
ORNL is managed by UT-Battelle LLC for the US Department of Energy

Design Considerations for GPU-based
Mixed Integer Programming on Parallel
Computing Platforms
Kalyan Perumalla

Maksudul Alam

International Workshop on Parallel and Distributed Algorithms for Decision Sciences (PDADS) 2021

Int’l Conference on Parallel Processing (ICPP) 2021
August 9-12, 2021

22 Kalyan Perumalla and Maksudul Alam, PDADS/ICPP’21

GPUs enable much of the recent supercomputing power

33 Kalyan Perumalla and Maksudul Alam, PDADS/ICPP’21

Mixed Integer Programming (MIP)

General Problem Formulation

ICPP Workshops ’21, August 9–12, 2021, Lemont, IL, USA K. Perumalla and M. Alam

In the next section, a brief background is presented for mixed in-
teger programming and recent advancements in accelerator-based,
large-scale parallel computing, along with coverage of related work.
This is followed in Section 3 by an identi�cation of di�erent parallel
execution strategies for MIP solution over accelerated parallel com-
puting platforms. Key linear algebra support available on the GPU
platforms is listed in Section 4 with selected packages suitable for
MIP solvers. Section 5 captures important modes in which the linear
algebra support of the GPUs is utilized for parallel MIP solution.
The article is concluded in Section 6.

2 BACKGROUND
2.1 Mixed Integer Programming
Equation 1 shows the basic structure of a mixed integer program
(MIP).

Maximize cT x
such that Ax  b,

where x = {xr ,xz },
xr 2 R (reals), and
xz 2 Z (integers).

(1)

This formulation can be transformed into an equivalent form
where the inequality of Ax  b can be replaced with equality
(Ax̂ = b̂) with the introduction of variables � � 0 to capture the
inequality slack. Also, upper and lower bounds, if any, on x are
implicit in Ax  b.

Many parallel solvers have experienced success in solving this
formulation using a branch-and-bound approach that uses a di-
vide and conquer strategy by relaxing the integrality of xz 2 Z
to make x 2 R and solving the relaxed problem, which is a linear
programming problem without integer constraints. The linear pro-
gram, if integer-infeasible, can be used to partition the solution
space (for example, by branching on appropriate partitioning of
one or more xi 2 xz), which splits the problem into two or more
sub-problems. The linear program relaxation provides an upper
bound on the objective value of the corresponding integer problem.
The branches create a tree of sub-problems that are accumulated
for systematic evaluation. This basic branch-and-bound procedure
is often enhanced with a range of variants such as branch-and-cut
using dynamic cut generation with various types of cuts. The issues
of branching, priming, variable value �xing, etc. have all been well
studied in the past few decades and published in the literature.

The corresponding branch-and-bound search tree for a MIP is
illustrated in Figure 1. All leaves in the tree are evaluated and
tagged as feasible, infeasible or pruned. Intermediate nodes are
tagged by their LP solutions and branching variables. Note that
some leaves might be tagged as active during search. However, by
the completion of the entire search, no nodes remain tagged as
active – all of them are converted to feasible, infeasible or pruned.

A consistent snapshot of the branch-and-bound tree is de�ned as
the set of leaves that preserves the optimal solution to the problem.
Two simple consistent snapshots are easy to obtain: (1) the root node
alone, and (2) the set of all leaves after the entire search. However,
even during search, snapshots can be obtained that are consistent,

Figure 1: Solution tree

even though the optimal value is not yet found. In a sequential
execution, a consistent snapshot is easy to obtain as follows. As
soon as a node is solved and its children, if any, are generated, the
active set is examined. The set of all leaf nodes from the active
set constitute a valid consistent snapshot. In a parallel/distributed
execution of branch-and-bound or branch-and-cut, a consistent
snapshot is non-trivial to obtain. The complexity in this case comes
from the fact that all processors need to synchronize with each
other to account for (a) nodes that are being evaluated, i.e., whose
LP relaxation is being computed, etc. (b) nodes that are in transit
across processors, in the absence of a centralized active set, i.e.,
when a distributed scheme for exchange of active set nodes is used.

