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KNN Graphs (K-NNG) applications = "oemeerrore
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KNN Graph (K-NNG) and Approximate K-NNG

X : Points Set
G(z) | x € X : Neighborhood of each point
G(z)| = K

max, ¢ (o) (|2 — y|[*))|< ||z — |* |[¥ & G(z)

/ This can be unsatisfied for \

. some neighbors in Any point outside of G(x)
Furthest Neighbor ’ approximate KNN Graphs
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Objectives

e Improve the RSFK (Random Sample Forest KNN) algorithm in GPU

o Used to create Approximate K-NNG

e |dentify bottlenecks

e |dentify new approaches to optimize the algorithm


http://progress_bar_id
http://progress_bar_id

INTERNATIONAL
CONFERENCE ON D UA[
PARALLEL

PROCESSING Workshop

Warp-centric K-Nearest Neighbor Graphs construction on GPU

RSFK Tree Construction
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bucket_size

One tree generated at a time

Leaves control the trade-off
between time and accuracy

Executed only on GPU
Methods to divide nodes:
o Random Projection

o Random Sample (Ours)
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KNN Sets Update step

KNN Sets
(Index Matrix)

Virtual distance matrix
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D1o

Warp-centric K-Nearest Neighbor Graphs construction on GPU
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(Index Matrix)
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KNN Sets Update step

o

KNN Sets
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KNN Sets Update step
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Warp-centric GPU kernels

e GPU threads cooperate in groups:
o Usually: all threads in the CTA (Cooperative Thread array) cooperate in a task

e Other possibilities are:
o One task per thread
o One task per warp (warp-centric)

m Thread block has various active warps = many tasks in parallel

m  Warp threads cooperation:
e Allthreads in the warp possibly cooperate using special warp primitives (SIMD
approach)
e Only one thread in the warp performs the task (SISD simulation)

Example:

Reduction kernel
(transitions in phases)

e Algorithms can alternate these patterns in different phases
o CTA cooperative — block cooperative — warp-centric
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KNN Set Updates - Methods

e A Warp-centric kernel: All threads in a GPU warp cooperate in phases to:

o Process a pair of KNN candidates
o The computation of high dimensional distances
m Better memory access pattern
m  Avoid warp divergence
o Each thread block computes the KNN sets in a tree leaf
o Avoid sorting operations and avoid maintaining heaps

e Three approaches considered:
o Atomic Approach: based in atomic and lock operations

o Tiles Approach: Divide the distances inside each leaf using a grid.
Each tile of the grid is computed at time.

o Diagonal Approach: Each diagonal above the main diagonal of the
virtual distances matrix is computed at a time

/

Avoid atomic
and lock
operations
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Atomic Approach

Leaf (example with 7 points)
e

S

Py

Ps

Block with 192 GPU threads (6 warps)
(The real implementation uses 1024)

/

Do,

Do 2

Do 3

Do 4

Dos

Dos

D10[D1,4

D 2

Di3

D14

Dy5

Dig

D2 4

D22

Dy 3

D24

D25

D34

D32

D33

D34

D35

Dy 4

Dy 2

D43

D44

Dys

Ds 1

Ds 2

D53

Ds 4

Ds 5

De 1

Ds,2

Dg 3

De 4

Ds 5

Each color represents the work of a warp
(6 warps per thread block in the example)

w-KNNG-Atomic: Leaf KNN Sets updates

for each pair of candidates assigned to my warp
do

for each pair (P;, P;) assigned to my warp do

| Use warp to precompute Distance(P;, P;)

D,;,ax = Distance between P; and its furthest
neighbor in KNN Set

it P; ¢ KNN(P;) and Distance < Dpqx then
Wait for access and Lock line P;

Update the KNN Set and D, of P;

| Unlock line P;

if P; ¢ KNN(P;) and Distance < Dy, x then

Wait for access and Lock line P;

Update the KNN Set and Dy, x of P;

| Unlock line P;

Warp-centric K-Nearest Neighbor Graphs construction on GPU

Index Matrix

(KNN sets)
K
_K_H
Pol 3 1 €
; 3 6 [N
E -1 -1
MNERE

A second matrix is kept
with the distances.
On initialization, indexes
with -1 values are
associated to infinite
distances.

