

International Workshop on Parallel and Distributed Algorithms for Decision Sciences (PDADS) 2021

Design Considerations for GPU-based Mixed Integer Programming on Parallel Computing Platforms

Kalyan Perumalla Maksudul Alam

ORNL is managed by UT-Battelle LLC for the US Department of Energy

Int'l Conference on Parallel Processing (ICPP) 2021 August 9-12, 2021

GPUs enable much of the recent supercomputing power

Mixed Integer Programming (MIP)

General Problem Formulation Maximize $c^T x$ such that $Ax \leq b$, where $x = \{x_r, x_z\},\$ $x_r \in \mathcal{R}$ (reals), and $x_z \in \mathcal{Z}$ (integers).

Basic Solution Approach

CPU vs. GPU-based Parallel MIP Solvers

CPU-based

- Fairly mature technology
- Many open-source implementations available
- Many commercial packages available
- Extremely fast solvers based on advanced
 - Linear algebra
 - Branch-and-Cut/Price
 - Heuristics
- References are provided in our paper

GPU-based

- Very few available to exploit the power of latest parallel processing
- Technical solution approaches are yet to be fully unraveled
- Need to guide the field with design considerations
 - To evaluate different choices
 - To determine most promising approach(es)

CAK RIDGE Our Identification of GPU-based Parallel Execution Strategies

Entirely GPU-based	CPU-driven GPU	Hybrid CPU-GPU	Distributed Big-MIP
 Entire solution tree	 Entire solution tree	 Solution tree split	 Solution tree in small
stored in GPU	stored in main	across main memory	number of main
memory	memory	and GPU memory	node memories
 Tree updated by	 Tree updated by CPU	 Tree updated by	 Tree updated by
GPU only	only	GPU and CPU	CPU only
 Branch-and-cut	 Branch-and-cut	 Both CPU and GPU	 Branch-and-cut
algorithm performed	algorithm performed	participate as peers	algorithm by lead-
on GPU	by CPU	in branch-and-cut	CPU orchestration
 Linear algebra steps	 Linear algebra steps	 CPU & GPU perform	 Each linear algebra
performed on GPU	delegated to GPU	linear algebra steps	step on many GPUs
Optimal MIP Problem Size			Huge MIP Problem Size
Most effective GPU execution = Each tree node occupies one GPU memory Small MIP Problem Size Specialized GPU execution = Multiple tree nodes fit simultaneously in each GPU			Every tree node spans many GPUs

Linear Algebra Support

Software Considerations

- Matrix packages on GPU
 - Dense matrices: fairly mature on NVIDIA platforms
 - Sparse matrices: not as mature on any platform
 - Not easy to choose between dense and sparse, statically or dynamically
- GPUs are extremely efficient in dense linear algebra
 - Interior point methods for LP relaxation in branch-and-cut tree may work better

Algorithmic Considerations

- Sharing/reusing solutions across tree nodes
 - E.g., initial vector in iterative solvers
- Incorporation of generated cuts into GPU matrix structure
- Concurrent solution of small problems
- Solving multiple nodes simultaneously on same GPU

References are provided in the paper

Summary and Future Work

- GPUs dominate the current and future parallel processing
- Mixed integer programming (MIP) forms the core of several important applications
- Parallel MIP on GPU-based parallel platforms is not adequately understood
- Here, we unraveled key design considerations towards efficient execution of MIP on GPU-based parallel platforms
- Implementation of the most promising designs in actual software is needed as next step

Thank you for your attention!

• Q&A

