphs

One thread per edge COOC-scalar regular graphs

One thread per vertex CSC-scalar Regular graphs Sequential $f_t \leftarrow A^T f$ scalar operation COOC format

- 1: for $k \to 1, nnz$ do
- 2: **if** $f(row_A(k)) > 0$ **then**
- 3: $f_t(col(k)) \leftarrow f_t(col(k)) + f(row(k))$

CSC format

```
1: for v \to 1, n do
            if \sigma(v) == 0 then
 2:
 3:
                  sum \leftarrow 0
                 start \leftarrow offset(v)
 4:
 5:
                  end \leftarrow offset(\mathbf{v} + \mathbf{1}) - \mathbf{1}
                 for k \rightarrow start, end do
 6:
 7:
                        \mathbf{sum} \leftarrow \mathbf{sum} + \mathbf{f}(\mathbf{row}(\mathbf{k}))
 8:
                  end for
                  if sum > 0 then
 9:
10:
                        \mathbf{f_t}(\mathbf{v}) \leftarrow \mathbf{sum}
```

TurboBC Sparse Matrix-Vector Multiplication Warp Divergence



Sparse Matrix-Vector Multiplication Irregular Graphs

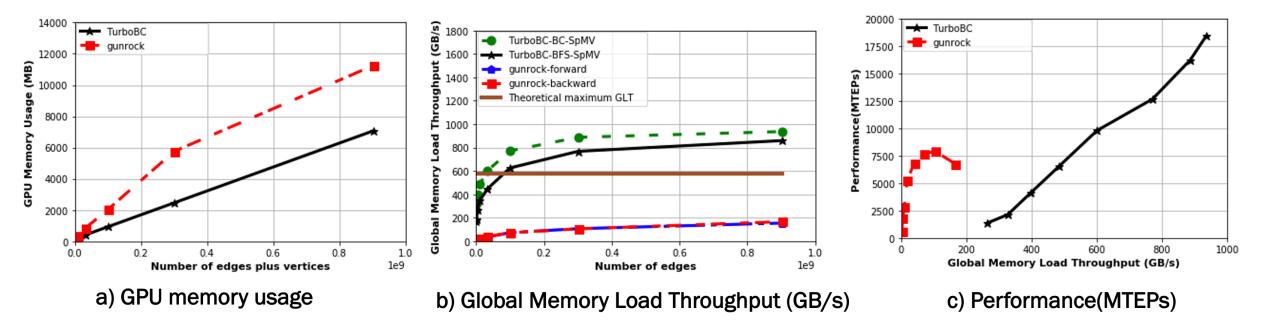
One Warp (32 Threads] per Vertex Parallel reduction CSC-vector

1: procedure VECSC-MVSP-KERNEL(offset, row, f) if $\sigma(col) == 0$ then 2: 3: $start \leftarrow offset(col)$ $end \leftarrow offset(col + threadLane_{id})$ 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 while icp < end do 5: 1 2 4 0 3 3 7 4 3 0 1 1 3 0 4 0 3 5 $sum \leftarrow sum + f(row_A(icp))$ 6: $icp \leftarrow icp + threadsPerWarp$ 7: 8: end while 9: $off \leftarrow threadsPerWarp/2$ while off > 0 do 10:11: $sum \leftarrow sum + shfl - down - sync(of f)$ 12: $off \leftarrow off2$ 13:end while 14: if $threadLane_{id} == 0$ then $f_t(warp_{id}) \leftarrow sum$ 15:16:end if

Experiments Benchmarks Graphs and Graphs Analytic Libraries

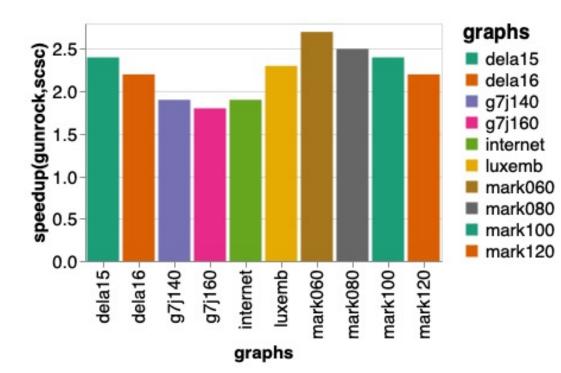
Thirty-three graphs represented by sparse adjacency matrices from the SuiteSparse Matrix Collection, with up to 1.9 billion edges and 214 million vertices.
 gunrock: High-performance GPU-based graph analytic library
 ligra: High-performance CPU-based graph analytic library