-5 Warp 1 (32 threads)

[)0'1

see 555 Warp W

\

"@ Lock line 0

Update KNN Set of
candidate 0

N
E] Unlock line 0

@ Lock line 1

Update KNN Set of
candidate 1

~&] Unlock line 1

(") Lock line i

Update KNN Set of
candidate i

El Unlock line i
@ Lock line j

Update KNN Set of
candidate j

E] Unlock line j

(32 threads)
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Atomic Approach

Leaf (example with 7 points)
.-

~

~

)
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Block with 192 GPU threads (6 warps)
(The real implementation uses 1024)
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Dig
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D43

Dy4

Dyp
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Ds 2
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Ds 6
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De 2
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D 4
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Each color represents the work of a warp
(6 warps per thread block in the example)

w-KNNG-Atomic: Leaf KNN Sets updates

for each pair of candidates assigned to my warp
do

for each pair (P;, Pj) assigned to my warp do

| Use warp to precompute Distance(P;, P;)

D, = Distance between P; and its furthest
neighbor in KNN Set

if P; € KNN(P;) and Distance < D, x then
Wait for access and Lock line P;

Update the KNN Set and D, of P;

| Unlock line P;

if P; ¢ KNN(P;) and Distance < D,;,,x then
Wait for access and Lock line P;

Update the KNN Set and Dy, x of P;
Unlock line P;

Warp-centric K-Nearest Neighbor Graphs construction on GPU

Index Matrix

(KNN sets)
K
—
Po| 3 1 |
Py 3 6 (\
P, |-1 -1
PN 1 8

A second matrix is kep!
with the distances.
On initialization, indexes
with -1 values are
associated to infinite

distances.

%%% Warp 1 (32 threads)
Do, |2 !!

il

.
.

- %%g Warp W (32 threads)

Di,j

~@ Lock line 0

Update KNN Set of
candidate 0

Unlock line 0

@ Lock line 1

Update KNN Set of
candidate 1

‘El Unlock line 1

@ Lock line i

Update KNN Set of
candidate i

Unlock line i

@ Lock line j

Update KNN Set of
candidate j

& Unlock line j
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Diagonal Approach

Leaf (example with 15 points)
e

r R

Current Diagonal
(1 diagonal executed per time, parallel warp-centric)

Py Pi5

Block with 1024 GPU threads (32 warps)
Each cell is a distance
that will be computed by a warp

w-KNNG-Diagonal: Leaf KNN Sets updates

for each Diagonal do
for each pair (P;, Pj) assigned to my warp do
| Use warp to precompute Distance(P;, P;)

syncthreads() // thread block barrier
for each pair (P;, P;) assigned to my warp do
Load Computed Distance(P;, Pj)

P; < point related to the current line i

D,,,. = Distance between P; and its furthest

neighbor in KNN Set

it P; ¢ KNN(P;) and Distance < Dy, x then
| Update the KNN Set and D, x of P;

syncthreads() // thread block barrier

for each pair (P;, Pj) assigned to my warp do

Load Computed Distance(P;, P;)

P; « point related to the current column j

D, x = Distance between P; and its
furthest neighbor in KNN Set

if P; ¢ KNN(P ;) and Distance < Dy, x then

| Update the KNN Set and Dyax of Pj

_syncthreads() // thread block barrier

Warp-centric K-Nearest Neighbor Graphs construction on GPU

101 12 1314 | r—
P4 3 1...]-1

0 a |
31..16

1 b [P2)
2 c P3| -1 -1

3 d
4 e _N1 8

K
—— Index Matrix

(KNN sets)
—__

A second matrix is kept withh
the distances.

On initialization, indexes
with -1 values are
associated to infinite
distances.

