

Towards Faster Execution of Ensemble ML Bootstrap Based Techniques

Vinay Gavirangaswamy, Ajay Gupta, Hisham Saleh, Dept. Computer Science, Western Michigan University; Vasilije Perovic, Dept. of Mathematics, University of Rhode Island

Decision Making, A Fundamental Aspect of life...

- Studied using tools for a specific competency e.g., surveys, computer tasks / games, etc.
- Finds application in life science (Stanford University HAI COVID19 and AI), Marketing, and Finance
- Analysis broadly classified for group / individual, aggregate / differential behaviors
- We applied Ensemble Clustering to tasks data from BART, CUPS, and IGT

INTERNATIONAL

CONFERENCE ON

PARALLEL

PROCESSING

Parallel Implementation on Distributed Memory System

Run Times, Speedup and Efficiency of Ensemble Clustering after Parallelization 1000 Participants' Data

Execution Times And Speedup for Parallelized RDM Reinforcement Learning Algorithm

Parallel Implementation on Shared Memory System

Speedup achieved for running Ensemble Clustering on CPU vs. CPU-GPU Run times for unordered vs. batch reconfigured model sequence execution

Parallel Implementation on Shared Memory System (Contd.)

Speedup achieved for running Ensemble Clustering on **CUBLAS-ARPACK**

	Parallel CUBLAS-ARPACK						
#Participants	Preprocessing	Ensemble Creation	Ensemble Extraction	Total			
512	0.000002	0.027031	0.200994	0.228027			
1024	0.000004	0.065028	0.829694	0.894726			
2048	0.000008	0.179218	1.74629185	1.9255178			
4096	0.000025	0.353409	4.55996992	4.9134039			
8192	0.000097	0.918421	16.4327205	17.351238			
10240	0.000197	1.4468	25.6589273	27.105924			
11264	0.000228	1.762412	31.1415162	32.904156			
12288	0.000216	1.773678	36.1456167	37.919510			
13312	0.000254	8.05293	42.3747132	50.427897			
14336	0.000309	2.353111	48.4853123	50.838732			

Speedup achieved for running Ensemble Clustering on **BLAS-ARPACK**

	Sequential BLAS-ARPACK						
#Participants	Preprocessing	Ensemble Creation	Ensemble Extraction	Total			
512	0.008813	0.920119	0.596379	1.52531			
1024	0.034078	3.890402	1.2575	5.18198			
2048	0.133376	24.678988	3.91411	28.7264			
4096	0.5259915	178.714399	10.220642	189.460			
8192	2.0748	1325.326938	36.832031	1364.23			
10240	3.240139	2550.207621	57.5115	2610.95			
11264	3.89515	3374.181781	69.8000851	3447.87			
12288	4.637481	4361.379918	81.016194	4447.03			
13312	5.440463	5515.57373	94.977989	5615.99			
14336	6.315224	6858.803793	108.674186	6973.79			

Ensemble Clustering, optimizing for redundant computations (RC)

Lee I Newman. Decision Making under Uncertainty: Revealing, Characterizing and Modeling Individual Differences in the Iowa Gambling Task. PhD thesis, The University of Michigan, 2009 Highlighted boxes denote an example of steps in ensemble clustering that lead to redundant computations

Example: Dist-Program

 Input: a, b, c ∈ ℝ².
Output: dac - squared Euclidean dist. b/w a and c, davgc - squared Euclidean dist. b/w (a + b) and c.
dac = (a₁ - c₁) · (a₁ - c₁) + (a₂ - c₂) · (a₂ - c₂)
davgc = (a₁ - c₁ + b₁) · (a₁ - c₁ + b₁) + (a₂ - c₂ + b₂) · (a₂ - c₂ + b₂)

Redundancies in code due to numerical operations applied over same data

Problem Formulation

Computational unit (cu) – an atomic unit consisting of both data <u>and</u> mathematical computations operating on the data set.

Example: Dist-Program

1: **Input:** $a, b, c \in \mathbb{R}^2$.

