
AN INTELLIGENT PARALLEL
DISTRIBUTED STREAMING

FRAMEWORK(IPDSF) FOR NEAR
REAL-TIME SCIENCE SENSORS AND

HIGH-RESOLUTION MEDICAL IMAGES

Welcome to DUAC 2021 Workshop

Co-located with ICPP 2021: https://www.icpp-conf.org

https://www.icpp-conf.org/

Acknowledgement

This project is funded by NASA grant number

NNH16ZDA001N-AIST16-0091

Brightest minds of University of Maryland

Baltimore County are investing on this project.

IPDSF Team

Samit

Shivadekar

PhD candidate

in Computer

Science at

UMBC

Dr. Milton Halem
Research Professor at UMBC

Dr. Phuong Nguyen

Research Assistant

Professor at UMBC

Rahul Gite

Master’s in Data

Science

Graduate Research

Assistant at UMBC

Jayalakshmi

Mangalagiri

PhD candidate in

Computer Science

at UMBC

Introduction

An Intelligent Parallel Distributed Streaming Framework(IPDSF)

 To explore the potential of stream processing with data parallelism

methodologies and to provide the most effective data processing architecture

 Address challenges such as latency, scalability, throughput and heterogeneous

data sources of streaming analytics and deep learning pipelines in science

sensors and medical imaging applications

 Designed to run streaming Artificial Intelligent (AI) analytic tasks using data

parallelism including partitions of multiple streams of short time sensing data

and high-resolution 3D medical images, and fine grain tasks distribution.

IPDSF HARDWARE
ARCHITECTURE

Physically deployed using the University of Maryland Baltimore County
(UMBC) Advanced Information System Technology (AIST) compute cluster
consisting of the following nodes

 2 dual 32-Core AMD CPUs with 32GB RAM, CPUs.

 4 Nvidia GPU Geforce 2080 Ti GPUs with 11GB GPU memory and high
bandwidth connections.

 additional AMD CPUs and 2 Nvidia A100 GPUs servers.

 cluster contains a DROBO storage array consisting of 64 TB of high-speed
disks for data archiving.

 additional IBM Minsky Power8 with 4 GPU servers.

 Access to the cluster of GPU Servers is maintained under a VPN firewall.

AEROSOL CYBERINFRASTRUCTURE ECOSYSTEM (XACE)

Intra-net Security

•VPN access security (user unique certificate & password)

•Node security (VPN access & user unique password)

•Connections in are secure

•Connections out are open

Once connected to Intra-net:

•Access from any machine to any other machine with valid user account

•User workstation (laptop, desktop)

•Compute nodes

•Instrument node

Instrument node (~ $50 Raspberry Pi)

•Local data backup from instrument (up to 3 yrs)

•Periodically passes data on to xAce cluster database

•Can send data to other offsite nodes/organizations (future)

Tools and Technologies

KAFKA – DATA

STREAMING

PYTHON – DATA

PROCESSING

TENSORFLOW –

ARTIFICIAL

INTELLIGENCE SYSTEM

HOROVOD -

DISTRIBUTED DEEP

LEARNING TRAINING

CONTRIBUTION

Designing IPDSF to use data and task
parallelism methodologies including partitions
of multiple streams of short time sensing
data and fine grain task partitions of high-
resolution medical images using cGAN model

Implementation and validation IPDSF for two
real world applications using distributed nodes

IPDSF applications scale to process thousands of
near real time streaming science sensors and
generate full size realistic synthetic high
resolution 3D CT images

1) Ceilometer measures the Air quality and the
layer of air close to the earth's surface is known
as the planetary boundary layer (PBL)

 2) Thousand CEIL (Ceilometer instrument) sites
operating distributed over the US by different
organizations.

3) We use IPDSF to show how it scales to
process thousands of CEIL streams at the same
time

Air quality Index High Resolution Medical Imaging

CASE STUDIES

1) Thousands of Covid-19 patient’s

Computed Tomography CT scans are

collected

2) The high-resolution CT scans have

resolution from 100 to 600 images of

512x512 pixels up to 1024x1024

pixels. The goals of this application are

to generate high resolution synthesis

images from those CT scans for public

usage employing Deep Learning

application to detect, track, and study

Covid-19 infection

3) It is impractical to train GANs for

generating high resolution 3D scans

512x512x600 pixels using current

common GPU memory of 10GB-32GB.

In addition, training GANs models take

several days using a single node of

GPUs.