Warp 1 (32 threads) e

a

Update KNN Set of

candidate 0 ;
RN syncthreags() barrier

Warp W (32 threads)

e

Update KNN Set of
candidate 4

-
=
-

a b . SV &« e

Update KNN Set of

]
' Guarantee that two |
candidate 10 _ X :

warps do not try to |

~

neighborhood

~< 1 update the same
A WP L

Update KNN Set of
candidate 14

-
-
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‘ Diagonal Approach

Leaf (example with 15 points)
A
- I

P Pi5

Warp-centric K-Nearest Neighbor Graphs construction on GPU

Current Diagonal
(1 diagonal executed per time, parallel warp-centric)

K
—— Index Matrix
Pl 3[-|-1] (KNN sets)

10 11 12 13 14

for each Diagonal do 0 ’?
for each pair (P;, Pj) assigned to my warp do 1 b
| Use warp to precompute Distance(P;, P;)

w-KNNG-Diagonal: Leaf KNN Sets updates

Block with 1024 GPU threads (32 warps)
Each cell is a distance
that will be computed by a warp

p,| 3] |6 [

1 1 A second matrix is kept with

i] Paj-11-1- the distances.
On initialization, indexes
SVnCthreadhs() // : with -1 values are
for each pair (P;, P ) assigned to my warp do EI associated to infinite
Load Computed Distance(P;, Pj) PN 11..18 distances.
P; < point related to the current line i
D,,,.x = Distance between P; and its furthest
neighbor in KNN Set

if P; € KNN(P;) and Distance < D,;qx then
| Update the KNN Set and D,,,,x of P;

A W N
(oX

Warp 1 (32 threads) e Warp W (32 threads)

[e]

Update KNN Set of

" candidate 4
syncthreags() barrier -

syncthreads() // Update KNN Set of
for each pair (P;, Pj) assigned to my warp do ||| candidate 0

Load Computed Distance(P;, P;) ~ o
P; < point related to the current column j

D, x = Distance between P; and its
furthest neighbor in KNN Set

if P; € KNN(P ;) and Distance < Do x then

| Update the KNN Set and D, x of P;

_syncth reads() //

Al UM N & [e]

1
Update KNN Set of ' Guarantee that two;  Update KNN Set of
candidate 10 . ' warps do not try to ! candidate 14
‘\A: update the same 1 _ .-~
neighborhood



http://progress_bar_id
http://progress_bar_id

INTERNATIONAL DUAC
CONFERENCE ON

PARALLEL
PROCESSING Workshop

Tiles Approach

Leaf (example with 96 points)

I

s

S

Warp-centric K-Nearest Neighbor Graphs construction on GPU

Py

Py

/

Block with 1024 GPU threads (32 warps)
Each cell is a distance
that will be computed by a warp

Virtual Distance Matrix

(Only distances above main

diagonal are computed)

Current Tile

(1 tile executed per time)

64 65 66 --- 64+W
0| Doo Dot Doo Dow ‘
1|Dio Dis Dy Dy w ‘
2| Dz Dpy Dyp Dow
W)|Dwo Dw;s Dwy Dw.w‘

W = 32 (Tile Width)

Warp W

D,

w0

ow
1w
2w
D,

DW2 DW.W

w1

w-KNNG-Tile: Leaf KNN Sets updates

for each Tile do
for each pair (P;, P;) assigned to my warp do
| Use warp to precompute Distance(P; , Pj)

syncthreads() //
for each Tile line i assigned to my warp do
Load Computed Distance(P;, P;)

P; « point related to the current line

D ,,.ax = Distance between P; and its furthest

neighbor in KNN Set

it P; ¢ KNN(P;) and Distance < Dp,qx then
| Update the KNN Set and D,;,,x of P;

syncthreads() //

for each Tile line j assigned to my warp do

Load Computed Distance(P;, P;)

