DUAC , : ,
workshop | Warp-centric K-Nearest Neighbor Graphs construction on GPU

Warp-centric K-Nearest Neigh

)OI

Graphs construction on GPL

Bruno H. Meyer, Aurora Pozo, Wagner M. Nunan Zola

50th International Conference on Parallel Processing

International Workshop on Deployment and Use of Accelerators (DUAC)

August 9-12, 2021

QCNPq

selho Nacional de Desenvolvimento
c rf r noldgico

INTERNATIONAL
' CONFERENCE ON DUA(

PARALLEL workshop | Warp-centric K-Nearest Neighbor Graphs construction on GPU

KNN Graphs (K-NNG) applications = "oemeerrore

e High computational cost

Fully Connected
Layers Output

Convolutional Neural Network (CNN)

Input Image Convolution
P 9 Liyers Pooling Layers

]
=]

\
@\

g8

ingray
ck

g
g

.
@ ostrich, Struthio camelus
o brambling, Fringilla montifringilla

http://progress_bar_id
http://progress_bar_id

DUAC
workshop | Warp-centric K-Nearest Neighbor Graphs construction on GPU

KNN Graph (K-NNG) and Approximate K-NNG

X : Points Set
G(z) | x € X : Neighborhood of each point
G(z)| = K

max, ¢ (o) (|2 — y|[*))|< ||z — |* |[¥ & G(z)

/ This can be unsatisfied for \

. some neighbors in Any point outside of G(x)
Furthest Neighbor ’ approximate KNN Graphs

http://progress_bar_id
http://progress_bar_id

INTERNATIONAL
CONFERENCE ON DUA[

PARALLEL Workshop Warp-centric K-Nearest Neighbor Graphs construction on GPU

PROCESSING

Objectives

e Improve the RSFK (Random Sample Forest KNN) algorithm in GPU

o Used to create Approximate K-NNG

e |dentify bottlenecks

e |dentify new approaches to optimize the algorithm

http://progress_bar_id
http://progress_bar_id

INTERNATIONAL
CONFERENCE ON D UA[
PARALLEL

PROCESSING Workshop

Warp-centric K-Nearest Neighbor Graphs construction on GPU

RSFK Tree Construction

p

o) 1
ffgfﬁw

0(Ps5

P11 |P7

P12

o

nodes_bucket

[J

K_/A

3

4

bucket_size

One tree generated at a time

Leaves control the trade-off
between time and accuracy

Executed only on GPU
Methods to divide nodes:
o Random Projection

o Random Sample (Ours)

http://progress_bar_id
http://progress_bar_id

opEREcEoN DUAC Warp-centric K-Nearest Neighbor Graphs construction on GPU
_ PRo‘ZqE’.?sg’;bgL WUFkSth p g p

RSFK Battleneck

500 @ 1
2 — . e Measured the tree construction
o) | Partitions Creation .
= 400 = Update Nodes 0,8 and K-NNG processing steps
o " Create Nodes >
= [Preprocessing Split Points %
Q& 300 mmmm Dynamic Memory Allocation 06 S
— O I Check Points Side 8
o g 1 Check Active Points <
= 8 I Tree Initialization o
= & 200 mmmm KNN Sets Updates 04 >
c —e— Accuracy =
S ¥
8 100 0,2
(0]
x
L

MNIST ImageNet GoogleNews300
_ J
Y
Datasets

http://progress_bar_id
http://progress_bar_id

opEREcEoN DUAC Warp-centric K-Nearest Neighbor Graphs construction on GPU
, PRo‘ZqE’.?sg’;bgL WUFkSth p g p

500 o 1

0 .
c — . e Measured the tree construction
o | Partitions Creation .
= 400 = Update Nodes 0,8 and K-NNG processing steps
é | Create Nodes 5
0 —~ M Prepioeessing Spit Peinis o o KNN Sets Updates is the
~ » 300 Dynamic Memory Allocation 06 > inb | K
— O I Check Points Side 8 main bottlenec
oy g 1 Check Active Points <

o I Tree Initialization
.E @ 200 el 04 Q o The larger the dataset, the
T —e— Accuracy = more trees are needed to
= N achieve good accuracy
3 100 0,2
(O]
X
L