- 2: **Output:** *dac* squared Euclidean dist. b/w *a* and *c*, *davgc* - squared Euclidean dist. b/w (a + b) and *c*.
- 3: $dac = (a_1 c_1) \cdot (a_1 c_1) + (a_2 c_2) \cdot (a_2 c_2)$

4: $davgc = (a_1 - c_1 + b_1) \cdot (a_1 - c_1 + b_1) + (a_2 - c_2 + b_2) \cdot (a_2 - c_2 + b_2)$

# elt's.	subsets of $\mathcal{D}^{(t)}$
0	$\mathcal{D}_1^{(t)} = \emptyset$
1	$\mathcal{D}_{2}^{(t)} = \{a\}, \ \mathcal{D}_{3}^{(t)} = \{b\}, \ \mathcal{D}_{4}^{(t)} = \{c\},$
2	$\mathcal{D}_{5}^{(t)} = \{a, b\}, \ \mathcal{D}_{6}^{(t)} = \{a, c\}, \ \mathcal{D}_{7}^{(t)} = \{b, c\},$
3	$\mathcal{D}_8^{(t)} = \{a, b, c\}$

Nontrivial cu's with repetitions

$$\begin{array}{c} m_{1}^{6,t} = a_{1} - c_{1} \\ m_{2}^{6,t} = a_{1} - c_{1} \end{array} \right\} \longrightarrow m_{3}^{6,t} = m_{1}^{6,t} \cdot m_{2}^{6,t} \\ m_{4}^{6,t} = a_{2} - c_{2} \\ m_{5}^{6,t} = a_{2} - c_{2} \end{array} \right\} \longrightarrow m_{6}^{6,t} = m_{4}^{6,t} \cdot m_{5}^{6,t} \\ \begin{array}{c} \longrightarrow \\ m_{7}^{6,t} = a_{1} - c_{1} \end{array} \right\} \longrightarrow m_{1}^{8,t} = m_{7}^{6,t} + b_{1} \\ m_{8}^{6,t} = a_{1} - c_{1} \end{aligned} \right\} \longrightarrow m_{2}^{8,t} = m_{8}^{6,t} + b_{1} \\ \begin{array}{c} \longrightarrow \\ m_{5}^{6,t} = a_{2} - c_{2} \end{array} \right\} \longrightarrow m_{3}^{8,t} = m_{9}^{6,t} + b_{2} \\ m_{10}^{6,t} = a_{2} - c_{2} \end{aligned} \right\} \longrightarrow m_{4}^{8,t} = m_{10}^{6,t} + b_{2} \\ \begin{array}{c} \longrightarrow \\ m_{7}^{6,t} = a_{2} - c_{2} \end{aligned} \right\} \longrightarrow m_{4}^{8,t} = m_{10}^{6,t} + b_{2} \\ \end{array} \right\} \longrightarrow m_{5}^{8,t} = m_{3}^{8,t} \cdot m_{4}^{8,t} \\ \longrightarrow \\ \begin{array}{c} \longrightarrow \\ m_{6}^{8,t} = m_{3}^{8,t} \cdot m_{4}^{8,t} \\ \longrightarrow \\ \end{array} \right\} \longrightarrow m_{7}^{8,t} = m_{5}^{8,t} + m_{6}^{8,t} \\ \end{array}$$

Note: $m_i^{i, t} = j^{\text{th}}$ computational unit acting on subset $D_i^{(t)}$

Example: Dist-Program

Nontrivial cu's with repetition

$ \begin{array}{c} m_{1}^{6,t} = a_{1} - c_{1} \\ m_{2}^{6,t} = a_{1} - c_{1} \end{array} \right\} \longrightarrow \ m_{3}^{6,t} = \ m_{1}^{6,t} \cdot m_{2}^{6,t} $	6.t $6.t$ $6.t$
$ \begin{array}{c} m_1^{6,t} = a_1 - c_1 \\ m_2^{6,t} = a_1 - c_1 \\ m_4^{6,t} = a_2 - c_2 \\ m_5^{6,t} = a_2 - c_2 \end{array} \right\} \longrightarrow m_6^{6,t} = m_4^{6,t} \cdot m_5^{6,t} $	$\begin{cases} \longrightarrow m_7' = m_3' + m_6' \\ \end{cases}$
$m_7^{6,t} = a_1 - c_1 \} \longrightarrow m_1^{8,t} = m_7^{6,t} + b_1$ $m_8^{6,t} = a_1 - c_1 \} \longrightarrow m_2^{8,t} = m_8^{6,t} + b_1$	
$m_9^{6,t} = a_2 - c_2 \} \longrightarrow m_3^{8,t} = m_9^{6,t} + b_2$ $m_{10}^{6,t} = a_2 - c_2 \} \longrightarrow m_4^{8,t} = m_{10}^{6,t} + b_2$	$\left. \begin{array}{ccc} & \\ \end{array} \right\} \longrightarrow \mathbf{m}_6^{8,t} = \mathbf{m}_3^{8,t} \cdot \mathbf{m}_4^{8,t} \end{array}$
	$\longrightarrow \mathbf{m}_7^{8,t} = \mathbf{m}_5^{8,t} + \mathbf{m}_6^{8,t}$