P; < point related to the current column j

D, = Distance between P; and its
furthest neighbor in KNN Set

if P; ¢ KNN(Pj) and Distance < Dp,qx then

| Update the KNN Set and Dy, 45 0f P;

syncthreads() //

Index Matrix
(a KNN set per line)

K
—
Pl 3 -1
Pl 3 6
P3| -1 -1
Pyl 1]...]8

A

A second matrix is kept with
the distances.
On initialization, indexes with
-1 values are associated to
infinite distances.
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} Tiles Approach

Leaf (example with 96 points)

I
r N

Warp-centric K-Nearest Neighbor Graphs construction on GPU

P, Py;

/

Block with 1024 GPU threads (32 warps)
Each cell is a distance
that will be computed by a warp

V4 Current Tile

= (1 tile executed per time)
64 65 66 --- 64+W
0 [[Dao Bz B2 Do
1 [D1o Dig [Pz Dy
2 [0 oo L ne
Virtual Distance Matrix W)|Dwo Dws Dwz .. Dww

(Only distances above main :
diagonal are computed) W = 32 (Tile Width)

w-KNNG-Tile: Leaf KNN Sets updates

for each Tile do
for each pair (P;, P}) assigned to my warp do
| Use warp to precompute Distance(P;, P;)

syncthreads() // thread block barrier
for each Tile line i assigned to my warp do
Load Computed Distance(P;, P;)

P; « point related to the current line i

D, x = Distance between P; and its furthest

neighbor in KNN Set

if P; ¢ KNN(P;) and Distance < Dy,qx then
| Update the KNN Set and D, of P;

syncthreads() // thread block barrier
for each Tile line j assigned to my warp do
Load Computed Distance(P;, P;)

P; < point related to the current column j

D ,qx = Distance between P; and its

furthest neighbor in KNN Set

if P; ¢ KNN(P;) and Distance < D, x then
| Update the KNN Set and Dyy,qx of P;

syncthreads() // thread block barrier

Index Matrix
(a KNN set per line)

K
K_H
Pi] 3 -1
Pal 3 6
P3| -1 -1
Pnl1 .. ] 8

7

A second matrix is kept with
the distances.
On initialization, indexes with
-1 values are associated to
infinite distances.



http://progress_bar_id
http://progress_bar_id

INTERNATIONAL
CONFERENCE ON D UA[

bamALisL workshop | Warp-centric K-Nearest Neighbor Graphs construction on GPU

EXperiments

e Three datasets from real applications
o  MNIST: 70K Points, 784 Dimensions
o ImageNET: 1.3M Points, 128 Dimensions
o GoogleNews300: 3M Points, 300 Dimensions

e Artificial datasets
o Generated using uniform distributions
o Variation of different parameters: K, No. of points, No. of dimensions, Leaves sizes

e Comparison of methods:
o  w-KNNG-Atomic (Atomic Approach)
w-KNNG-Diagonal (Diagonal Approach)
w-KNNG-Tile (Tiles Approach)
Nearest Neighbor Exploration (NNE): Post-Processing method for RSFK
FAISS Library (popular library for similarity search with GPU)

O O O O

e NVIDIARTX 2070 GPU (Turing architecture)
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Results - Real Datasets

800 e Analysis of KNN Sets Updates step

2 200 B w-KNNG-Diagonal
S . e Tiles Approach was the faster method
= B w-KNNG-Tile Based PP
®© (1024 threads, 1 block per MP)
g e Size of tile have a small impact
= 1 w-KNNG-Tile Based 3M Points
0 o~ 500 (512 threads, 2 block per MP) 300 Dimensions
(Q\|
— 'g B w-KNNG-Atomic
@ 8 400
£ o
— o 300
- ~ 1.27M Points
128 Dimensions
= 200
S 60K Points
(& 784 Dimensions
Q 100
x
L
MNIST ImageNet  GoogleNews300
Datasets
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Results - Scalability - No. of Points and Dimensions

Execution time of KNN Sets Update step in the w-KNNG methods using artificially generated datasets.

Each point in the charts represents an execution.