MNIST ImageNet GoogleNews300
_ J
Y
Datasets

http://progress_bar_id
http://progress_bar_id

INTERNATIONAL
CONFERENCE ON
PARALLEL
PROCESSING

Workshop

KNN Sets Update step

KNN Sets
(Index Matrix)

Virtual distance matrix

De

D4

f_}%
P.|3 -1
P,|3]..]6
Pol-1]- |1
P,| 6 -1
Pyl 1 8

b3

D1o

Warp-centric K-Nearest Neighbor Graphs construction on GPU

De

Distance(pg, P4

)

Distance(ps, P3)

Distance(1, P10)

nodes bucket

D4

Distance(p4,p3)

Distance(p4, P10)

b3

Distance(p3, P10)

b1 |Po | P2 D6 (P4 (P3 | P10 |P5 P11 |P7 |P12 |P13 |P9 | P8
& 4 4 3

DP1o

bucket size

http://progress_bar_id
http://progress_bar_id

INTERNATIONAL
CONFERENCE ON D UAC

bamALisL workshop | Warp-centric K-Nearest Neighbor Graphs construction on GPU
p p KNN Sets
(Index Matrix)
eV element of the pair related to the Distance (p, , p) K
— (ho)
P, |3 1
P,[3]..]6
Po-1]..|-1
P,| 6 1
Pyl 1 8
Virtual distance matrix
Ds P4 @ P1o P1 |Po (P2 P6 |P4 |P3 |P10|P5 |P11 |P7 (P12 |P13 (P9 | P8
De Distance(p¢, P4) | Distance(pg,p3) | Distance(p1, P10) [_} K—J r_—/n /_J\
@ Distance() Distance(p4, P10)
3 4 4 3
D3 Distance(p3, P10)
P1o

http://progress_bar_id
http://progress_bar_id

INTERNATIONAL

CONFERENCE ON
PARALLEL
PROCESSING

DUAC
Workshop

Warp-centric K-Nearest Neighbor Graphs construction on GPU

KNN Sets Update step

o

KNN Sets
(Index Matrix)
eV element of the pair related to the Distance (p, , p) K
—— ()
Verify and update KNN Set of p, if necessary P|3 1
P,|3|..|6
r" Py |1 |1
P,| 6 1
O O~ O~
r 1o e L A\ 1o
Virtual distance rg;ib(j W ff%\y (j i i l v
Dg D4 P1o P1 (pPo |P2 Pé | P4 |P3 |P10|P5 |P11 (P7 (P12 (P13 (P9 | P8

Ds
P4
b3

P10

Distance(pg, P4)

Distance(pg,P3)

Distance(1, P10)

Distance()

Distance(p4, P10)

w

Distance(p3, P10)

http://progress_bar_id
http://progress_bar_id

INTERNATIONAL
CONFERENCE ON
PARALLEL
PROCESSING

DUAC
Workshop

Warp-centric K-Nearest Neighbor Graphs construction on GPU

KNN Sets Update step

o

o

P1o

Ds

P11

P12

P13

KNN Sets
(Index Matrix)
eV element of the pair related to the Distance (p, , p) K
f_}%
Verify and update KNN Set of p, if necessary P|3 1
P,|3|..|6
Verify and update KNN Set of p, if necessary 5 1 y
s
P,| 6 1
P =18] L [}
Virtual distance matrix W
Ds P4 b3 P10 D1 |Po |P2 D6 | P4 |P3
Distance(pg, P4) | Distance(pg,p3) | Distance(p1,P10) (_}
Distance() | Distance(p4, P10)

b3

P10

Distance(p3, P10)

w

http://progress_bar_id
http://progress_bar_id

INTERNATIONAL
CONFERENCE ON D UA[

PARALLEL workshop | Warp-centric K-Nearest Neighbor Graphs construction on GPU

PROCESSING

Warp-centric GPU kernels

e GPU threads cooperate in groups:
o Usually: all threads in the CTA (Cooperative Thread array) cooperate in a task

e Other possibilities are:
o One task per thread
o One task per warp (warp-centric)

m Thread block has various active warps = many tasks in parallel

m Warp threads cooperation:
e Allthreads in the warp possibly cooperate using special warp primitives (SIMD
approach)
e Only one thread in the warp performs the task (SISD simulation)