4)Using IPDSF for data partitioning,

parallel fine grain tasks and training

the GANs model in parallel distributed

fault tolerant manner

Overview Of IPDSF

Data Parallelism

where the AI analytic tasks ∆L is replicated across M

number of IPDSF workers, and multiple data partitions

{𝑋𝑝1}𝑚=1
𝑀 are processed in parallel on each worker

 AI analytic tasks using the partitions are time series

analytic science sensors data or medical imaging

analytics using deep learning models (Long Short-Term

Memory neural network, edge detection, GAN etc..).

Data parallelism supports synchronization to collect

the updates generated at each worker ∆L(Θ,Xpm),

then applies them together to aggregate (F function)

the model parameter (Θ) during training AI analytic

tasks in distributed parallel mode.

IPDSF Worker IPDSF Worker IPDSF Worker

IPDSF Validation and Performance Metrics

Performance Metrics

Peak Signal to Noise Ratio (PSNR) which is designed to get approximations

of human perception of the image reconstruction quality which usually varies

from 30-50 dB for a 8-bit data representation and 60-80 dB for a 16-bit data

representation

Structural Similarity Index (SSIM) that is another metric to estimate the

quality of images by measuring the similarity between original and the

reconstructed image. SSIM varies from -1 to +1 where +1 indicates that the

two images are identical

System throughput/latency
measure the number of streams (files)

how long it takes for IPDSF to process simultaneously multiple streams

IPDSF system architecture applied for science

sensor application

IPDSF distributed data streaming

processing for science sensor application

 The multiple science sensors (Ceilometers) are

connected to lowcost computers (i.e., Raspberry PIs)

with allocated VPN addresses for network access to the

CPU/GPU server nodes for streaming the data into the

Servers.

 Each ceilometer produces backscatter profile data every

15 seconds, stores them, and then streams the

backscatter profile data files to the IPDSF system every

1 to 5 minutes

 IPDSF is implemented using the Apache Kafka streaming library

 Kafka producers write files to stream’s partitions and consumers

are set up to run IPDSF’s analytical tasks which read from

partitions. We have used 50, 100, and 150 partitions per

Ceilometer’s stream

 Producers send data to partitions in a round-robin fashion,

starting at the first partition and iterating through to the last in a

loop. Consumers subscribe to all available streams,

automatically being assigned stream partitions by the Kafka

infrastructure.

Experiments - Latency Performance

• The latency performance is recorded to measure the total

time to process all streams of data.

• Horizontal axis shows the number of Consumers and the

vertical axis shows time to process 18000 files.

• The fixed rate of 200 files per second are sent to the

system.

• The results show the total amount of time to process all

the streams is almost linearly reduced as the number of

Consumers are increased using a single node.

Time to process number of files vs number of

consumers using a single node (predicted speed

for 18000 files at 200.0 files per second).

Experiment - Throughput Performance

• Throughput measures number of files transfer per

second through Kafka with respect to number of

partitions and number of Consumers.

• The results shows the throughput increases till the

number of partitions are less than number of consumer.

• The reason being all new consumers wait in idle mode

until an existing consumer unsubscribes from that

partition.

Throughput performance with configuration set to use

Consumers and 50 partitions using a single node.

Experiment - Throughput Performance

• When the number of Consumers exceeds the number of

partitions in a stream, all new consumers wait in idle

mode until an existing consumer unsubscribes from

that partition.

• We can see that when we increase the number of

partitions up to 150 then throughput increases as

shown in.

Throughput performance with configuration set to use 150

partitions using a single node

Experiment - Scalability Performance

• Figure shows the throughput performance when the system uses

two nodes each operates 64 Consumers, adding to totaling 128

consumers.

• The number of partitions is varied from 50, 100, 150. The

performance changes significantly for two nodes. The number of

CPU cores and stream partitions have less of an impact on

consumer performance than the network bandwidth and latency.

• Since we are running only two brokers, we have set this replication

factor to 2 to ensure 100% of messages are duplicated between

nodes. This also provides fault tolerance - with the files being

duplicated, nothing is lost if one broker goes down.
Throughput performance on each node using 2-

node cluster (2 brokers).

Experiment - Throughput Performance on
Cluster

• Throughput performance when only one broker is present across a

cluster of two nodes.

• Performance decreases as the number of consumers on two nodes

increase.

• The reason is network bottleneck. When multiple consumers on a

single node connect to a broker, the bandwidth available for each is

reduced.

Throughput performance results for 2-node

cluster. Brokers is running on Node 1

Experiment - Throughput Performance on
Cluster

• Throughput performance when two broker are present across a

cluster of two nodes.

• Much better performance compared when running single

broker.

• All traffic happens between brokers on a single connection,

which uses much less bandwidth because of partition

replication.