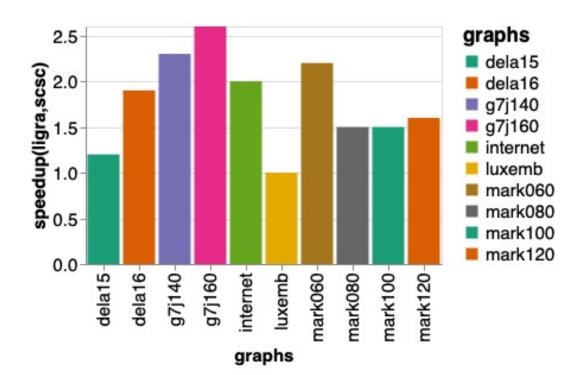
TurboBC GPU Memory Efficiency: TurboBC vs gunrock



Experimental Results for Regular Graphs

Ten graphs TurboBC CSC-scalar
 Up to 470 MTEPs (Million transverse edges/second)



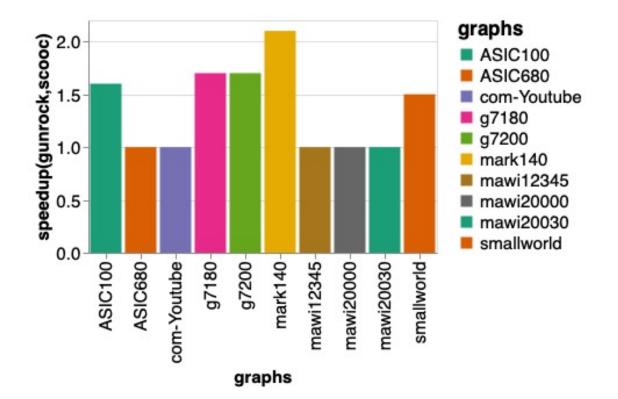


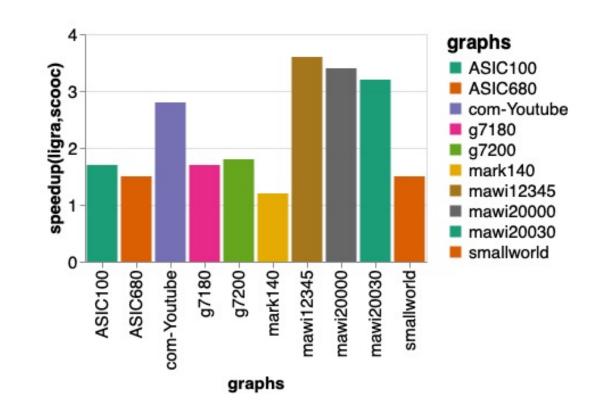
Experimental Results for Regular Graphs

* Ten graphs

TurboBC COOC-scalar

Up to 1000 MTEPs (Million transverse edges/second)



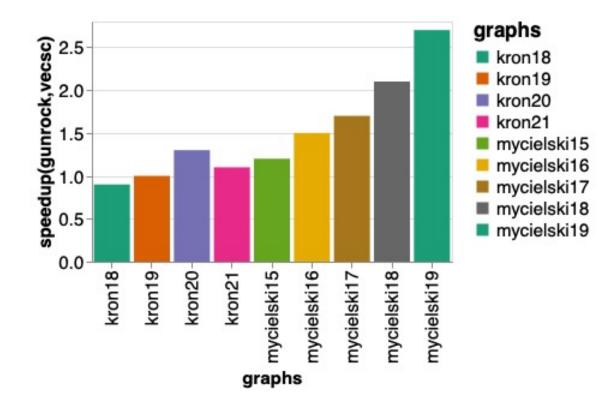


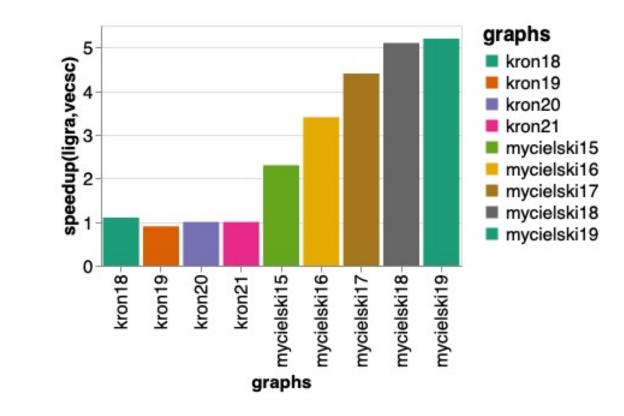
Experimental Results for Irregular Graphs

Nine graphs

TurboBC CSC-vector

Up to 18470 MTEPs (Million transverse edges/second)