M = collection of all nontrivial computational units along with their dependencies

INTERNATIONAL

CONFERENCE ON

PARALLEL

PROCESSING

Nontrivial cu's without repetitions

		Original cu	Relabeled cu	Dependency
$m_1^{6,t}$	=	$a_1 - c_1$	\widetilde{m}_1	none
$m_3^{6,t}$	=	$m_1^{6,t} \cdot m_2^{6,t} = m_1^{6,t} \cdot m_1^{6,t}$	\widetilde{m}_2	\widetilde{m}_1
$m_4^{6,t}$	=	$a_2 - c_2$	\widetilde{m}_3	none
$m_6^{6,t}$	=	$m_{4}^{6,t} \cdot m_{5}^{6,t} = m_{4}^{6,t} \cdot m_{4}^{6,t}$	\widetilde{m}_4	\widetilde{m}_3
$m_7^{6,t}$	=	$m_3^{6,t} + m_6^{6,t}$	\widetilde{m}_5	\widetilde{m}_2 , \widetilde{m}_4
$m_1^{8,t}$	=	$m_7^{6,t} + b_1 = m_1^{6,t} + b_1$	\widetilde{m}_{6}	\widetilde{m}_1
$m_5^{8,t}$	=	$m_1^{8,t} \cdot m_2^{8,t} = m_1^{8,t} \cdot m_1^{8,t}$	\widetilde{m}_7	\widetilde{m}_6
m ₃ ^{8,t}	=	$m_9^{6,t} + b_2 = m_4^{6,t} + b_2$	\widetilde{m}_8	\widetilde{m}_3
m ₆ ^{8,t}	=	$m_3^{8,t} \cdot m_4^{8,t} = m_3^{8,t} \cdot m_3^{8,t}$	\widetilde{m}_9	\widetilde{m}_8
m ₇ ^{8,t}	=	$m_5^{8,t} + m_6^{8,t}$	\widetilde{m}_{10}	\widetilde{m}_7 , \widetilde{m}_9

Nontrivial cu's with repetition (Dist– Program)

_		Original cu	Relabeled cu	Dependency
m ₁ ^{6,t}	=	$a_1 - c_1$	\widetilde{m}_1	none
$m_3^{6,t}$	=	$m_1^{6,t} \cdot m_2^{6,t} = m_1^{6,t} \cdot m_1^{6,t}$	\widetilde{m}_2	\widetilde{m}_1
$m_4^{6,t}$	=	$a_2 - c_2$	\widetilde{m}_3	none
$m_6^{6,t}$	=	$m_{4}^{6,t} \cdot m_{5}^{6,t} = m_{4}^{6,t} \cdot m_{4}^{6,t}$	\widetilde{m}_4	\widetilde{m}_3
$m_7^{6,t}$	=	$m_3^{6,t} + m_6^{6,t}$	\widetilde{m}_5	$\widetilde{m}_2,\widetilde{m}_4$
$m_1^{8,t}$	=	$m_7^{6,t} + b_1 = m_1^{6,t} + b_1$	\widetilde{m}_6	\widetilde{m}_1
$m_5^{8,t}$	=	$m_1^{8,t} \cdot m_2^{8,t} = m_1^{8,t} \cdot m_1^{8,t}$	\widetilde{m}_7	\widetilde{m}_6
m ₃ ^{8,t}	=	$m_9^{6,t} + b_2 = m_4^{6,t} + b_2$	\widetilde{m}_8	\widetilde{m}_3
m ₆ ^{8,t}	=	$m_3^{8,t} \cdot m_4^{8,t} = m_3^{8,t} \cdot m_3^{8,t}$	\widetilde{m}_9	\widetilde{m}_8
$m_7^{8,t}$	=	$m_5^{8,t} + m_6^{8,t}$	\widetilde{m}_{10}	\widetilde{m}_7 , \widetilde{m}_9

Capturing Interdependencies between cu's

 $\widetilde{n}_4 = (0, 0, 1, 0, 0, 0, 0, 0, 0, 0),$ $\widetilde{n}_6 = (1, 0, 0, 0, 0, 0, 0, 0, 0, 0),$

 $\widetilde{n}_5 = (0, 1, 0, 1, 0, 0, 0, 0, 0, 0),$ $\widetilde{n}_{10} = (0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0).$

Interaction graph capturing interdependencies between \tilde{m} 's (directed acyclic graph – DAG)

Algorithm: Reduction in Redundant Computations (RRC)

Step 1: Decompose Ensemble Clustering ML algorithm into collection of computational units *M*.