1000
9200 —&— w-KNNG-Diagonal

—— \\/- = i
800 w-KNNG-Atomic

w-KNNG-Tile Based
700 (512 threads, 2 block per MP)

600 —e— w-KNNG-Tile Based
(1024 threads, 1 block per MP)

500
400
300
200
100

Execution Time, 128 iterations
(seconds)

0
131072 262144 524288 1048576 2097152
Number of points

Execution Time, 128 iterations

(seconds)

500

400

w
o
o

N
o
o

—— w-KNNG-Diagonal

—— w-KNNG-Atomic

w-KNNG-Tile Based
(512 threads, 2 block per MP)

—a— w-KNNG-Tile Based
(1024 threads, 1 block per MP)

100

L 3

0
32

64 128 256 512
Dimensions
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Results - Scalability - K and Leaf Size

Execution time of KNN Sets Update step in the w-KNNG methods using artificially generated datasets.

Each point in the charts represents an execution.

500

2 450 = = e
o —— w-KNNG-Diagonal
= 400 —e— W-KNNG-Atomic
B 350 w-KNNG-Tile Based
= (512 threads, 2 block per MP)
o0 —~ 300 —a— w-KNNG-Tile Based
C:'l % (1024 threads, 1 block per MP)

_ S 250 rem——
o 8 $ *
£ © 200
=<
c 150
e = * s ==
5 100
>
L 50
L

16 32 64 128 25¢€

K (Neighborhood Size)

Execution Time, 128 iterations

(seconds)

400 ——- w-KNNG-Diagonal
380 —&— W-KNNG-Atomic

gjg —o— wW-KNNG-Tile Based
320 (1024 threads, 1 block per MP)

300 w-KNNG-Tile Based
(512 threads, 2 block per MP)

64 80 144 256 272 320 528 576 64C

Average Leaf Size


http://progress_bar_id
http://progress_bar_id

INTERNATIONAL
CONFERENCE ON
PARALLEL
PROCESSING

DUAC
Workshop

Warp-centric K-Nearest Neighbor Graphs construction on GPU

Results - Comparison with FAISS in GPU

106 |

[
4.04

105 |

104 |

—— (GoogleNews300) FAISS IVFFLAT

—— (GoogleNews300) w-KNNG-Tiles, NNEF: 1
—+— (GoogleNews300) w-KNNG-Tiles

% Speedups over FAISS

—+— (Imagenet) FAISS IVFFLAT
—+— (Imagenet) w-KNNG-Tiles, NNEF: 1
6.93 —— (Imagenet) w-KNNG-Tiles

Speedups over FAISS

13.80

[3.67

Average of points treated per second

01 02 03 04 05 06
K-NNG Accuracy

0.7

Executions with different
number of trees for RSFK
and nprobe for FAISS
(trade-off between time and

quality)

Tiles Approach was the best
method

Up to 639% speedup over
FAISS library

Use of Nearest Neighbor
Exploring allows better
speedups at higher values
of accuracy
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Conclusions

We identified the bottleneck in the RSFK algorithm: Updates of KNN Sets

Warp-centric method was mostly responsible for good performance in all kernels
o For high dimensional data the high throughput of warp-centric calculations allows
avoidance of sorting operations or maintaining heaps

Problems caused by atomic and lock operations were mitigated by the w-KNNG Tiles
and w-KNNG Diagonal kernels

The proposed Tiles Approach was the best method
o Better if used for high-dimensional datasets (more than 128 dimensions)

Experiments suggest that the analyzed methods are compute-bound in some
scenarios and memory-bound in others
o Other analyses and profiling results in the main text
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Future works

Use multiple GPUs to execute RSFK

Use hybrid methods to execute KNN Sets Updates
o Choose kernel implementation based in the current step of the algorithm and
data information

Apply the proposed contribution to optimize other applications. Examples:
o t-SNE (dimensionality reduction)
o Spectral Clustering

Verify the behavior of the algorithm in more GPU architectures
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