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KNN Graphs (K-NNG) applications

Convolutional Neural Network (CNN)

● High-Dimensional points

● Required in other algorithms

● High computational cost
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KNN Graph (K-NNG) and Approximate K-NNG

Furthest Neighbor

This can be unsatisfied for 
some neighbors in 

approximate KNN Graphs
Any point outside of G(x)
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Objectives

● Improve the RSFK (Random Sample Forest KNN) algorithm in GPU

○ Used to create Approximate K-NNG

● Identify bottlenecks

● Identify new approaches to optimize the algorithm
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RSFK Tree Construction

● One tree generated at a time

● Leaves control the trade-off 
between time and accuracy

● Executed only on GPU

● Methods to divide nodes:

○ Random Projection

○ Random Sample (Ours)
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RSFK Bottleneck

● Measured the tree construction 
and K-NNG processing steps

Datasets
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RSFK Bottleneck

● Measured the tree construction 
and K-NNG processing steps

○ KNN Sets Updates is the 
main bottleneck

○ The larger the dataset, the 
more trees are needed to 
achieve good accuracy

Datasets
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KNN Sets Update step

Virtual distance matrix

KNN Sets
(Index Matrix)
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P2 3 ... 6

P3 -1 ... -1
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KNN Sets Update step

Virtual distance matrix

● ∀ element of the pair related to the Distance (pA , pB)

KNN Sets
(Index Matrix)

P1 3 ... -1
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KNN Sets Update step

Virtual distance matrix

● ∀ element of the pair related to the Distance (pA , pB)

○ Verify and update KNN Set of pA  if necessary

KNN Sets
(Index Matrix)

P1 3 ... -1

P2 3 ... 6

P3 -1 ... -1

P4 6 ... -1

... ... ... ...

PN 1 ... 8
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KNN Sets Update step

Virtual distance matrix

● ∀ element of the pair related to the Distance (pA , pB)

○ Verify and update KNN Set of pA  if necessary

○ Verify and update KNN Set of pB  if necessary

KNN Sets
(Index Matrix)

P1 3 ... -1

P2 3 ... 6

P3 -1 ... -1

P4 6 ... -1

... ... ... ...

PN 1 ... 8

K
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Warp-centric GPU kernels
● GPU threads cooperate in groups:

○ Usually: all threads in the CTA (Cooperative Thread array) cooperate in a task

● Other possibilities are:
○ One task per thread
○ One task per warp (warp-centric)

■ Thread block has various active warps ⇒ many tasks in parallel
■ Warp threads cooperation:

● All threads in the warp possibly cooperate using special warp primitives (SIMD 
approach)

● Only one thread in the warp performs the task (SISD simulation)

● Algorithms can alternate these patterns in different phases
○ CTA cooperative → block cooperative → warp-centric

Example: 
Reduction kernel 
(transitions in phases)
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● A Warp-centric kernel: All threads in a GPU warp cooperate in phases to:
○ Process a pair of KNN candidates
○ The computation of high dimensional distances

■ Better memory access pattern
■ Avoid warp divergence

○ Each thread block computes the KNN sets in a tree leaf
○ Avoid sorting operations and avoid maintaining heaps

 
● Three approaches considered:

○ Atomic Approach: based in atomic and lock operations

○ Tiles Approach: Divide the distances inside each leaf using a grid. 
Each tile of the grid is computed at time.

○ Diagonal Approach: Each diagonal above the main diagonal of the 
virtual distances matrix is computed at a time

KNN Set Updates - Methods

Avoid atomic 
and lock 
operations
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Atomic Approach
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Atomic Approach

http://progress_bar_id
http://progress_bar_id


Warp-centric K-Nearest Neighbor Graphs construction on GPU
DUAC

Workshop

Diagonal Approach
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Diagonal Approach
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Tiles Approach
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Tiles Approach
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Experiments
● Three datasets from real applications

○ MNIST: 70K Points, 784 Dimensions
○ ImageNET: 1.3M Points, 128 Dimensions
○ GoogleNews300: 3M Points, 300 Dimensions

● Artificial datasets
○ Generated using uniform distributions
○ Variation of different parameters: K, No. of points, No. of dimensions, Leaves sizes

● Comparison of methods:
○ w-KNNG-Atomic (Atomic Approach)
○ w-KNNG-Diagonal (Diagonal Approach)
○ w-KNNG-Tile (Tiles Approach)
○ Nearest Neighbor Exploration (NNE): Post-Processing method for RSFK
○ FAISS Library (popular library for similarity search with GPU)

● NVIDIA RTX 2070 GPU (Turing architecture)
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Results - Real Datasets
● Analysis of KNN Sets Updates step

● Tiles Approach was the faster method

● Size of tile have a small impact
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Results - Scalability - No. of Points and Dimensions
Execution time of KNN Sets Update step in the w-KNNG methods using artificially generated datasets. 
Each point in the charts represents an execution. 
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Results - Scalability - K and Leaf Size
Execution time of KNN Sets Update step in the w-KNNG methods using artificially generated datasets. 
Each point in the charts represents an execution. 
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Results - Comparison with FAISS in GPU
● Executions with different 

number of trees for RSFK 
and nprobe for FAISS 
(trade-off between time and 
quality)
 

● Tiles Approach was the best 
method

● Up to 639% speedup over 
FAISS library

● Use of Nearest Neighbor 
Exploring allows better 
speedups at higher values 
of accuracy
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Conclusions
● We identified the bottleneck in the RSFK algorithm: Updates of KNN Sets

● Warp-centric method was mostly responsible for good performance in all kernels
○ For high dimensional data the high throughput of warp-centric calculations allows 

avoidance of sorting operations or maintaining heaps

● Problems caused by atomic and lock operations were mitigated by the w-KNNG Tiles 
and w-KNNG Diagonal kernels

● The proposed Tiles Approach was the best method
○ Better if used for high-dimensional datasets (more than 128 dimensions)

● Experiments suggest that the analyzed methods are compute-bound in some 
scenarios and memory-bound in others
○ Other analyses and profiling results in the main text
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Future works
● Use multiple GPUs to execute RSFK

● Use hybrid methods to execute KNN Sets Updates
○ Choose kernel implementation based in the current step of the algorithm and 

data information

● Apply the proposed contribution to optimize other applications. Examples:
○ t-SNE (dimensionality reduction)
○ Spectral Clustering

● Verify the behavior of the algorithm in more GPU architectures
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Contact

bruno.meyer@ufpr.br
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Backup slides
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Backup slides
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