

Workshop

Warp-centric K-Nearest Neighbor Graphs construction on GPU

Bruno H. Meyer, Aurora Pozo, Wagner M. Nunan Zola

50th International Conference on Parallel Processing

International Workshop on Deployment and Use of Accelerators (DUAC)

August 9-12, 2021

Workshop

KNN Graphs (K-NNG) applications

- High-Dimensional points
- Required in other algorithms
- High computational cost

Workshop

KNN Graph (K-NNG) and Approximate K-NNG

Objectives

DUAC

- Improve the RSFK (Random Sample Forest KNN) algorithm in GPU
 - Used to create **Approximate K-NNG**
- Identify bottlenecks
- Identify new approaches to optimize the algorithm

RSFK Tree Construction

DUAC

INTERNATIONAL CONFERENCE ON

PARALLE

PROCESSING

- One tree generated at a time
- Leaves control the trade-off between time and accuracy
- Executed only on GPU
- Methods to divide nodes:
 - Random Projection 0
 - Random Sample (Ours) Ο

RSFK Bottleneck

 Measured the tree construction and K-NNG processing steps

RSFK Bottleneck

DUAC

INTERNATIONAL

CONFERENCE ON

PARALLEI

PROCESSING

- Measured the tree construction and K-NNG processing steps
 - KNN Sets Updates is the Ο main bottleneck
 - The larger the dataset, the Ο more trees are needed to achieve good accuracy

Warp-centric K-Nearest Neighbor Graphs construction on GPU

KNN Sets Update step

Virtual distance matrix

DUAC

Workshop

INTERNATIONAL

CONFERENCE ON

PARALLEL

PROCESSING

	p_6	p_4	p_3	p_{10}	
p_6		Distance(p_6, p_4)	Distance(p_6, p_3)	Distance(p_1, p_{10})	
p_4			Distance(p_4,p_3)	Distance(p_4, p_{10})	
p_3				Distance(p_3, p_{10})	
p_{10}					

Workshop

Virtual distance matrix

 p_4

Distance(p_6, p_4

 p_3

Distance(p_6, p_3

Distance (p_4, p_3)

KNN Sets Update step

• \forall element of the pair related to the Distance (p_A , p_B)

 p_6

 p_6

 p_4

 p_3

 p_{10}

Workshop

 p_3

Distance(p_3, p_{10}

KNN Sets Update step

 p_6

 p_6

 p_4

 p_3

 p_{10}

Verify and update KNN Set of p_{A} if necessary Ο

 p_4

Distance(p_6, p_4

Workshop

KNN Sets Update step

Warp-centric GPU kernels

- GPU threads cooperate in groups:
 - Usually: all threads in the CTA (Cooperative Thread array) cooperate in a task
- Other possibilities are:

DUAC

Workshop

- One task per thread
- One task per warp (warp-centric)
 - Thread block has various active warps \Rightarrow many tasks in parallel
 - Warp threads cooperation:
 - All threads in the warp possibly cooperate using special warp primitives (SIMD approach)
 - Only one thread in the warp performs the task (SISD simulation)
- Algorithms can alternate these patterns in different phases
 - \circ CTA cooperative \rightarrow block cooperative \rightarrow warp-centric

Example: Reduction kernel (transitions in phases)

Workshop

KNN Set Updates - Methods

- **A Warp-centric kernel:** All threads in a GPU warp cooperate in phases to:
 - Process a pair of KNN candidates
 - The computation of high dimensional distances
 - Better memory access pattern
 - Avoid warp divergence
 - Each thread block computes the KNN sets in a tree leaf
 - Avoid sorting operations and avoid maintaining heaps
- Three approaches considered:
 - **Atomic Approach**: based in atomic and lock operations
 - **Tiles Approach**: Divide the distances inside each leaf using a grid. Each tile of the grid is computed at time.
 - **Diagonal Approach**: Each diagonal above the main diagonal of the virtual distances matrix is computed at a time

Avoid atomic and lock operations

Atomic Approach

Leaf (example with 7 points)

DUAC

Workshop

INTERNATIONAL CONFERENCE ON PARALLEL PROCESSING

		P_6		Index Matrix (KNN sets)	۶۶۶ Warp 1 (32 threads)	••• \$\$\$ Warp W ((32 threads)
(The real implication D _{0,0} D _{0,1} D ₀ , D _{1,0} D _{1,1} D ₁ , D _{2,0} D _{2,1} D ₂ , D _{3,0} D _{3,1} D ₃ , D _{4,0} D _{4,1} D ₄ , D _{5,0} D _{5,1} D ₅ , D _{6,0} D _{6,1} D ₆ ,	D1,3 D1,4 2 D1,3 D1,4 2 D2,3 D2,4 2 D3,3 D3,4 2 D4,3 D4,4 2 D5,3 D5,4 2 D6,3 D6,4	ses 1024) $D_{0,5}$ $D_{0,6}$ $D_{1,5}$ $D_{1,6}$ $D_{2,5}$ $D_{2,6}$ $D_{3,5}$ $D_{3,6}$ $D_{4,5}$ $D_{4,6}$ $D_{5,5}$ $D_{5,6}$ $D_{6,5}$ $D_{6,6}$ ork of a warp $D_{3,6}$	w-KNNG-Atomic: Leaf KNN Sets updatesfor each pair of candidates assigned to my warpdofor each pair (P_i, P_j) assigned to my warp doUse warp to precompute Distance (P_i, P_j) D_{max} = Distance between P_i and its furthestneighbor in KNN Setif $P_j \notin KNN(P_i)$ and Distance < D_{max} thenWait for access and Lock line P_i Update the KNN Set and D_{max} of P_j Unlock line P_i Wait for access and Lock line P_j Update the KNN Set and D_{max} of P_j Uplack line P_j	K $P_0 3 \dots -1$ $P_1 3 \dots 6$ $P_2 -1 \dots -1$ $\dots \dots \dots$ $P_N 1 \dots 8$ A second matrix is kept with the distances. On initialization, indexes with -1 values are associated to infinite distances.	 Lock line 0 Update KNN Set of candidate 0 Unlock line 1 Update KNN Set of candidate 1 Unlock line 1 	D _{i,j} D	Set of ne i j Set of