Example:

Reduction kernel
(transitions in phases)

e Algorithms can alternate these patterns in different phases
o CTA cooperative — block cooperative — warp-centric

http://progress_bar_id
http://progress_bar_id

INTERNATIONAL
CONFERENCE ON D UA[

bamALisL Workshop Warp-centric K-Nearest Neighbor Graphs construction on GPU

KNN Set Updates - Methods

e A Warp-centric kernel: All threads in a GPU warp cooperate in phases to:

o Process a pair of KNN candidates
o The computation of high dimensional distances
m Better memory access pattern
m Avoid warp divergence
o Each thread block computes the KNN sets in a tree leaf
o Avoid sorting operations and avoid maintaining heaps

e Three approaches considered:
o Atomic Approach: based in atomic and lock operations

o Tiles Approach: Divide the distances inside each leaf using a grid.
Each tile of the grid is computed at time.

o Diagonal Approach: Each diagonal above the main diagonal of the
virtual distances matrix is computed at a time

/

Avoid atomic
and lock
operations

http://progress_bar_id
http://progress_bar_id

INTERNATIONAL
CONFERENCE ON

PARALLEL
PROCESSING

DUAC

Workshop

Atomic Approach

Leaf (example with 7 points)
e

S

Py

Ps

Block with 192 GPU threads (6 warps)
(The real implementation uses 1024)

/

Do,

Do 2

Do 3

Do 4

Dos

Dos

D10[D1,4

D 2

Di3

D14

Dy5

Dig

D2 4

D22

Dy 3

D24

D25

D34

D32

D33

D34

D35

Dy 4

Dy 2

D43

D44

Dys

Ds 1

Ds 2

D53

Ds 4

Ds 5

De 1

Ds,2

Dg 3

De 4

Ds 5

Each color represents the work of a warp
(6 warps per thread block in the example)

w-KNNG-Atomic: Leaf KNN Sets updates

for each pair of candidates assigned to my warp
do

for each pair (P;, P;) assigned to my warp do

| Use warp to precompute Distance(P;, P;)

D,;,ax = Distance between P; and its furthest
neighbor in KNN Set

it P; ¢ KNN(P;) and Distance < Dpqx then
Wait for access and Lock line P;

Update the KNN Set and D, of P;

| Unlock line P;

if P; ¢ KNN(P;) and Distance < Dy, x then

Wait for access and Lock line P;

Update the KNN Set and Dy, x of P;

| Unlock line P;

Warp-centric K-Nearest Neighbor Graphs construction on GPU

Index Matrix

(KNN sets)
K
_K_H
Pol 3 1 €
; 3 6 [N
E -1 -1
MNERE

A second matrix is kept
with the distances.
On initialization, indexes
with -1 values are
associated to infinite
distances.

-5 Warp 1 (32 threads)

[)0'1

see 555 Warp W

\

"@ Lock line 0

Update KNN Set of
candidate 0

N
E] Unlock line 0

@ Lock line 1

Update KNN Set of
candidate 1

~&] Unlock line 1

(") Lock line i

Update KNN Set of
candidate i

El Unlock line i
@ Lock line j

Update KNN Set of
candidate j

E] Unlock line j

(32 threads)

http://progress_bar_id
http://progress_bar_id

INTERNATIONAL
CONFERENCE ON

PARALLEL
PROCESSING

DUAC

Workshop

Atomic Approach

Leaf (example with 7 points)
.-

~

~

)

Ps

Block with 192 GPU threads (6 warps)
(The real implementation uses 1024)

/

Do,0|Do,1

Do 2

Do,3

Do 4

Do

D4 0|D1,1

Dj 2

Dy 3

Dy 4

Dig

D2,0]D2,1

D22

D23

D24

D2g

D3,0|D3,1

D32

D33

D3 4

D3

D4,0|Da 1

D42

D43

Dy4

Dyp

D50|Ds,1

Ds 2

Ds 3

Ds 4

Ds 6

De,0|Ds,1

De 2

Ds 3

D 4

Dg s

Each color represents the work of a warp
(6 warps per thread block in the example)

w-KNNG-Atomic: Leaf KNN Sets updates

for each pair of candidates assigned to my warp
do

for each pair (P;, Pj) assigned to my warp do

| Use warp to precompute Distance(P;, P;)

