
TurboBC: A Memory Efficient and Scalable
GPU Based Betweenness Centrality (BC)

Algorithm in the Language of Linear Algebra

Oswaldo Artiles and Fahad Saeed

ICPP 2021 DUAC Workshop
August 9, 2021

Content

TurboBC Algorithms

Experiments
Benchmarks

Experimental Results

TurboBC

The first implementation of a set of memory
efficient Brandes’ BC algorithms in the

language of linear algebra, applicable to
unweighted sparse graphs.

qGood performance
qHigh scalability

TurboBC
Optimization strategies

Exploiting the sparsity of the frontier and
output vector of the top-down BFS

algorithms

Improving the performance of the BC
algorithms

.

TurboBC
Optimization strategies

Minimizing the number of arrays on the GPU
global memory

Reducing the memory footprint

Increasing the memory efficiency and
the scalability of the TurboBC algorithms

TurboBC applicable to:

Sparse unweighted graphs represented
by binary sparse adjacency matrices in

compressed sparse formats.

TurboBC
Sparse Compressed Formats

TurboBC
Regular and Irregular Graphs

Betweenness centrality of a vertex v of a graph G

Brandes’ recurrence relation to compute the one-sided dependences

TurboBC

One-sided dependences

TurboBC
Two-stages algorithm

Forward stage: Top-down BFS algorithm
to compute the shortest paths/vertex

Backward stage: computation of one-
sided dependences and update BC/vertex

TurboBC
Forward stage: Top-down BFS algorithm

TurboBC
Backward stage: computation of one-sided

dependences and update BC/vertex

TurboBC
Sparse Matrix-Vector Multiplication

Regular Graphs

One thread per edge
COOC-scalar

regular graphs

One thread per vertex
CSC-scalar

Regular graphs

TurboBC
Sparse Matrix-Vector Multiplication

Warp Divergence

Irregular graphs: Nodes with higher degrees

Load unbalance in warps

Warp divergence

TurboBC
Sparse Matrix-Vector Multiplication

Irregular Graphs

One Warp (32 Threads] per Vertex
Parallel reduction

CSC-vector

TurboBC
Experiments Benchmarks

Graphs and Graphs Analytic Libraries

vThirty-three graphs represented by sparse adjacency
matrices from the SuiteSparse Matrix Collection, with
up to 1.9 billion edges and 214 million vertices.

vgunrock: High-performance GPU-based graph
analytic library

v ligra: High-performance CPU-based graph analytic
library

TurboBC
GPU Memory Efficiency: TurboBC vs gunrock

TurboBC
Experimental Results for Regular Graphs

v Ten graphs TurboBC CSC-scalar
v Up to 470 MTEPs (Million transverse edges/second)

TurboBC
Experimental Results for Regular Graphs

v Ten graphs TurboBC COOC-scalar
v Up to 1000 MTEPs (Million transverse edges/second)

TurboBC
Experimental Results for Irregular Graphs

vNine graphs TurboBC CSC-vector
v Up to 18470 MTEPs (Million transverse edges/second)

TurboBC
Experimental Results for Big Graphs

The BC algorithms available in the gunrock libraries ran

out of memory for these big graphs

High scalable TurboBC algorithms

TurboBC
Experimental Results Summary

TurboBC main result

A memory efficient and highly scalable first
implementation of GPU-based set of

Brandes’ BC algorithms in the language
of linear algebra.

Thank you
Questions?

TurboBFS
Experimental CPU-GPU Platform

• Linux server with Ubuntu operating system version 16.04.6,
22 Intel Xeon Gold 6152 processors, clock speed 2.1 GHz,
and 125 GB of RAM.

• The GPU in this server was a NVIDIA Titan Xp, with 30 SM,
128 cores/SM, maximum clock rate of 1.58 GHz, 12196 MB of
global memory, and CUDA version 10.1.243 with CUDA
capability of 6.1.

v Aligned memory access occurs when
the first address of a device memory
transaction is an even multiple of 32
bytes for L2 cache or 128 bytes for L1
cache.

v Coalesced memory access occurs
when all 32 threads in a warp access a
contiguous chunk of memory..

v Aligned coalesced memory access is
ideal because it maximizes global load
memory throughput. That is, the
addresses requested by all threads in a
warp fall within one cache line of 128
bytes. Only a single 128-byte
transaction is required by the memory
load operation.

TurboBFS
Sparse Matrix-Vector Multiplication

Warp Memory Load Operation

TurboBFS
Sparse Matrix-Vector Multiplication

Warp Memory Load Operation

v When the L1 cache is enabled, three
128-byte memory transactions may be
required, resulting in wasted memory
bandwidth because some of the bytes
loaded are not used.

v Misaligned accesses can be verified
by collecting information of the Global
Memory Load Efficiency (GMLE)
metrics