Atomic Approach

Leaf (example with 7 points)

L

		Index Matrix		
P0 P6 Block with 192 GPU threads (6 warps) (The real implementation uses 1024) Implementation Implementation D0,0 D0,1 D0,2 D0,3 D0,4 D0,5 D0,6	$\begin{matrix} & \\ \hline w\text{-KNNG-Atomic: Leaf KNN Sets updates} \\ \hline \textbf{for each pair of candidates assigned to my warp} \\ \textbf{do} \\ \hline \textbf{for each pair } (P_i, P_j) \text{ assigned to my warp } \textbf{do} \end{matrix}$	Index Matrix (KNN sets) <i>K</i> P ₀ 31 P ₁ 3 6	Second contracts the second s	••• ŞŞŞ Warp W (32 threads)
D1.0 D1.1 D1.2 D1.3 D1.4 D1.5 D1.6 D2.0 D2.1 D2.2 D2.3 D2.4 D2.5 D2.6 D3.0 D3.1 D3.2 D3.3 D3.4 D3.5 D3.6 D4.0 D4.1 D4.2 D4.3 D4.4 D4.5 D4.6	Use warp to precompute Distance (P_i, P_j) D_{max} = Distance between P_i and its furthest neighbor in KNN Set if $P_j \notin KNN(P_i)$ and Distance $< D_{max}$ then Wait for access and Lock line P_i Update the KNN Set and D_{max} of P_j Update line P_i	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Lock line 0 Update KNN Set of candidate 0 Unlock line 0	Lock line i Update KNN Set of candidate i Unlock line i
		A second matrix is kept with the distances. On initialization, indexes with -1 values are associated to infinite distances.	Update KNN Set of	Lock line j Update KNN Set of candidate j Unlock line j

Diagonal Approach

DUAC

Diagonal Approach

DUAC

Tiles Approach

DUAC

Tiles Approach

DUAC

Experiments

DUAC

INTERNATIONAL

CONFERENCE ON

PROCESSING

- Three datasets from real applications
 - **MNIST:** 70K Points, 784 Dimensions Ο
 - **ImageNET:** 1.3M Points, 128 Dimensions Ο
 - GoogleNews300: 3M Points, 300 Dimensions 0
- Artificial datasets
 - Generated using uniform distributions Ο
 - Variation of different parameters: K, No. of points, No. of dimensions, Leaves sizes Ο
- Comparison of methods:
 - w-KNNG-Atomic (Atomic Approach) Ο
 - w-KNNG-Diagonal (Diagonal Approach) Ο
 - w-KNNG-Tile (Tiles Approach) Ο
 - Nearest Neighbor Exploration (**NNE**): Post-Processing method for RSFK Ο
 - **FAISS Library** (popular library for similarity search with GPU) Ο
- NVIDIA RTX 2070 GPU (Turing architecture)

Results - Real Datasets

INTERNATIONAL

CONFERENCE ON

PARALLEI

PROCESSING

DUAC

- Analysis of KNN Sets Updates step
- Tiles Approach was the faster method
- Size of tile have a small impact

Workshop

Results - Scalability - No. of **Points** and **Dimensions**

Execution time of KNN Sets Update step in the w-KNNG methods using artificially generated datasets. Each point in the charts represents an execution.

512

Workshop

Warp-centric K-Nearest Neighbor Graphs construction on GPU

Results - Scalability - K and Leaf Size

Execution time of KNN Sets Update step in the w-KNNG methods using artificially generated datasets. Each point in the charts represents an execution.

Workshop

Results - Comparison with FAISS in GPU

- Executions with different number of trees for RSFK and *nprobe* for FAISS (trade-off between time and quality)
- Tiles Approach was the best method
- Up to 639% speedup over FAISS library
- Use of Nearest Neighbor Exploring allows better speedups at higher values of accuracy

Conclusions

DUAC

- We identified the bottleneck in the RSFK algorithm: Updates of KNN Sets
- Warp-centric method was mostly responsible for good performance in all kernels
 - For high dimensional data the high throughput of warp-centric calculations allows avoidance of sorting operations or maintaining heaps
- Problems caused by atomic and lock operations were mitigated by the w-KNNG Tiles and w-KNNG Diagonal kernels
- The proposed Tiles Approach was the best method
 - Better if used for high-dimensional datasets (more than 128 dimensions)
- Experiments suggest that the analyzed methods are compute-bound in some scenarios and memory-bound in others
 - Other analyses and profiling results in the main text

Future works

DUAC

Workshop

INTERNATIONA

- Use multiple GPUs to execute RSFK
- Use hybrid methods to execute KNN Sets Updates
 - Choose kernel implementation based in the current step of the algorithm and data information
- Apply the proposed contribution to optimize other applications. Examples:
 - t-SNE (dimensionality reduction)
 - Spectral Clustering
- Verify the behavior of the algorithm in more GPU architectures

Workshop

Contact

bruno.meyer@ufpr.br

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Workshop

Backup slides

DUAC

Workshop

Iteration

DUAC

DUAC

Workshop

Iteration

DUAC

DUAC

Workshop

32 Dimensions

256 Dimensions