D, = Distance between P; and its furthest
neighbor in KNN Set

if P; € KNN(P;) and Distance < D, x then
Wait for access and Lock line P;

Update the KNN Set and D, of P;

| Unlock line P;

if P; ¢ KNN(P;) and Distance < D,;,,x then
Wait for access and Lock line P;

Update the KNN Set and Dy, x of P;
Unlock line P;

Warp-centric K-Nearest Neighbor Graphs construction on GPU

Index Matrix

(KNN sets)
K
—
Po| 3 1 |
Py 3 6 (\
P, |-1 -1
PN 1 8

A second matrix is kep!
with the distances.
On initialization, indexes
with -1 values are
associated to infinite

distances.

%%% Warp 1 (32 threads)
Do, |2 !!

il

.
.

- %%g Warp W (32 threads)

Di,j

~@ Lock line 0

Update KNN Set of
candidate 0

Unlock line 0

@ Lock line 1

Update KNN Set of
candidate 1

‘El Unlock line 1

@ Lock line i

Update KNN Set of
candidate i

Unlock line i

@ Lock line j

Update KNN Set of
candidate j

& Unlock line j

http://progress_bar_id
http://progress_bar_id

INTERNATIONAL D U A(
CONFERENCE ON
PARALLEL
PROCESSING Workshop

Diagonal Approach

Leaf (example with 15 points)
e

r R

Current Diagonal
(1 diagonal executed per time, parallel warp-centric)

Py Pi5

Block with 1024 GPU threads (32 warps)
Each cell is a distance
that will be computed by a warp

w-KNNG-Diagonal: Leaf KNN Sets updates

for each Diagonal do
for each pair (P;, Pj) assigned to my warp do
| Use warp to precompute Distance(P;, P;)

syncthreads() // thread block barrier
for each pair (P;, P;) assigned to my warp do
Load Computed Distance(P;, Pj)

P; < point related to the current line i

D,,,. = Distance between P; and its furthest

neighbor in KNN Set

it P; ¢ KNN(P;) and Distance < Dy, x then
| Update the KNN Set and D, x of P;

syncthreads() // thread block barrier

for each pair (P;, Pj) assigned to my warp do

Load Computed Distance(P;, P;)

P; « point related to the current column j

D, x = Distance between P; and its
furthest neighbor in KNN Set

if P; ¢ KNN(P ;) and Distance < Dy, x then

| Update the KNN Set and Dyax of Pj

_syncthreads() // thread block barrier

Warp-centric K-Nearest Neighbor Graphs construction on GPU

101 12 1314 | r—
P4 3 1...]-1

0 a |
31..16

1 b [P2)
2 c P3| -1 -1

3 d
4 e _N1 8

K
—— Index Matrix

(KNN sets)
—__

A second matrix is kept withh
the distances.

On initialization, indexes
with -1 values are
associated to infinite
distances.

Warp 1 (32 threads) e

a

Update KNN Set of

candidate 0 ;
RN syncthreags() barrier

Warp W (32 threads)

e

Update KNN Set of
candidate 4

-
=
-

a b . SV &« e

Update KNN Set of

]
' Guarantee that two |
candidate 10 _ X :

warps do not try to |

~

neighborhood

~< 1 update the same
A WP L

Update KNN Set of
candidate 14

-
-

http://progress_bar_id
http://progress_bar_id

INTERNATIONAL
CONFERENCE ON DUA(

PARALLEL W[]rkSth

PROCESSING

‘ Diagonal Approach

Leaf (example with 15 points)
A
- I

P Pi5

Warp-centric K-Nearest Neighbor Graphs construction on GPU

Current Diagonal
(1 diagonal executed per time, parallel warp-centric)

K
—— Index Matrix
Pl 3[-|-1] (KNN sets)