Step 2: Identify and collect all distinct computational units from M into \widetilde{M} along with interdependencies.

Step 3: Find an aggregation of cu's , \mathfrak{C} , with execution cost lower than that of M.

Step 4: FTiP, Floor Tile Planning - Find an efficient execution plan for \mathfrak{C} on the compute resource.

Step 3 (RRC): Find an aggregation of cu's , \mathfrak{C} , with execution cost lower than that of M

The choice of aggregation of cu's \mathfrak{C} is limited by computer resources, some of which are as follow:

- Machine with *restrictive compute* and *infinite memory*
- Machine with *infinite compute* and *restrictive memory*
- Machine with *restrictive compute* and *restrictive memory*

Definition: r-s Set Cover

Let $\widetilde{\mathcal{M}} = \{\widetilde{m}_1, \widetilde{m}_2, \dots, \widetilde{m}_{\widetilde{\omega}}\}\$ be a set of distinct cu's and $\widetilde{\mathcal{G}}$ a directed acyclic (interaction) graph corresponding to $\widetilde{\mathcal{M}}$. An *ordered list*

$$\mathfrak{C} = (\mathcal{A}_1, \mathcal{A}_2, \ldots, \mathcal{A}_{\delta}), \quad \mathcal{A}_i \subseteq \widetilde{\mathcal{M}}, \quad i = 1, 2, \ldots, \delta,$$

is said to be an (r, s) set cover of $\widetilde{\mathcal{M}}$, where r and s are positive integers, if for all $i = 1, 2, ..., \delta$ sets \mathcal{A}_i are nonempty and the following conditions are satisfied:

(i)
$$\bigcup_{i=1}^{\delta} \mathcal{R}_i = \widetilde{\mathcal{M}},$$

- (ii) cardinality of \mathcal{A}_i is at most r, i.e., $|\mathcal{A}_i| \leq r$, and
- (iii) an arbitrary $m_{\alpha} \in \mathcal{A}_i$ can be executed given a subset, possibly empty, of tasks from $\mathcal{A}_i, \mathcal{A}_{i-1}, \ldots, \mathcal{A}_{i-s}$.

Connection with the Directed Bandwidth Problem

Question:

Given $r \ge 1$, what is the smallest *s* for which (r,s) set cover of \widetilde{M} exists?

Def: Given a directed acyclic graph
$$\widetilde{G}$$
 associated with a collection of cu's in $\widetilde{\mathcal{M}}$, the *directed bandwidth of* \widetilde{G} , $\overrightarrow{Bw}(\widetilde{G})$, is given by

$$\overrightarrow{Bw}(\widetilde{G}) := \min \left\{ Bw(\widetilde{G}, \sigma) : \sigma \text{ is a layout of } \widetilde{G} \text{ and} \right\}$$

 $\sigma(m_{\alpha}) < \sigma(m_{\beta})$ for all directed arcs from m_{α} to m_{β} .

Simulation Study – Experimental Setup

- Based on ensemble clustering with only *k-means* with variation for data and number of clusters
- Variation in \widehat{M} studied for occurrence of RR under different random distributions
- Built a generic FTiP Simulator from scratch for, studying RR computation across different ML models
- Simulator written using python, neo4j graph database

Simulation Study – Results

- DAGs resulting from cu's in (a) M, (b) M_a , and (c) \widehat{M} , with $RR(M) \leq RR(M_a) \leq RR(\widehat{M})$
- Variation in \widehat{M} i.e. M_a generated for RR under normally distributed randomization

Simulation Study – Results (Contd.)

- Metrics on DAGs resulting from cu's in M, M_a , and \widehat{M} for $|D^{(t)}| = 8, 16, 32$, corresponds to a variation in RR
- Results clearly indicate for presence of lower and upper bounds
- Clear evidence for existence of opportunities to optimize

CONCLUSIONS & FUTURE WORK

- Explored avenues for further improvements in computational performance in EM algorithms
- We work at the intersection of high-performance computation, compiler, and reinforcement learning algorithms
- Proposed a novel theoretical framework which can help us identify previously undetected redundancies
- Solve the RRC problem for a restricted case
- Extend simulation experiments for various randomization of RR
- Study a wider ML models for RRC

INTERNATION	AL						acm In-Cooperation
CONFERENCE ON	7						ciabac
							sîghpc
PROCESSING	IC	; P P / 2	021/	CHIC	AGO	USA	AUGUST 9-12, 2021

Thanks to NIH, NSF, WMU and URI for partial support. Thanks to reviewers for valuable feedback that resulted in improved paper. Q&A