2.2 Parallel Computing Advancements
Parallel MIP solution methods traditionally have been designed
and scaled on large parallel machines that were built with conven-
tional CPU architectures. In recent years, however, the increases
in computational capacity have been obtained not from increased
number of CPU cores but from the addition of GPU-based accel-
erators. High performance computing in general has come to be
dominated by GPUs so much so that GPUs are predominantly being
used for scaling in much of the supercomputing world. In fact, the
core computational capacity of seven of the top ten supercomputers
is powered by GPUs1. The rate of performance gains using GPUs
outpaces traditional CPUs by a wide margin. GPUs have become
the core to modern AI-capable supercomputers. Summit, the fastest
supercomputer in the USA (as of this writing) at the Oak Ridge
National Laboratory uses NVIDIA Tesla V100 GPUs to achieve 200
petaFLOPS performance. The upcoming Aurora supercomputer at
the Argonne National Laboratory is expected to have 1 exaFLOPS
performance using Intel Xe GPUs. Frontier, the successor to Summit
at the Oak Ridge National Laboratory is expected to deliver 1.5 ex-
aFLOPS using AMD’s Radeon Instinct GPUs. Lawrence Livermore
National Laboratory also announced the El Capitan supercomputer
to be launched in 2023 with 2 exaFLOPS using AMD’s Radeon In-
stinct GPUs. This trend in the supercomputing arena provides a
clear motivation for a focus on GPU-aware algorithms and packages
1http://top500.org

Basic Solution Approach

44 Kalyan Perumalla and Maksudul Alam, PDADS/ICPP’21

CPU vs. GPU-based Parallel MIP Solvers

CPU-based
• Fairly mature technology

• Many open-source implementations
available

• Many commercial packages available

• Extremely fast solvers based on
advanced
– Linear algebra
– Branch-and-Cut/Price
– Heuristics

• References are provided in our paper

GPU-based
• Very few available to exploit the power

of latest parallel processing

• Technical solution approaches are yet
to be fully unraveled

• Need to guide the field with design
considerations
– To evaluate different choices
– To determine most promising

approach(es)

5

Entirely GPU-based

• Entire solution tree
stored in GPU
memory

• Tree updated by
GPU only

• Branch-and-cut
algorithm performed
on GPU

• Linear algebra steps
performed on GPU

CPU-driven GPU

• Entire solution tree
stored in main
memory

• Tree updated by CPU
only

• Branch-and-cut
algorithm performed
by CPU

• Linear algebra steps
delegated to GPU

Hybrid CPU-GPU

• Solution tree split
across main memory
and GPU memory

• Tree updated by
GPU and CPU

• Both CPU and GPU
participate as peers
in branch-and-cut

• CPU & GPU perform
linear algebra steps

Our Identification of GPU-based Parallel Execution Strategies

Distributed Big-MIP

• Solution tree in small
number of main
node memories

• Tree updated by
CPU only

• Branch-and-cut
algorithm by lead-
CPU orchestration

• Each linear algebra
step on many GPUs

Optimal MIP Problem Size
Most effective GPU execution = Each tree node occupies one GPU memory

Small MIP Problem Size
Specialized GPU execution = Multiple tree nodes fit simultaneously in each GPU

Huge MIP Problem Size

Every tree node spans
many GPUs

66 Kalyan Perumalla and Maksudul Alam, PDADS/ICPP’21

Linear Algebra Support

Software Considerations
• Matrix packages on GPU

– Dense matrices: fairly mature on NVIDIA
platforms

– Sparse matrices: not as mature on any
platform

– Not easy to choose between dense and
sparse, statically or dynamically

• GPUs are extremely efficient in dense
linear algebra
– Interior point methods for LP relaxation in

branch-and-cut tree may work better

Algorithmic Considerations
• Sharing/reusing solutions across tree

nodes
– E.g., initial vector in iterative solvers

• Incorporation of generated cuts into
GPU matrix structure

• Concurrent solution of small problems

• Solving multiple nodes simultaneously on
same GPU

References are provided in the paper

77 Kalyan Perumalla and Maksudul Alam, PDADS/ICPP’21

Summary and Future Work

• GPUs dominate the current and future parallel processing

• Mixed integer programming (MIP) forms the core of several
important applications

• Parallel MIP on GPU-based parallel platforms is not adequately
understood

• Here, we unraveled key design considerations towards efficient
execution of MIP on GPU-based parallel platforms

• Implementation of the most promising designs in actual
software is needed as next step

Thank you for your
attention!

• Q&A