10 11 12 13 14

for each Diagonal do 0 ’?
for each pair (P;, Pj) assigned to my warp do 1 b
| Use warp to precompute Distance(P;, P;)

w-KNNG-Diagonal: Leaf KNN Sets updates

Block with 1024 GPU threads (32 warps)
Each cell is a distance
that will be computed by a warp

p,| 3] |6 [

1 1 A second matrix is kept with

i] Paj-11-1- the distances.
On initialization, indexes
SVnCthreadhs() // : with -1 values are
for each pair (P;, P) assigned to my warp do EI associated to infinite
Load Computed Distance(P;, Pj) PN 11..18 distances.
P; < point related to the current line i
D,,,.x = Distance between P; and its furthest
neighbor in KNN Set

if P; € KNN(P;) and Distance < D,;qx then
| Update the KNN Set and D,,,,x of P;

A W N
(oX

Warp 1 (32 threads) e Warp W (32 threads)

[e]

Update KNN Set of

" candidate 4
syncthreags() barrier -

syncthreads() // Update KNN Set of
for each pair (P;, Pj) assigned to my warp do ||| candidate 0

Load Computed Distance(P;, P;) ~ o
P; < point related to the current column j

D, x = Distance between P; and its
furthest neighbor in KNN Set

if P; € KNN(P ;) and Distance < Do x then

| Update the KNN Set and D, x of P;

_syncth reads() //

Al UM N & [e]

1
Update KNN Set of ' Guarantee that two; Update KNN Set of
candidate 10 . ' warps do not try to ! candidate 14
‘\A: update the same 1 _ .-~
neighborhood

http://progress_bar_id
http://progress_bar_id

INTERNATIONAL DUAC
CONFERENCE ON

PARALLEL
PROCESSING Workshop

Tiles Approach

Leaf (example with 96 points)

I

s

S

Warp-centric K-Nearest Neighbor Graphs construction on GPU

Py

Py

/

Block with 1024 GPU threads (32 warps)
Each cell is a distance
that will be computed by a warp

Virtual Distance Matrix

(Only distances above main

diagonal are computed)

Current Tile

(1 tile executed per time)

64 65 66 --- 64+W
0| Doo Dot Doo Dow ‘
1|Dio Dis Dy Dy w ‘
2| Dz Dpy Dyp Dow
W)|Dwo Dw;s Dwy Dw.w‘

W = 32 (Tile Width)

Warp W

D,

w0

ow
1w
2w
D,

DW2 DW.W

w1

w-KNNG-Tile: Leaf KNN Sets updates

for each Tile do
for each pair (P;, P;) assigned to my warp do
| Use warp to precompute Distance(P; , Pj)

syncthreads() //
for each Tile line i assigned to my warp do
Load Computed Distance(P;, P;)

P; « point related to the current line

D ,,.ax = Distance between P; and its furthest

neighbor in KNN Set

it P; ¢ KNN(P;) and Distance < Dp,qx then
| Update the KNN Set and D,;,,x of P;

syncthreads() //

for each Tile line j assigned to my warp do

Load Computed Distance(P;, P;)

P; < point related to the current column j

D, = Distance between P; and its
furthest neighbor in KNN Set

if P; ¢ KNN(Pj) and Distance < Dp,qx then

| Update the KNN Set and Dy, 45 0f P;

syncthreads() //

Index Matrix
(a KNN set per line)

K
—
Pl 3 -1
Pl 3 6
P3| -1 -1
Pyl 1]...]8

A

A second matrix is kept with
the distances.
On initialization, indexes with
-1 values are associated to
infinite distances.

http://progress_bar_id
http://progress_bar_id

INTERNATIONAL
CONFERENCE ON D UA(
PARALLEL

PROCESSING Workshop

} Tiles Approach

Leaf (example with 96 points)

I
r N

Warp-centric K-Nearest Neighbor Graphs construction on GPU

P, Py;

/

Block with 1024 GPU threads (32 warps)
Each cell is a distance
that will be computed by a warp

V4 Current Tile

= (1 tile executed per time)
64 65 66 --- 64+W
0 [[Dao Bz B2 Do
1 [D1o Dig [Pz Dy
2 [0 oo L ne
Virtual Distance Matrix W)|Dwo Dws Dwz .. Dww

(Only distances above main :
diagonal are computed) W = 32 (Tile Width)

w-KNNG-Tile: Leaf KNN Sets updates

for each Tile do
for each pair (P;, P}) assigned to my warp do
| Use warp to precompute Distance(P;, P;)

syncthreads() // thread block barrier
for each Tile line i assigned to my warp do
Load Computed Distance(P;, P;)