Throughput performance results for 2-node

cluster. Brokers are running on Node 1 and Node

2

Evaluation of IPDSF for High

Resolution Medical Imagery

• IPDSF-Horovod implementation using 4 GPUs and compared with single

node implementation runs on a single GPU

• Trained our cGAN model for 100 epochs with a batch size of 50 samples

and tested model by using 4 different patients and evaluated the

performance of the model using two different evaluation metrics like the

Peak Signal to Noise Ratio (PSNR) and Structural Similarity Index

metrics (SSIM).

• We have reconstructed our full-size high-resolution CT-Scans by

conducting reverse preprocessing and then integrated the predicted cubes

to an image of full-size CT-scan with a resolution of 515x512xZ where Z

is the count of axial slices

IPDSF for batch training processes
• Models are trained in parallel as distributed

across multi-GPU servers by using the Horovod

framework

• Horovod leverages efficient inter-GPU and inter-

node communication methods such as NVIDIA

Collective Communications Library (NCCL) and

Message Passing Interface (MPI) to distribute

and aggregate model parameters between

workers.

• cGAN architecture, which generates 3D

Computed Tomography scans in cubes for an

autoencoder representation

• The novelty of our 3D convolutional cGAN lies

in its distributed setting where we have used our

IPDSF to generate scalable realistic high

resolution full size synthetic 3D CT images

LATENCY & SCALABILITY OF CGAN
MODEL

• IPDSF reduces cGAN training time by 4x factor compared with using

single node implementation.

• This shows the linear scaling of using our IPDSF with respect to the

number of GPUs. cGAN GPU runtime comparison with

and without IPDSF-Horovod

implementation

Time to stabilize accuracy of model using GPU with

and without IPDSF-Horovod

• GPU with IPDSF-Horovod minimized the runtime to 19 hours than the

GPU that took runtime of 27 hours without IPDSF-Horovod

Time to stabilize discriminator loss < 0.0008 involving

GPU with and without IPDSF- Horovod

• Runtime required to stabilize discriminator loss is depicted where the

GPU with IPDSF-Horovod requires minimized runtime of about 65

hours while the GPU without IPDSF-Horovod requires 85 hours to

stabilize the discriminator loss.

Time to stabilize generator loss < 3.0 involving GPU

with and without IPDSF- Horovod

• Runtime required to stabilize the generator loss is depicted where the

GPU with IPDSF-Horovod requires a minimized runtime of about 13

hours while the GPU without IPDSF-Horovod requires a longer

runtime of about 22 hours to stabilize the generator loss

cGAN Architecture Validation and Verification comparison

(a) We see the cGAN model using IPDSF-Horovod where the generated CT-

image of a patient is shown where all the cubes are stitched back after reverse

preprocessing

(b) shows the cGAN model using IPDSF-Horovod stitched cGAN

predicted CT-image after reverse preprocessing of the same patient as

shown in (a).

(c) the difference between the cGAN generated and the original

enhanced contrast images are shown which seems to be having very

little difference after subtracting the two images from (a) and (b)

(d), (e), and (f) are the images that came from the cGAN model which is

trained without using IPDSF-horovod with the same patient as used in

IPDSF-horovod training.

It is evident by visualizing IPDSF-Horovod with and without using

IPDSF-Horovod makes no difference in terms of generating synthetic

images, but it does make a drastic difference when it comes to

accelerating the training time as mentioned earlier in our study.

Patient PSNR (units =dB)

With IPDSF-

Horovod

SSIM

With

IPDSF-

Horovod

PSNR (units =dB)

Without IPDSF-

Horovod

SSIM without IPDSF-

Horovod

1 34 0.98 36 0.98

2 32.6 0.97 36.8 0.98

3 33.4 0.97 37.5 0.98

4 33.9 0.98 34.9 0.98

cGAN evaluation metrics using with and without IPDSF-Horovod

These readings clearly show that the cGAN model as trained using the IPDSF-Horovod distributed

framework achieves comparable performance to the baseline implementation for all the 4 patients in the

testing dataset.

Conclusion

•IPDSF achieve high performance and
scalability while maintaining low latency, and
high throughput by using both fine grain data
and task partitioning parallelism.

High Performance and Scalability

•Increase Fault Tolerance by including
commodity hardware to duplicate data across
Kafka using replication factor.

Fault Tolerance

•One of the first applications of attempting to
use deep learning models to generate full size
realistic synthetic high resolution 3D CT images
using a distributed framework

Novelty

Future Work

• Incorporate more data from different ceilometer sites and medical
images.

Incorporate

•Evaluate IPDSF using streaming tensor decomposition tools like
SPLATT

Streaming Tensor Decomposition

THANK YOU

