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TurboBC

The first implementation of  a set of  memory 
efficient Brandes’ BC algorithms in the 

language of  linear algebra, applicable to 
unweighted sparse graphs. 

qGood performance
qHigh scalability



TurboBC
Optimization strategies

Exploiting the sparsity of the frontier and 
output vector of the top-down BFS 

algorithms

Improving the performance of the BC 
algorithms 

.



TurboBC
Optimization strategies

Minimizing the number of arrays on the GPU 
global memory         

Reducing the memory footprint

Increasing the memory efficiency and 
the scalability of the TurboBC algorithms



TurboBC applicable to:

Sparse unweighted graphs represented 
by binary sparse adjacency matrices in 

compressed sparse formats.



TurboBC 
Sparse Compressed Formats



TurboBC
Regular and Irregular Graphs



Betweenness centrality of  a vertex v of  a graph G

Brandes’ recurrence relation to compute the one-sided dependences 

TurboBC 

One-sided dependences 



TurboBC
Two-stages algorithm 

Forward stage: Top-down BFS algorithm 
to compute the shortest paths/vertex 

Backward  stage: computation of one-
sided dependences and update BC/vertex



TurboBC
Forward stage: Top-down BFS algorithm 



TurboBC
Backward  stage: computation of one-sided 

dependences and update BC/vertex



TurboBC
Sparse Matrix-Vector Multiplication

Regular Graphs

One thread per edge
COOC-scalar

regular graphs

One thread per vertex
CSC-scalar

Regular graphs



TurboBC
Sparse Matrix-Vector Multiplication 

Warp Divergence

Irregular graphs: Nodes with higher degrees

Load unbalance in warps

Warp divergence



TurboBC
Sparse Matrix-Vector Multiplication

Irregular Graphs

One Warp (32 Threads] per Vertex
Parallel reduction

CSC-vector



TurboBC
Experiments Benchmarks

Graphs and Graphs Analytic Libraries

vThirty-three graphs represented by sparse adjacency 
matrices from the SuiteSparse Matrix Collection, with 
up to 1.9 billion edges and 214 million vertices.

vgunrock: High-performance GPU-based graph 
analytic library

v ligra:  High-performance CPU-based graph analytic 
library



TurboBC
GPU Memory Efficiency: TurboBC vs gunrock



TurboBC
Experimental Results for Regular Graphs

v Ten graphs                                  TurboBC CSC-scalar 
v Up to 470 MTEPs (Million transverse edges/second)



TurboBC
Experimental Results for Regular Graphs

v Ten graphs                                  TurboBC COOC-scalar 
v Up to 1000 MTEPs (Million transverse edges/second)



TurboBC
Experimental Results for Irregular Graphs

vNine graphs                                  TurboBC CSC-vector 
v Up to 18470 MTEPs (Million transverse edges/second)



TurboBC
Experimental Results for Big Graphs

The BC algorithms available in the gunrock libraries ran 

out of memory for these big graphs

High scalable TurboBC algorithms



TurboBC
Experimental  Results Summary



TurboBC main result

A memory efficient and highly scalable first 
implementation of  GPU-based set of 

Brandes’ BC algorithms in the language 
of linear algebra.



Thank you
Questions?



TurboBFS
Experimental CPU-GPU Platform

• Linux server with Ubuntu operating system version 16.04.6, 
22 Intel Xeon Gold 6152 processors, clock speed 2.1 GHz, 
and 125 GB of RAM. 

• The GPU in this server was a NVIDIA Titan Xp, with 30 SM, 
128 cores/SM, maximum clock rate of 1.58 GHz, 12196 MB of 
global memory, and CUDA version 10.1.243 with CUDA 
capability of 6.1. 



v Aligned memory access occurs when 
the first address of  a device memory 
transaction is an even multiple of  32 
bytes for L2 cache or 128 bytes for L1 
cache.

v Coalesced memory access occurs 
when all 32 threads in a warp access a 
contiguous chunk of  memory.. 

v Aligned coalesced  memory access is 
ideal because it maximizes global load 
memory throughput. That is, the 
addresses requested by all threads in a 
warp fall within one cache line of  128 
bytes. Only a single 128-byte 
transaction is required by the memory 
load operation. 

TurboBFS
Sparse Matrix-Vector Multiplication

Warp Memory Load Operation



TurboBFS
Sparse Matrix-Vector Multiplication

Warp Memory Load Operation

v When the L1 cache is enabled, three 
128-byte memory transactions may be 
required, resulting in  wasted memory 
bandwidth because some of  the bytes 
loaded are not used. 

v Misaligned accesses can be verified 
by collecting information of  the Global 
Memory Load Efficiency (GMLE) 
metrics