P; « point related to the current line i

D, x = Distance between P; and its furthest

neighbor in KNN Set

if P; ¢ KNN(P;) and Distance < Dy,qx then
| Update the KNN Set and D, of P;

syncthreads() // thread block barrier
for each Tile line j assigned to my warp do
Load Computed Distance(P;, P;)

P; < point related to the current column j

D ,qx = Distance between P; and its

furthest neighbor in KNN Set

if P; ¢ KNN(P;) and Distance < D, x then
| Update the KNN Set and Dyy,qx of P;

syncthreads() // thread block barrier

Index Matrix
(a KNN set per line)

K
K_H
Pi] 3 -1
Pal 3 6
P3| -1 -1
Pnl1 ..] 8

7

A second matrix is kept with
the distances.
On initialization, indexes with
-1 values are associated to
infinite distances.

http://progress_bar_id
http://progress_bar_id

INTERNATIONAL
CONFERENCE ON D UA[

bamALisL workshop | Warp-centric K-Nearest Neighbor Graphs construction on GPU

EXperiments

e Three datasets from real applications
o MNIST: 70K Points, 784 Dimensions
o ImageNET: 1.3M Points, 128 Dimensions
o GoogleNews300: 3M Points, 300 Dimensions

e Artificial datasets
o Generated using uniform distributions
o Variation of different parameters: K, No. of points, No. of dimensions, Leaves sizes

e Comparison of methods:
o w-KNNG-Atomic (Atomic Approach)
w-KNNG-Diagonal (Diagonal Approach)
w-KNNG-Tile (Tiles Approach)
Nearest Neighbor Exploration (NNE): Post-Processing method for RSFK
FAISS Library (popular library for similarity search with GPU)

O O O O

e NVIDIARTX 2070 GPU (Turing architecture)

http://progress_bar_id
http://progress_bar_id

il DU Warp-centric K-Nearest Neighbor Graphs construction on GPU
,PRo‘?:sg’;bgL WUFkSth ap centric eares EIQ 0 ap construction o

Results - Real Datasets

800 e Analysis of KNN Sets Updates step

2 200 B w-KNNG-Diagonal
S . e Tiles Approach was the faster method
= B w-KNNG-Tile Based PP
®© (1024 threads, 1 block per MP)
g e Size of tile have a small impact
= 1 w-KNNG-Tile Based 3M Points
0 o~ 500 (512 threads, 2 block per MP) 300 Dimensions
(Q\|
— 'g B w-KNNG-Atomic
@ 8 400
£ o
— o 300
- ~ 1.27M Points
128 Dimensions
= 200
S 60K Points
(& 784 Dimensions
Q 100
x
L
MNIST ImageNet GoogleNews300
Datasets

http://progress_bar_id
http://progress_bar_id

INTERNATIONAL
CONFERENCE ON D UAC

PARALLEL workshop | Warp-centric K-Nearest Neighbor Graphs construction on GPU

PROCESSING

Results - Scalability - No. of Points and Dimensions

Execution time of KNN Sets Update step in the w-KNNG methods using artificially generated datasets.

Each point in the charts represents an execution.

1000
9200 —&— w-KNNG-Diagonal

—— \\/- = i
800 w-KNNG-Atomic

w-KNNG-Tile Based
700 (512 threads, 2 block per MP)

600 —e— w-KNNG-Tile Based
(1024 threads, 1 block per MP)

500
400
300
200
100

Execution Time, 128 iterations
(seconds)

0
131072 262144 524288 1048576 2097152
Number of points

Execution Time, 128 iterations

(seconds)

500

400

w
o
o

N
o
o

—— w-KNNG-Diagonal

—— w-KNNG-Atomic

w-KNNG-Tile Based
(512 threads, 2 block per MP)

—a— w-KNNG-Tile Based
(1024 threads, 1 block per MP)

100

L 3

0
32

64 128 256 512
Dimensions

http://progress_bar_id
http://progress_bar_id

INTERNATIONAL
CONFERENCE ON
PARALLEL
PROCESSING

DUAC

workshop | Warp-centric K-Nearest Neighbor Graphs construction on GPU

Results - Scalability - K and Leaf Size

Execution time of KNN Sets Update step in the w-KNNG methods using artificially generated datasets.