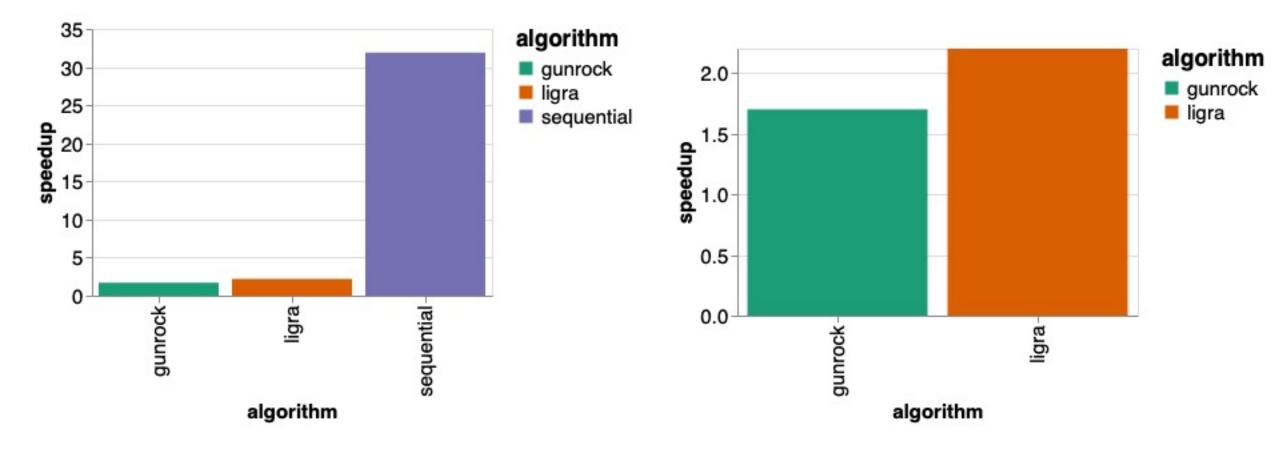
Experimental Results for Big Graphs

File	$n \times 10^{6}$	$m \times 10^{6}$	degree(max/ μ/σ)	d	scf	runtime(s)	MTEPs	(sequential)x	(gunrock)x
kmer-V1r(U)	214	465	8/2/1	324	2	14.3	33	94.5	OOM
it-2004(D)	42	1151	9964/28/67	50	543	3.1	371	39.5	OOM
GAP-twitter(D)	62	1469	$3 \times 10^{6}/24/1990$	15	126	7.3	201	50.4	OOM
sk-2005(D)	51	1950	12870/39/78	54	1262	6.8	287	30.5	OOM

The BC algorithms available in the gunrock libraries ran out of memory for these big graphs

High scalable TurboBC algorithms

TurboBC Experimental Results Summary



TurboBC main result

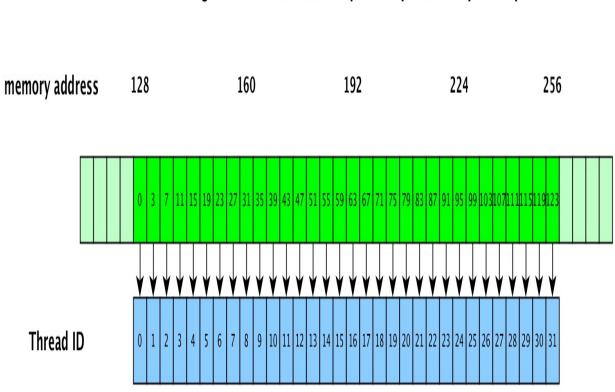
A memory efficient and highly scalable first implementation of GPU-based set of Brandes' BC algorithms in the language of linear algebra. Thank you Guestions?

TurboBFS Experimental CPU-GPU Platform

- Linux server with Ubuntu operating system version 16.04.6,
 22 Intel Xeon Gold 6152 processors, clock speed 2.1 GHz,
 and 125 GB of RAM.
- The GPU in this server was a NVIDIA Titan Xp, with 30 SM, 128 cores/SM, maximum clock rate of 1.58 GHz, 12196 MB of global memory, and CUDA version 10.1.243 with CUDA capability of 6.1.

TurboBFS Sparse Matrix-Vector Multiplication Warp Memory Load Operation

- Aligned memory access occurs when the first address of a device memory transaction is an even multiple of 32 bytes for L2 cache or 128 bytes for L1 cache.
- Coalesced memory access occurs when all 32 threads in a warp access a contiguous chunk of memory..
- Aligned coalesced memory access is ideal because it maximizes global load memory throughput. That is, the addresses requested by all threads in a warp fall within one cache line of 128 bytes. Only a single 128-byte transaction is required by the memory load operation.



Aligned coalesced memory load operation by a wrap

TurboBFS Sparse Matrix-Vector Multiplication Warp Memory Load Operation

- When the L1 cache is enabled, three 128-byte memory transactions may be required, resulting in wasted memory bandwidth because some of the bytes loaded are not used.
- Misaligned accesses can be verified by collecting information of the Global Memory Load Efficiency (GMLE) metrics