Each point in the charts represents an execution.

500

2 450 = = e
o —— w-KNNG-Diagonal
= 400 —e— W-KNNG-Atomic
B 350 w-KNNG-Tile Based
= (512 threads, 2 block per MP)
o0 —~ 300 —a— w-KNNG-Tile Based
C:'l % (1024 threads, 1 block per MP)

_ S 250 rem——
o 8 $ *
£ © 200
=<
c 150
e = * s ==
5 100
>
L 50
L

16 32 64 128 25¢€

K (Neighborhood Size)

Execution Time, 128 iterations

(seconds)

400 ——- w-KNNG-Diagonal
380 —&— W-KNNG-Atomic

gjg —o— wW-KNNG-Tile Based
320 (1024 threads, 1 block per MP)

300 w-KNNG-Tile Based
(512 threads, 2 block per MP)

64 80 144 256 272 320 528 576 64C

Average Leaf Size

http://progress_bar_id
http://progress_bar_id

INTERNATIONAL
CONFERENCE ON
PARALLEL
PROCESSING

DUAC
Workshop

Warp-centric K-Nearest Neighbor Graphs construction on GPU

Results - Comparison with FAISS in GPU

106 |

[
4.04

105 |

104 |

—— (GoogleNews300) FAISS IVFFLAT

—— (GoogleNews300) w-KNNG-Tiles, NNEF: 1
—+— (GoogleNews300) w-KNNG-Tiles

% Speedups over FAISS

—+— (Imagenet) FAISS IVFFLAT
—+— (Imagenet) w-KNNG-Tiles, NNEF: 1
6.93 —— (Imagenet) w-KNNG-Tiles

Speedups over FAISS

13.80

[3.67

Average of points treated per second

01 02 03 04 05 06
K-NNG Accuracy

0.7

Executions with different
number of trees for RSFK
and nprobe for FAISS
(trade-off between time and

quality)

Tiles Approach was the best
method

Up to 639% speedup over
FAISS library

Use of Nearest Neighbor
Exploring allows better
speedups at higher values
of accuracy

http://progress_bar_id
http://progress_bar_id

INTERNATIONAL
CONFERENCE ON
PARALLEL
PROCESSING

DUAC , : ,
workshop | Warp-centric K-Nearest Neighbor Graphs construction on GPU

Conclusions

We identified the bottleneck in the RSFK algorithm: Updates of KNN Sets

Warp-centric method was mostly responsible for good performance in all kernels
o For high dimensional data the high throughput of warp-centric calculations allows
avoidance of sorting operations or maintaining heaps

Problems caused by atomic and lock operations were mitigated by the w-KNNG Tiles
and w-KNNG Diagonal kernels

The proposed Tiles Approach was the best method
o Better if used for high-dimensional datasets (more than 128 dimensions)

Experiments suggest that the analyzed methods are compute-bound in some
scenarios and memory-bound in others
o Other analyses and profiling results in the main text

http://progress_bar_id
http://progress_bar_id

INTERNATIONAL
CONFERENCE ON D UAC

PARALLEL workshop | Warp-centric K-Nearest Neighbor Graphs construction on GPU

PROCESSING

Future works

Use multiple GPUs to execute RSFK

Use hybrid methods to execute KNN Sets Updates
o Choose kernel implementation based in the current step of the algorithm and
data information

Apply the proposed contribution to optimize other applications. Examples:
o t-SNE (dimensionality reduction)
o Spectral Clustering

Verify the behavior of the algorithm in more GPU architectures

http://progress_bar_id
http://progress_bar_id

INTERNATIONAL
CONFERENCE ON D UA(
PARALLEL

PRGOS SHE Workshop

Warp-centric K-Nearest Neighbor Graphs construction on GPU

Contact

bruno.meyer@ufpr.br

Cientifico e Tecnoldgico

http://progress_bar_id
http://progress_bar_id

courERENGE O] DUAC Warp-centric K-Nearest Neighbor Graphs construction on GPU
CoMARALLEL Workshop arp-centric K-Nearest Neighbor Graphs construction o

Backup slides

http://progress_bar_id

INTERNATIONAL
CONFERENCE ON DUA(

PARALLEL workshop | Warp-centric K-Nearest Neighbor Graphs construction on GPU

| PROCESSING

Backup slides

w-KNNG-Diagonal (256D) 100
————— w-KNNG-Tile based (32D)
w-KNNG-Atomic (256D)

90

WES N o N AV & ANG LG -RIRI GtV
-y

)

S

dd

. - s
w-KNNG-Tile based (256D) % 80

————— w-KNNG-Diagonal (32D) g
————— w-KNNG-Atomic (32D) o 0

c

— 60

-

(@) Memory Throughput g =0
q) Fo P NN R Nm N s N A A R oy em e e Pw e
=

40
0 13263952657891104117
lteration

http://progress_bar_id

INTERNATIONAL D U A(

CORARALLEL | workshop | Warp-centric K-Nearest Neighbor Graphs construction on GPU

| PROCESSING

Backup slides

w-KNNG-Tile based (256D) 100E+9

w-KNNG-Diagonal (256D)
————— w-KNNG-Tile based (32D)

w-KNNG-Atomic (256D)
————— w-KNNG-Diagonal (32D)
————— w-KNNG-Atomic (32D)

90E+9

80E+9
70E+9

60E+9 WAL oy oy oy g A PGS o B B o g Ay

~

50E+9 P s W = AR Pag NN P, AN~
|

(b) Executed instructions 4

YV N ANl I et g gy TN gy e

0 163248648096 112

lteration
e

Executed Instructions

40E+9

http://progress_bar_id

INTERNATIONAL
CONFERENCE ON DUA(
PARALLEL

| PROCESSING Workshop

Backup slides

Warp-centric K-Nearest Neighbor Graphs construction on GPU

————— w-KNNG-Tilebased (32D) 100 c==================
w-KNNG-Tile based (256D) 90
————— W-KNNG-Atomic (32D) = 80,’""""'_"_——*”'"-”"
w-KNNG-Atomic (256D) S 70
————— w-KNNG-Diagonal (32D) 2 28_ —
w-KNNG-Diagonal (256D) g 400,2° S
I 30/
| = 20!
(c) L1 Hit Rate 10

0
0 1224 3648 60 72 84 96 108120

lteration
e

http://progress_bar_id

INTERNATIONAL
CONFERENCE ON DUA(

PARALLEL workshop | Warp-centric K-Nearest Neighbor Graphs construction on GPU

| PROCESSING

Backup slides

————— w-KNNG-Diagonal (32D) 100 e
————— w-KNNG-Atomic (32D) 90 ,’
w-KNNG-Tile based (256D) —~ 80!
- S0 e
— w-KNNG-Tile based (32D) < e
w-KNNG-Atomic (256D) % 28 >
t
w-KNNG-Diagonal (256D) X 40
T 30
N 20\.
(d) L2 Hit Rate - 10k

0
0 13263952657891104 117

lteration
e

http://progress_bar_id

INTERNATIONAL
CONFERENCE ON DUA(

PARALLEL workshop | Warp-centric K-Nearest Neighbor Graphs construction on GPU

PROCESSING

‘ Backup slides

32 Dimensions 256 Dimensions
10000 10000
® Single Precision Roofline ® ® Single Precision Roofline
® w-KNNG-Atomic ® w-KNNG-Atomic

@® w-KNNG-Tiles ® w-KNNG-Tiles

@ ()
8 ® w-KNNG-Diagonal 3 ® w-KNNG-Diagonal
» 1000 9 1000 64,128
(o)) = !
k=] 2, , 64128
> 64,128 o o ®
o 1 64,128 64,128@ % 64,128 1
9 [B) 1 1
T o [®
O 100 1 % 100
(5]
o o o
@ @
£ £
g £
8 &
10 W-KN_NG Kerpel exgcutions 15 w-KNNG Kernel executions
with 32 dimensions with 256 dimensions
0.01 0.1 1 10 100 0.01 0.1 1 10

Arithmetic Intensity [FLOP/byte] (log Scale) Arithmetic Intensity [FLOP/byte] (log Scale)

http://progress_bar_id

